

Demande d'examen au cas par cas préalable à la réalisation éventuelle d'une évaluation environnementale

Article R. 122-3 du code de l'environnement

Ministère chargé de l'environnement

Ce formulaire sera publié sur le site internet de l'autorité environnementale Avant de remplir cette demande, lire attentivement la notice explicative

	Cadre réservé à l'autorité environnen								
Date de réception :	Dossier complet le : 15/06/2017	N° d'enregistrement : 2017-ARA-DP-00599							
15/06/2017	15/00/2017	2017-ARA-DF-00599							
TAXABLE DESCRIPTION OF THE PARTY.	1. Intitulé du projet								
Modification du point de rejet des effluents des tours de refroidissement									
2. Identification du (ou des) maître(s) d'ouvrage ou du (ou des) pétitionnaire(s)									
2.1 Personne physique									
Nom	Prénom								
2.2 Personne morale	AND STREET STREET, STR	os broschoes viscomo obsolero antidici							
Dénomination ou raison sociale	SNF sas	15 May 15 Galler (1990) (1991) (1991) (1991) (1991) (1991) (1991) (1991) (1991) (1991) (1991) (1991)							
Nom, prénom et qualité de la personne									
habilitée à représenter la personne morale	René HUND								
	4 3 0 0 0 3 4 Forme j	uridique SAS							
1 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6									
	`	it and the most							
Joigne	ez à votre demande l'annexe obl	igatoire n°i							
3. Catégorie(s) applicable(s) du table	au des seuils et critères annexé à l'ar	ticle R. 122-2 du code de l'environnement et							
	dimensionnement correspondant du								
N° de catégorie et sous catégorie		egard des seuils et critères de la catégorie							
1°a)	Autres installations classées pour la pr	sues d'autres nomenclatures (ICPE, IOTA, etc.) rotection de l'environnement soumises à							
l d)	autorisation								
×									
·									
	4. Caractéristiques générales du p	rojet							
Doivent être annexées au présent formu									
4.1 Nature du projet, y compris les éven									
Rejet des purges de déconcentration des t	cours de refroidissement au milieu natu	ırel, via le réseau pluvial							
Aucun lourd travaux n'est à prévoir puisqu	ue le réseau de collecte et le réseau plu	vial sont existants.							
	8 -								
· ·									

4.2 Objectifs du projet	
Séparer les flux d'eau pollués et les flux d'eau non pollués pour	une meilleure épuration en interne
Libérer de la charge hydraulique à la station d'épuration des 3	Ponts (quasi saturée)
4.3 Décrivez sommairement le projet	
4.3.1 dans sa phase travaux 1/ Modification des traitements chimiques des tours de refroid Mise en place de lampes UV à l'intérieur de toutes les réserves de	
2/ Branchement des purges des tours de refroidissement au ré Déjà existant pour la plupart (cela était autorisé avant 2013)	seau pluvial
	•
4.3.2 dans sa phase d'exploitation Gestion des tours de refroidissement par les équipes postées de	u service Utilités
1	

La décision de l'autorité environnem Loi sur l'eau 4.5 Dimensions et caractéristiques du p	rative(s) d'autorisation le projet a-t-il été ou ser entale devra être jointe au(x) dossier(s) d'autor projet et superficie globale de l'opération - précise eurs caractéristiques	les unités de mesure utilisées Valeur(s) 50000m3/an env.
4.6 Localisation du projet Adresse et commune(s) d'implantation	Coordonnées géographiques ¹ Long. <u>4</u> <u>5</u> ° <u>1</u>	(320m3/j en pointe) 53'62"88 Lat.04°31'02"27
SNF Rue Adrienne Bolland 42163 ANDREZIEUX		'"_ Lat°'"_ '"_ Lat°'"_
4.7 S'agit-il d'une modification/extensi 4.7.1 Si oui, cette installation ou environnementale? 4.7.2 Si oui, décrivez sommairemen différentes composantes de votre jindiquez à quelle date il a été auto	Oui X Non Dation Oui X Non D	

Pour l'outre-mer, voir notice explicative

5. Sensibilité environnementale de la zone d'implantation envisagée

Afin de réunir les informations nécessaires pour remplir le tableau ci-dessous, vous pouvez vous rapprocher des services instructeurs, et vous référer notamment à l'outil de cartographie interactive CARMEN, disponible sur le site de chaque direction régionale.

Le site Internet du ministère de l'environnement vous propose un regroupement de ces données environnementales par région, à l'adresse suivante : http://www.developpement-durable.gouv.fr/-Les-donnees-environnementales-.html.

Cette plateforme vous indiquera la définition de chacune des zones citées dans le formulaire.

Vous pouvez également retrouver la cartographie d'une partie de ces informations sur le site de l'inventaire national du patrimoine naturel (http://inpn.mnhn.fr/zone/sinp/espaces/viewer/).

Le projet se situe-t-il :		Non	Lequel/Laquelle ?
Dans une zone naturelle d'intérêt écologique, faunistique et floristique de type I ou II (ZNIEFF) ?	X		En bordure de : Contreforts Méridionaux des Monts du Forez, n°4210 Voir Annexe 7
En zone de montagne ?		X	
Dans une zone couverte par un arrêté de protection de biotope ?		X	•
Sur le territoire d'une commune littorale ?		X	
Dans un parc national, un parc naturel marin, une réserve naturelle (nationale ou régionale), une zone de conservation halieutique ou un parc naturel régional?		X	•
Sur un territoire couvert par un plan de prévention du bruit, arrêté ou le cas échéant, en cours d'élaboration ?		X	
Dans un bien inscrit au patrimoine mondial ou sa zone tampon, un monument historique ou ses abords ou un site patrimonial remarquable ?		×	

Dans une zone humide ayant fait l'objet d'une délimitation ?		×	
Dans une commune couverte par un plan de prévention des risques naturels prévisibles (PPRN) ou par un plan de prévention des risques technologiques (PPRT) ? si oui, est-il prescrit ou approuvé ?	X		PPRT et PPRN
Dans un site ou sur des sols pollués ?		X	
Dans une zone de répartition des eaux ?		X	
Dans un périmètre de protection rapprochée d'un captage d'eau destiné à la consommation humaine où d'eau minérale naturelle?		×	
Dans un site inscrit ?		X	
Le projet se situe-t-il, dans ou à proximité :	Oui	Non	Lequel et à quelle distance ?
D'un site Natura 2000 ?	×		FR8212024, Plaine du Forez, 3km env. FR8201765, Milieu Alluviaux et Aquatiques de la Loire, 3km env. Voir Annexe 7
D'un site classé ?		X	

6. Caractéristiques de l'impact potentiel du projet sur l'environnement et la santé humaine au vu des informations disponibles 6.1 Le projet envisagé est-il <u>susceptible</u> d'avoir les incidences notables suivantes? Veuillez compléter le tableau suivant : De quelle nature ? De quelle importance ? Oui Non Appréciez sommairement l'impact potentiel Incidences potentielles Engendre-t-il des prélèvements X d'eau ? Si oui, dans quel milieu ? Impliquera-t-il des drainages / ou des modifications X prévisibles des masses d'eau souterraines? Ressources Est-il excédentaire X en matériaux? Est-il déficitaire en matériaux? Si oui, utilise-t-il les X ressources naturelles du sol ou du soussol? Est-il susceptible d'entraîner des perturbations, des dégradations, des destructions de la X biodiversité existante : faune, flore, habitats, continuités écologiques? Milieu naturel Si le projet est situé dans ou à proximité d'un site Natura 2000, est-il X susceptible d'avoir un impact sur un habitat / une espèce inscrit(e) au Formulaire Standard de Données du site ?

,	Est-il susceptible d'avoir des incidences sur les autres zones à sensibilité particulière énumérées au 5.2 du présent formulaire ?		×	
	Engendre-t-il la consommation d'espaces naturels, agricoles, forestiers, maritimes ?		X	
	Est-il concerné par des risques technologiques ?	X		PPRT Andrézieux-Bouthéon mais origine du risque ?
Risques	Est-il concerné par des risques naturels ?		×	PPRN pas dans le périmètre
	Engendre-t-il des risques sanitaires ? Est-il concerné par des risques sanitaires ?		X	
Nuisances	Engendre-t-il des déplacements/des trafics		X	
	Est-il source de bruit ? Est-il concerné par des nuisances sonores ?		X	

•	Engendre-t-il des odeurs ? Est-il concerné par des nuisances olfactives ?		X	
	Engendre-t-il des vibrations ? Est-il concerné par des vibrations ?		X	
	Engendre-t-il des émissions lumineuses? Est-il concerné par des émissions lumineuses ?		X	
Emissions	Engendre-t-il des rejets dans l'air ?		×	•
	Engendre-t-il des rejets liquides ? Si oui, dans quel milieu ?	X		Même point de rejet que le réseau pluvial : - Gourny - Puis Volvon - Puis Coise
	Engendre-t-il des effluents ?	×		Purge de déconcentration des tours de refroidissement
	Engendre-t-il la production de déchets non dangereux, inertes, dangereux ?		X	

Patrimoine / Cadre de vie	Est-il susceptible de porter atteinte au patrimoine architectural, culturel, archéologique et paysager?	×	
/ Population	Engendre-t-il des modifications sur les activités humaines (agriculture, sylviculture, urbanisme, aménagements), notamment l'usage du sol?	X	
approuvés	ences du projet identi : ? Non X Si oui, décriv		ont-elles susceptibles d'être cumulées avec d'autres projets existants ou :
di dansara			
		. 1	
	Non Si oui, décri		nt-elles susceptibles d'avoir des effets de nature transfrontière ?

r	5.4 Description, le cas échéant, des mesures et des caractéristiques du projet destinées à éviter ou réduire les effets négatifs notables du projet sur l'environnement ou la santé humaine (pour plus de précision, il vous est possible de joindre une annexe traitant de ces éléments) :
S' m	l'inscrit dans un contexte de développement durable : Arrêt de l'utilisation de produits chimiques pour le traitement des tours, qui ne se retrouvent plus dans les rejets comme les nétaux (zinc, molybdène), les anti-tartre (phosphore), les biocides (AOX, matières inhibitrices) Séparer les flux d'eau résiduaires des eaux non polluées pour la filière aval de la station communale, permettant de libérer de la apacité.
	7. Auto-évaluation (facultatif)
	u regard du formulaire rempli, estimez-vous qu'il est nécessaire que votre projet fasse l'objet d'une évaluation nvironnementale ou qu'il devrait en être dispensé ? Expliquez pourquoi.
	8. Annexes
-	3.1 Annexes obligatoires
	Objet
1	non publie ;
2	a extraits cartographiques au document a urbanisme s'il existe) ,
3	paysage lointain;
4	Un plan du projet <u>ou</u> , pour les travaux, ouvrages ou aménagements visés aux catégories 5° a), 6° b) et c), 7°, 9°,10°,11°, 12°, 13°, 22°, 32, 38°; 43° a) et b) de l'annexe à l'article R. 122-2 du code de l'environnement un projet de tracé ou une enveloppe de tracé;
5	évolutions récentes, à une échelle comprise entre 1/2 000 et 1/5 000. Ce plan devra préciser l'affectation des constructions et terrains avoisinants ainsi que les canaux, plans d'eau et cours d'eau ;
	Si le projet est situé dans un site Natura 2000, un plan de situation détaillé du projet par rapport à ce site. Dans les autres cas, une carte permettant de localiser le projet par rapport aux sites Natura 2000 sur lesquels le projet est

8.2 Autres annexes volontairement transmises par le maître d'ouvrage ou pétitionnaire

Veuillez compléter le tableau ci-joint en indiquant les annexes jointes au présent formulaire d'évaluation, ainsi que les parties auxquelles elles se rattachent

Objet

Annexe 7 : Étude d'impact sur le milieu récepteur, effectuée par le Bureau d'Etudes CESAME, mai 2017 (regroupant les annexes 2, 3 et 4 indiquées ci-dessus)

9. Engagement et signature

Je certifie sur l'honneur l'exactitude des renseignements ci-dessus

X

Fait à

Andrézieux-Bouthéon

le, 12/06/2017

Signature

Insérez votre signature en cliquant sur le cadre ci-dessus

Modification du point de rejet des effluents des tours aéroréfrigérantes (TAR)

Site d'Andrézieux-Bouthéon (42)

Incidence sur la ressource en eau et le milieu aquatique

Ref: SM/MIN/1917_V2 JUIN 2017

Avertissement

Le présent rapport a été établi sur la base des informations fournies à Cesame, des observations et mesures réalisées sur la zone d'étude, des données (scientifiques ou techniques) disponibles ou objectives et de la réglementation en vigueur. La responsabilité de Cesame ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes ou erronées.

CESAME ne pourra être tenu pour responsable des conséquences engendrées par le non respect ou la mauvaise interprétation de ses recommandations. Le destinataire utilisera les résultats inclus dans le présent rapport intégralement ou de manière objective. Son utilisation sous forme d'extrait ou de notes de synthèse sera faite sous la seule et entière responsabilité du destinataire. Il en est de même pour toute modification qui y serait apportée.

Intitulé de l'étude :	Modification du point de rejet des effluents des tours aéroréfrigérantes (TAR) Site d'Andrézieux-Bouthéon Incidence sur la ressource en eau et le milieu aquatique
Référence :	SM/EIE/1917
Client :	SNF FLOERGER Rue Adrienne Bolland - ZAC du Milieu 42 163 ANDREZIEUX Cedex

Version	Date d'édition	Nature	Format d'impression
V1	9 mai 2017	1 ^{er} édition	
V2	8 juin 2017	Prise en compte des analyses du 23/05/17	A4
V3			

Diffusion							
Tout public Interne Restreinte Confidentielle							
	X						

Rédaction	Vérification		
Stéphane MOREL	Agnès BLACHERE		

SOMMAIRE

1. AVANT PROPOS	3
2. L'ACTIVITÉ INDUSTRIELLE	4
2.1. Localisation.	4
2.2. Activités	4
2.3. Caractéristiques des tours aéroréfrigérantes	
2.3.1. Principe de traitement dans les TAR	
2.3.2. Obligations réglementaires	
2.3.3. Qualité et débit	
3. CONNAISSANCE DU MILIEU	26
3.1. Réseaux EP-EU	26
3.1.1. Au niveau du site SNF-FLOERGER	26
3.1.2. A l'aval du site SNF-FLOERGER	27
3.2. Contexte hydrologique	30
3.2.1. Généralités	
3.2.2. Débits caractéristiques	
3.2.3. Qualité	
3.3. Contexte géologique et hydrogéologique	
3.3.1. Géologie	
3.3.2. Hydrogéologie	54
3.4. Milieu naturel	
3.4.1. Espaces naturels répertoriés	
3.4.2. Réseau Natura 2000.	59
4. IMPACT DU REJET SUR LES EAUX SUPERFICIELLES	
4.1. Impact quantitatif	64
4.2. Impact qualitatif	68
5. IMPACT DU REJET SUR LES EAUX SOUTERRAINES	72
6. IMPACT DU REJET SUR LE MILIEU NATUREL	73
7. COMPATIBILITÉ AVEC LES SCHÉMAS DE GESTION OU D'AMÉNAGEMENT DES EAUX ET PRI	
DCE	74
7.1. Contexte général	74
7.2. Prise en compte des différents objectifs	75
8. EVALUATION VIS-À-VIS DE LA RÉGLEMENTATION I.O.T.A	78
8.1. Rappel réglementaire	78
8.2. Application au rejet des purges des TAR	79
9. CONCLUSIONS	82
Liste des figures	
Figure 1 : Localisation	5
Figure 2 : Réseau hydrographique	
Figure 3 : Réseau de suivi de la qualité des eaux superficielles	
Figure 4 : Milieux naturels inventoriés.	
Figure 5 : Milieux naturels réglementaires	

Liste des illustrations

Illustration 1 : Localisation des tours aéroréfrigérantes	6
Illustration 2 : Puissance associée aux TAR présentes sur le site	7
Illustration 3 : Schéma de principe des TAR (source : SNF FLOERGER)	8
Illustration 4 : Traitement des eaux par U.V. et péroxyde d'hydrogène	10
Illustration 5 : Le péroxyde d'hydrogène et la gestion du tartre	10
Illustration 6 : Caractéristiques du péroxyde d'hydrogène (source : INRS)	11
Illustration 7 : Consommation d'eau pour l'alimentation des TAR - Moyenne 2016	16
Illustration 8 : Bilan analyses 2016 (suivi bimestriel SNF)	17
Illustration 9 : Principe du relevage des eaux pluviales vers l'aval du site SNF	27
Illustration 10 : Evacuation des eaux pluviales	29
Illustration 11 : identification des cours d'eau	30
Illustration 12 : Le réseau hydrographique	31
Illustration 13 : Débits caractéristiques selon l'IRSTEA	34
Illustration 14 : Calcul du bilan hydroclimatique	36
Illustration 15 : Précipitations minimales en période estivale	38
Illustration 16 : Bilan qualitatif 2007-2016 – Stations 4009130 (Volvon) et 4009200 (Coise)	48
Illustration 17 : Extrait de la carte géologique du BRGM au 1/50 000e	52
Illustration 18 : Contexte hydrogéologique	55
Illustration 19 : Emprise Bassin EP - SNF	65
Liste des tableaux	
	13
Tableau 1 : Concentrations maximales en sortie d'installation	_
Tableau 1 : Concentrations maximales en sortie d'installation	15
Tableau 1 : Concentrations maximales en sortie d'installation	15
Tableau 1 : Concentrations maximales en sortie d'installation	15 21
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017	15 21 24
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA)	15 21 24 34
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom	15 21 34 37 38
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom	15 21 34 37 38
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom Tableau 8 : Débits caractéristiques retenus	15 21 34 37 38 39
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom Tableau 8 : Débits caractéristiques retenus Tableau 9 : Classe d'état physico-chimique (macropolluants)	15 21 34 38 39 42
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom Tableau 8 : Débits caractéristiques retenus Tableau 9 : Classe d'état physico-chimique (macropolluants) Tableau 10 : Polluants spécifiques de l'état écologique - Normes de qualité environnementale	15 21 34 37 38 39 42 43
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom Tableau 8 : Débits caractéristiques retenus. Tableau 9 : Classe d'état physico-chimique (macropolluants) Tableau 10 : Polluants spécifiques de l'état écologique - Normes de qualité environnementale. Tableau 11 : Polluants retenus pour l'état chimique et normes de qualité environnementale.	15 21 34 37 38 39 42 43
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom Tableau 8 : Débits caractéristiques retenus Tableau 9 : Classe d'état physico-chimique (macropolluants) Tableau 10 : Polluants spécifiques de l'état écologique - Normes de qualité environnementale Tableau 11 : Polluants retenus pour l'état chimique et normes de qualité environnementale Tableau 12 : Indice biologique	
Tableau 1 : Concentrations maximales en sortie d'installation	
Tableau 1 : Concentrations maximales en sortie d'installation	
Tableau 1 : Concentrations maximales en sortie d'installation	
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses — Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses — Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom Tableau 8 : Débits caractéristiques retenus Tableau 9 : Classe d'état physico-chimique (macropolluants) Tableau 10 : Polluants spécifiques de l'état écologique - Normes de qualité environnementale Tableau 11 : Polluants retenus pour l'état chimique et normes de qualité environnementale Tableau 12 : Indice biologique Tableau 13 : Oiseaux remarquables - FR8212024 Tableau 14 : Espèces communautaires - FR82017656 Tableau 15 : Habitats communautaires - FR82017656 Tableau 17 : Incidence du rejet sur la qualité des eaux superficielles Tableau 18 : Masses d'eau associées au projet	1521343738394245456162636769
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom Tableau 8 : Débits caractéristiques retenus Tableau 9 : Classe d'état physico-chimique (macropolluants) Tableau 10 : Polluants spécifiques de l'état écologique - Normes de qualité environnementale Tableau 11 : Polluants retenus pour l'état chimique et normes de qualité environnementale Tableau 12 : Indice biologique Tableau 13 : Oiseaux remarquables - FR8212024 Tableau 14 : Espèces communautaires - FR82017656. Tableau 15 : Habitats communautaires - FR82017656. Tableau 17 : Incidence du rejet sur la qualité des eaux superficielles Tableau 18 : Masses d'eau associées au projet Tableau 19 : Prise en compte des orientations du SDAGE.	
Tableau 1 : Concentrations maximales en sortie d'installation Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16)) Tableau 3 : Résultats d'analyses — Prélèvements du 28 mars 2017 Tableau 4 : Résultats d'analyses — Prélèvements du 23 mai 2017 Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA) Tableau 6 : Evaluation du module du ruisseau Sans Nom Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom Tableau 8 : Débits caractéristiques retenus Tableau 9 : Classe d'état physico-chimique (macropolluants) Tableau 10 : Polluants spécifiques de l'état écologique - Normes de qualité environnementale Tableau 11 : Polluants retenus pour l'état chimique et normes de qualité environnementale Tableau 12 : Indice biologique Tableau 13 : Oiseaux remarquables - FR8212024 Tableau 14 : Espèces communautaires - FR82017656 Tableau 15 : Habitats communautaires - FR82017656 Tableau 17 : Incidence du rejet sur la qualité des eaux superficielles Tableau 18 : Masses d'eau associées au projet	

1. AVANT PROPOS

La présente étude a été réalisée à la demande de la société SNF FLOERGER, située sur la commune de d'Andrézieux-Bouthéon (42) et spécialisée dans la production de polymères à base de polyacrylamides et polyacrylates (substances chimiques utilisées en tant que floculant pour le traitement de l'eau ou d'additifs dans divers domaines industriels). Sur le site d'Andrézieux-Bouthéon, le process industriel nécessite un refroidissement assuré par plusieurs tours aéroréfrigérantes. Le principe de ces dispositifs est basé sur un refroidissement évaporatif par dispersion d'eau dans un flux d'air. Ces phénomènes évaporatifs génèrent dans l'eau résiduelle une augmentation des concentrations en sels dissous par rapport à l'eau d'alimentation. Ainsi pour éviter des phénomènes de corrosion et de dépôts, il convient d'assurer régulièrement des purges de déconcentration. Une surveillance et des actions de nettoyage et de désinfection doivent être régulièrement entreprises car les conditions humides et chaudes sont favorables à la prolifération puis à la dissémination par les aérosols de légionelles dans l'atmosphère. Cette désinfection se fait par des biocides oxydants à base de produits chlorés ou bromés mais également par des biocides non oxydants plus nocifs (ammoniums quaternaires, isothiazolone,...).

Sur le site SNF FLOERGER, les effluents correspondant aux purges des tours aéroréfrigérantes sont évacués vers le réseau d'assainissement communal (réseau « eaux usées ») conformément aux prescriptions de l'arrêté préfectoral n°278_DDPP-16 du 30 Juin 2016). Suite à la mise en place d'un nouveau procédé de désinfection, basé sur le principe d'un traitement par exposition aux rayonnements ultra-violets et ajout de péroxyde d'hydrogène entrainant l'abandon d'utilisation de produits désinfectants, SNF FLOEGER souhaite obtenir une nouvelle autorisation permettant le rejet des eaux de purges des circuits de refroidissement vers le milieu naturel (réseau « eaux pluviales » interne du site évacué par pompage vers le réseau hydrographique local).

En vue d'obtenir une nouvelle modification des prescriptions techniques de son arrêté préfectoral, la société SNF FLOERGER, a demandé au bureau d'études CESAME d'étudier le contexte hydrologique et hydrogéologique en aval du site industriel de manière à évaluer l'impact du futur rejet sur la ressource en eau et le milieu aquatique. Les éléments présentés ci- après s'appuient :

- sur des reconnaissances de terrain réalisées en début d'année 2017,
- sur les suivis analytiques et documentations techniques transmis par l'industriel,
- sur les résultats d'analyses de deux campagnes de prélèvements réalisées le 28 mars et le 24 mai 2017,
- sur des informations locales récupérées auprès d'acteurs institutionnels dans le domaine de l'eau (Agence de l'Eau Loire Bretagne, Conseil Départemental, DDT42).

L'objet de la présente étude est donc de faire le point sur la sensibilité du milieu récepteur et l'impact du futur rejet vers le milieu naturel.

2. L'ACTIVITÉ INDUSTRIELLE

2.1. LOCALISATION

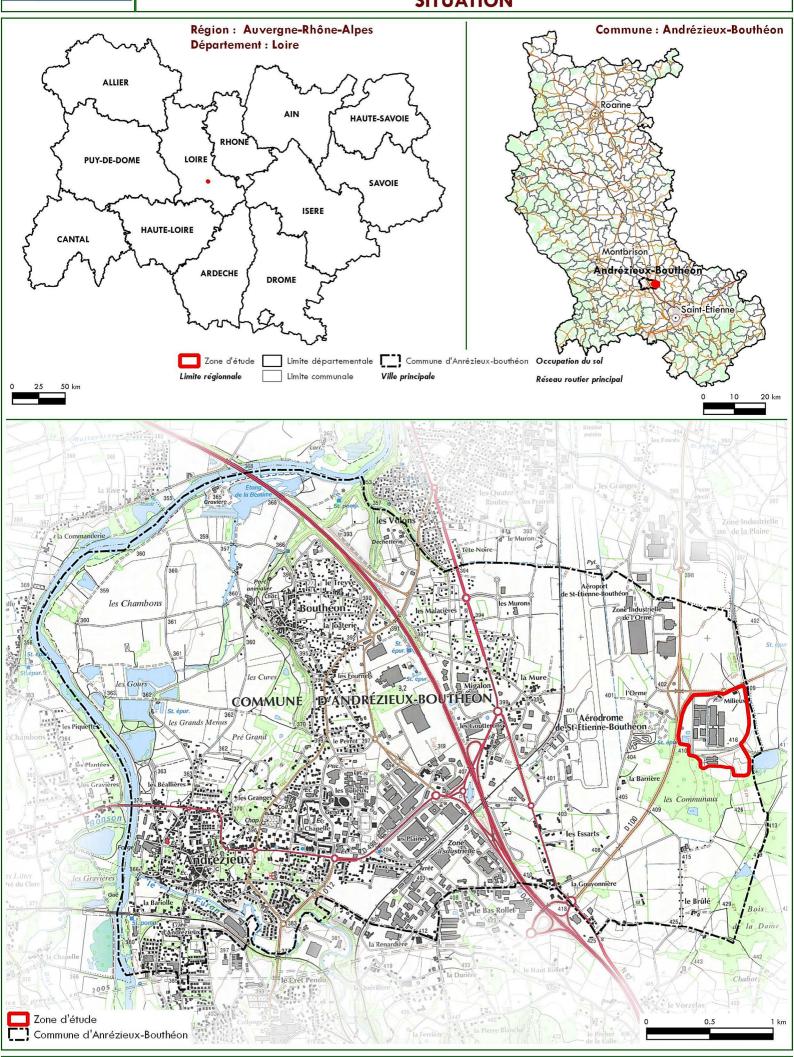
La société SNF FLOERGER se situe sur la commune d'Andrézieux Boutéon, dans la zone industrielle du Milieu, 5 km environ à l'Est du bourg d'Andrézieux (voir figure 1). Le tènement occupé par la société couvre une superficie de l'ordre d'une trentaine d'hectares dans la partie méridionale de la zone industrielle.

2.2. ACTIVITÉS

La société SNF FLOERGER est spécialisée dans la production de polymères à base de polyacrylamides et polyacrylates (substances chimiques utilisées en tant que floculant pour les traitements de l'eau ou d'additifs dans divers domaines industriels).

Les produits finis issus de la chimie des acrylates et des polyamines ne sont pas classés comme dangereux, par contre les matières premières utilisées pour leur fabrication (acrylonitrile, acide acrylique, formaldéhyde) le sont et confèrent au site son classement SEVESO seuil haut.

2.3. CARACTÉRISTIQUES DES TOURS AÉRORÉFRIGÉRANTES


Les réactions chimiques intervenant dans cette production industrielle étant exothermiques, des dispositifs de refroidissement sont nécessaires dans les différentes lignes de production. Ce refroidissement est assuré par des échangeurs à partir de tours aéroréfigérantes (TAR).

Sur le site, 33 TAR assurent le refroidissement. 18 correspondent à des tours à circuit ouvert et 15 à des tours à circuit fermé.

SITUATION

6

Illustration 1 : Localisation des tours aéroréfrigérantes

D'un point de vue réglementaire, les tours aéroréfrigérantes sont concernées par la **rubrique 2921** relative aux installations classées pour la protection de l'environnement (ICPE) dans la mesure où la puissance thermique évacuée est supérieure à 3000 kW (la puissance cumulée des 33 TAR étant de 85 905 kW).

Illustration 2 : Puissance associée aux TAR présentes sur le site

Refroidissement évaporatif par dispersion l'eau dans un flux d'air généré par entilation mécanique ou naturelle installations de): 1) la puissance thermique évacuée maximale tant supérieure à 3000 kW	2921-я	85 905 kW	Е	Installations de type « circuit primaire non fermé » : Bât 01 : 1280 kW Bât 06 : 10400 kW Bât 07 : 7200 kW Bât 11 : 24700 kW Bât 16 : 15800 kW Bât 17 : 10500 kW Installations de type «circuit primaire fermé»: Bât 07 : 2800 kW Bât 09 : 2520 kW Bât 12 : 4200 kW Bât 12 : 4200 kW Bât 16 : 2535 kW
--	--------	-----------	---	---

Source: Extrait AP278-DDPP-16

De plus, les modalités de rejet et de contrôle des eaux non polluées issues de ces installations sont fixées par arrêté préfectoral (AP n°278-DDPP-16 du 30 Juin 2016). Sur l'illustration 3, sont présentés les synoptiques de fonctionnement des deux types de TAR présentes sur le site (circuit ouvert et circuit fermé).

L'alimentation en eau des TAR se fait à partir du réseau « eau potable » de la ville d'Andrézieux Bouthéon qui dessert l'ensemble de la zone industrielle. L'alimentation en eau est gérée automatiquement par suivi de la conductivité et des volumes d'eau dans l'installation selon les besoins liés à la déconcentration dans les réservoirs. Des inspections quotidiennes permettent de s'assurer du bon fonctionnement des installations. La régulation de l'alimentation se fait de manière à maintenir une conductivité de l'eau dans les réservoirs proche mais inférieure à $1000 \,\mu$ S/cm et une dureté de l'eau (T.H) inférieure à 40° f, ce qui correspond à un facteur de concentration de l'ordre de 3 par rapport à la qualité des eaux provenant du réseau AEP.

Jusqu'à récemment, les traitements anti-bactériens et ceux visant à limiter les phénomènes d'antartrage étaient systématiquement assurés par l'ajout de produits chimiques :

- biocides oxydants à base de brome et de chlore et biocides non oxydants pour le traitement bactérien,
- produits à base de phosphonates, polyacrylates et zinc pour le traitement anti-tartre et anticorrosion.

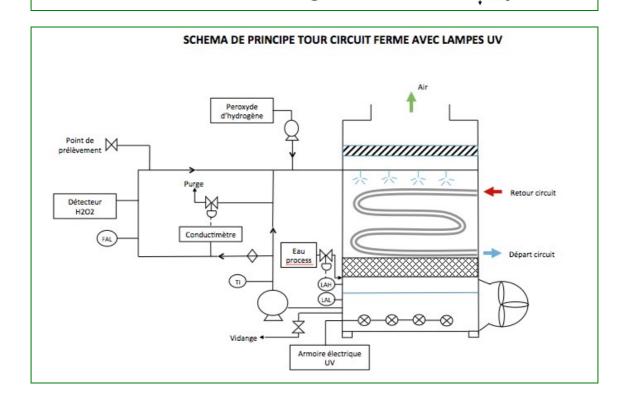
Progressivement, des modifications sont intervenues sur les TAR afin d'intégrer un nouveau procédé de traitement permettant d'assurer à la fois la lutte contre le développement bactérien et la maitrise des phénomènes de corrosion ou de dépôts dans les installations. Ce procédé s'appuie sur l'utilisation conjointe de lampes ultra-violets et l'ajout de péroxyde d'hydrogène (H₂O₂).

SCHEMA DE PRINCIPE TOUR CIRCUIT OUVERT AVEC LAMPES UV

Air

Retour atelier

Peroxyde d'hydrogène


Départ Atelier

Départ Atelier

Départ Atelier

Départ Atelier

Illustration 3 : Schéma de principe des TAR (source : SNF FLOERGER)

2.3.1. PRINCIPE DE TRAITEMENT DANS LES TAR

L'utilisation de lampes Ultra-Violet et de péroxyde d'hydrogène (= couramment appelé « eau oxygénée ») dans les TAR est un procédé novateur qui ne produit pas de composés potentiellement toxiques pour l'environnement contrairement à l'ajout de biocides chlorés ou bromés. En effet, l'utilisation de chlore ou de brome pour la désinfection génère des sous-produits, notamment des trihalométhanes (THM = chloroformes, bromodichlorométhanes, dibromochlorométhane, bromoforme) et plus globalement des AOX¹ qui peuvent se concentrer à des teneurs plus ou moins importantes selon les phénomènes de concentration dans les TAR. Les concentrations atteintes sont alors susceptibles de poser problème en cas de déversement des eaux de déconcentration vers le milieu naturel.

L'utilisation de lampes Ultra-Violet permet de garantir la désinfection car la lumière U.V. inactive rapidement et efficacement les micro-organismes par un processus physique (exposés aux longueurs d'ondes de l'ultra-violet (200 -300 nanomètres), les bactéries, virus et protozoaires deviennent incapables de se reproduire et perdent leur pouvoir d'infection). Les lampes Ultra-Violet associées au péroxyde d'hydrogène permettent également d'éviter la formation de carbonate de calcium (CaCO₃) en déplaçant l'équilibre calco-carbonique de l'eau selon les principes suivants :

- ...

<u>Le paramètre AOX est purement qualitatif</u> car il ne permet pas de séparer les composés. La valeur associée à AOX est une concentration des atomes de chlore donnée en mg/l. Cette concentration correspond à la quantité d'halogènes (chlore, brome, iode mais pas fluor) contenus dans les substances organiques adsorbables sur du charbon actif.

On précisera qu'une grande partie des composés organiques halogénés sont classés parmi les substances toxiques d'un point de vue sanitaire et environnemental. La méthode d'analyse est standardisée par la norme ISO 9562. Elle consiste en l'adsorption des composés organiques présents dans un échantillon d'eau contaminée par une quantité connue de charbon actif suivie d'une filtration et d'un rinçage du charbon actif afin d'éliminer les sels qui peuvent contenir des ions chlorures. Le charbon est ensuite brûlé afin de séparer le chlore de la structure organique et finalement récupéré pour une analyse quantitative par un titrage argentimétrique.

Le terme AOX, acronyme pour l'anglais « Adsorbable Organic Halogen », en français « halogène organique adsorbable », est un paramètre permettant d'évaluer la présence de composés organohalogénés dans l'eau. Parmi les composés organohalogénés, on retrouve de nombreux composés issus de la réaction du chlore ou du brome avec la matière organique :

⁻ les trihalométhanes (THM) (chloroformes, bromodichlorométhanes, dibromochlorométhane, bromoforme)

⁻ les acides haloacétiques (AHA) (acides chloroacétiques, dichloraacétique, trichloroacétique et dibromoacétique)

⁻ l'hydrate de chlorale (HC),

⁻ les haloacétonitriles (HAN),

⁻ le dichloro-propanone,

⁻ le chlorure et bromure de cyanigène,

⁻ le nitrosodiméthylamine,

⁻ les nitrosamines,

Illustration 4: Traitement des eaux par U.V. et péroxyde d'hydrogène

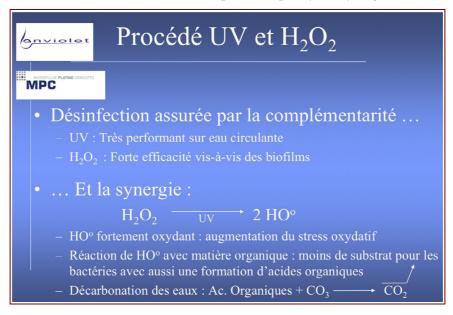
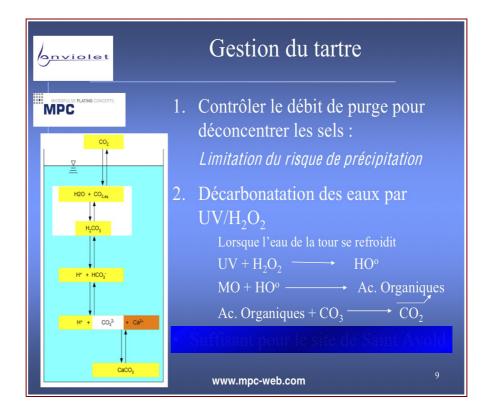



Illustration 5 : Le péroxyde d'hydrogène et la gestion du tartre

10

1917_V2 - SM/EIE//2017

L'injection de péroxyde d'hydrogène se fait dans les TAR par pompe doseuse.

L'intérêt du traitement UV et péroxyde d'hydrogène est qu'il ne génère pas de sous-produits. De plus le péroxyde d'hydrogène se décompose rapidement en oxygène et en eau dans <u>l'environnement</u> notamment au contact des métaux, des composés organiques et de la poussière. <u>Ce</u> composé est classé non dangereux pour l'environnement aquatique avec les valeurs d'écotoxicologie² suivantes:

- NOEC invertébrés eaux douces : 2 mg/l - NOEC algues eaux douces : 0,1 mg/l - PNEC exposition chronique: 0,01 mg/l,

Illustration 6 : Caractéristiques du péroxyde d'hydrogène (source : INRS)

L'EAU OXYGÉNÉE

Peroxyde d'hydrogène (en solution aqueuse).

H-0-0-H

Masse molaire:

34,02 g/mol

Numéro CAS Nº 7722-84-1

Numéro CEE

N° 008-003-00-9 (solutions aqueuses)

Liquide incolore, soluble dans l'eau et l'oxyde de diéthyle, décomposé par de nombreux solvants organiques. Il est commercialisé en solutions aqueuses dont la concentration est exprimée en pourcentage en masse de peroxyde d'hydrogène dans la solution ou en volume d'oxygène gazeux susceptible d'être dégagé par volume de solution. La correspondance est indiquée dans le tableau ci-dessous :

Titre en H ₂ O ₂ en %	Volume d'oxygène par volume de solution
10	34
20	71
30	110
40	152
50	197
90	413

Ex.: l'eau oxygénée officinale est dite « à 10 volumes », c'est-à-dire qu'elle contient environ 3 % en poids de peroxyde d'hydrogène.

PROPRIÉTÉS CHIMIQUES

H2O2 est un oxydant fort et il se décompose sous l'action de la lumière, de la chaleur ou d'une impureté... Suivant leur titre, les solutions aqueuses de peroxyde d'hydrogène pourront être classées comburantes et ce risque sera d'autant plus grand que la solution sera plus concentrée.

PROPRIÉTÉS TOXICOLOGIQUES

Suivant leur titre, les solutions aqueuses de peroxyde d'hydrogène peuvent avoir des propriétés irritantes, voire corrosives pour les plus concentrées.

PROPRIÉTÉS ÉCOTOXICOLOGIQUES

Composé classé non dangereux pour l'environnement aquatique :

- PNEC_{aquatique}: 10 μg/l,
- PNEC_{microorganismes}: 4,66 mg/l PNEC_{sol}: 1,19 µg/kg poids sec

(PNEC = Predicted No Effect Concentration).

APPLICATIONS.

Agent de blanchiment pour les fibres, agent de traitement des eaux, antiseptique, intermédiaire de synthèse, propulseur pour avions et

PNEC: Concentration sans effet prévisible sur l'environnement (en anglais Prévisible No Effect Concentration). Cette valeur est estimée à partir des tests d'écotoxicologie et plus particulièrement des NOEC. Son calcul se fait selon deux modes :

⁻ par distribution statistique (species sensitivity distribution) si plus de 15 NOECs long terme pour au moins 8 groupes taxonomiques sont connues.

1917_V2 - SM/EIE//2017 11

² NOEC: Plus forte concentration testée pour laquelle les effets observés ne sont pas significativement différents de zéro (en anglais No Observed Effect Concentration)

⁻ l'application d'un facteur d'ajustement (AF) allant de 10 à 1000 selon la connaissance des NOEC chronique et aigüe et le nombre d'espèces taxonomiques testés (PNEC = NOEC minimal connue / AF),

2.3.2. OBLIGATIONS RÉGLEMENTAIRES

Les prescriptions relatives aux effluents issus des TAR aéroréfrigérantes sont fixées par l'arrêté ministériel du 14 décembre 2013. Dans cet arrêté, l'article 38 (complété par l'annexe IV) fixe pour de nombreux paramètres chimiques des valeurs limites exprimées en concentration (VLE) pour les effluents de déconcentration ainsi que le programme de surveillance de ce type d'installation.

On retrouve notamment (voir tableau 1):

- les substances organiques, azotées, phosphorées,
- les substances réglementées (phénols, cyanures, étain, manganèse, fluor et hydrocarbures totaux),
- les substances dangereuses et pertinentes entrant dans la qualification de l'état des masses d'eau (état chimique et état écologique).

On rappellera que la qualité des effluents en sortie d'installation est directement liée :

- à la qualité des eaux d'alimentation associée aux phénomènes de concentration par évaporation,
- aux substances chimiques utilisées pour les traitements préventifs (fongicides, traitements antitartre ou anti-corrosion).

Tableau 1 : Concentrations maximales en sortie d'installation

		Réglementation TAR (AM 14 décembre 2013)						
		Atricle 38 "VLE rejet milieu naturel"	Article 60 "Emission dans l'eau" Programme surveillance	Annexe IV "VLE dans l'eau pour les rejets dans le milieu naturel"	Concentration maximale (VLE)			
	Matières en suspension totales				100 mg/l (flux ≤ 15 kg/j) 35 mg/l (flux > 15 kg/j)			
	Bromures				-			
	Chlorures				45			
	Fluorures Cyanures totaux				15 mg/l 0,1 mg/l			
	Indice phénol				0,1 mg/l 0,3 mg/l			
	Demande chimique en oxygène				300 mg/l (flux ≤ 50 kg/j) 125 mg/l (flux > 50 kg/j)			
	AOX				1 mg/l			
	Indice Hydrocarbures			(*)	10 mg/l			
Physico-	Azote Kjeldahl Ammonium			(*)	-			
chimie	Nitrites	 		(*)	- -			
	Nitrates			(*)	-			
	Azote global				30 mg/l (flux ≥ 50 kg/j) 15 mg/l (flux ≥ 150 kg/j) 10 mg/l (flux ≥ 300 kg/j) (Concentration en moyenne mensuelle)			
	Phosphore total				10 mg/l (flux ≥ 15 kg/j) 2 mg/l (flux ≥ 40 kg/j) 1 mg/l (flux ≥ 80 kg/j) (Concentration en moyenne mensuelle)			
	Arsenic total				50 μg/l			
	Cadmium total Chrome total				50 μg/l 0,5 mg/l			
	Cuivre total				0,5 mg/l			
	Mercure total				5,0 μg/l			
Métaux	Nickel total				0,5 mg/l			
	Plomb total				0,5 mg/l			
	Zinc total Fer total				2 mg/l 5 mg/l			
H	Manganèse total				1 mg/l			
	Etain total				2 mg/l			
	Bromoforme		(*)		-			
cov	Chloroforme Dibromochlorométhane		(*)		50 μg/l			
THM	Dichlorobromométhane		(*)		<u>-</u>			
	Somme des trihalométhanes		()		1 mg/l			
	1,2-dichloroéthane				50 μg/l			
[Cis 1,2-dichloroéthylène				-			
cov	Dichlorométhane Hexachlorobutadiène	-			50 μg/l 50 μg/l			
'-	Trans 1,2-dichloroéthylène (E)			(*)	- σο μg/ι -			
Solvants	Somme des 1,2-dichloroéthylène				50 μg/l			
	Tétrachloréthylène				50 μg/l			
	Tétrachlorure de carbone (trans) Trichloréthylène	-			50 μg/l 50 μg/l			
	Benzène	 			50 µg/l			
	Ethylbenzène				50 μg/l			
	Isopropylbenzène				50 μg/l			
	Toluène				50 μg/l			
	Xylène o Xylènes m + p	-			- -			
cov	Xylènes o + m + p				- 50 μg/l			
- PTEV	1,2,3-trichlorobenzène				50 µg/l			
BTEX et dérivés	1,2,4-trichlorobenzène							
du Benzène	1,2-dichlorobenzène 1,3,5-trichlorobenzène	-			50 μg/l			
	1,3-dichlorobenzène				50 μg/l			
	Monochlorobenzène	1			50 μg/l			
	Somme des trichlorobenzènes				50 μg/l			
	Hexachlorobenzène (HCB)				50 μg/l			
	Pentaclorobenzène	I	l		50 μg/l			

			Régleme	entation TAR (AM 1	4 décembre 2013)
		Atricle 38 "VLE rejet milieu naturel"	Article 60 "Emission dans l'eau" Programme surveillance	Annexe IV "VLE dans l'eau pour les rejets dans le milieu naturel"	Concentration maximale (VLE)
	2,3,4-trichlorophénol			(*)	
	2,3,5-trichlorophénol			(*)	-
	2,3,6-trichlorophénol			(*)	
cov	2-chlorophénol 3,4,5-trichlorophénol	1		(*)	50 μg/l -
- ⊢	Somme des trichlorophénols	1		()	- 50 μg/l
Dérivés – phénols –	Pentachlorophénol				50 μg/l
	4-chloro, 3-méthyl phénol				50 μg/l
L	4-n nonylphénol				50 μg/l
-	4-n octylphénol 4-ter octylphénol	+			50 μg/l
	2-nitrotoluène	1			50 μg/l
cov	Epichlorhydrine				50 μg/l
-	C10-13 chloroalcanes	1			50 μg/l
Dérivés oluène	Acide monochloroacétique	+	<u> </u>		50 μg/l
-	Hexachloropentadiene Phosphate de tributyle	+			50 μg/l 50 μg/l
+	Anthracène				50 μg/l
	Benzo (a) pyrène				· F U
	Benzo (b) fluoranthène				FC
HAP	Benzo (g,h,i) pérylène Benzo (k) fluoranthène				50 μg/l
-	Indéno (1,2,3-c,d) pyrène	†			
	Fluoranthène				50 μg/l
	Naphtalène				50 μg/l
Organo-	Dibutylétain cation Monobutylétain cation	1			50 μg/l 50 μg/l
etalliques -	Tributylétain cation	 			50 μg/l 50 μg/l
	Déca BDE 209	1			оо руг.
	Hepta BDE 183				
DDDE L	Hexa BDE 153				50
PBDE	Hexa BDE 154 Penta BDE 100	+			50 μg/l
	Penta BDE 100	†			
	Tétra BDE 47				
L	Atrazine				50 μg/l
	Simazine 24' DDT	+			50 μg/l
- H	44' DDT	†			50 μg/l
	Aldrine				
L	Dieldrine				50 μg/l
F	Endrine Isodrine				. 5
-	Endosulfan alpha	1		(*)	-
	Endosulfan béta			(*)	-
	Endosulfan total (alpha + béta)				50 μg/l
	HCH alpha HCH béta				
F	HCH delta	+			50 μg/l
esticides	HCH epsilon				11.00
	Lindane (HCH gamma)				
⊢	Chlorfenvinphos Chlorpyrifos éthyl	<u> </u>			50 μg/l 50 μg/l
F	2,4-D	+			50 μg/l
	2,4-MCPA				50 μg/l
	Alachlore				50 μg/l
-	Biphényle Oxadiazon	+			50 μg/l 50 μg/l
H	Trifluraline	+			50 μg/l
F	Chlorotoluron				50 μg/l
	Diuron				50 μg/l
L	Isoproturon	-			50 μg/l
htalates	Linuron Diethyl hexyl phtalate (DEHP)	+			50 μg/l 50 μg/l
Amines	3.4 dichloroaniline				50 μg/l
	PCB 28				r v ·
	PCB 52				
PCB	PCB 101 PCB 118				50 μg/l
· 55	PCB 138	+			ου μg/ι
	PCB 153		1		
	PCB 180	T	I -		

(*)

Paramètre cité dans l'article

Paramètres retenus dans le calcul d'une somme de paramètres

L'article 37 fixe également des prescriptions concernant le débit, le pH et la température du rejet lorsque celui-ci se fait vers le milieu naturel. Ces prescriptions sont les suivantes :

- débit maximum journalier inférieur au 1/10 du débit interannuel du cours d'eau,
- température du rejet inférieure à 30 °C,
- pH du rejet compris entre 5,5 et 9,5,
- rejet n'induisant pas une élévation de température (hors zone de mélange) supérieure à :
 - 1,5° pour les cours d'eau référencés salmonicoles,
 - 3° C pour les cours d'eau référencés cyprinicoles,
- rejet n'induisant pas une température :
 - supérieure à 21,5° pour les cours d'eau référencés salmonicoles,
 - supérieure à 28° pour les cours d'eau référencés cyprinicoles,
- accroissement des matières en suspension dans le milieu supérieure à 30%.

Concernant le site SNF FLOERGER, l'arrêté préfectoral n°278-DDPP-16 du 30 Juin 2016 (article 4.3.9.1) fixe également plusieurs prescriptions concernant les effluents de déconcentration des TAR avant leur rejet vers le réseau d'assainissement communal. On notera que ces prescriptions concernent l'ensemble des eaux résiduaires industrielles à savoir le mélange :

- des eaux de distillation et décantation et des eaux de lavages des réacteurs et des sols après un prétraitement réalisé sur le site (=évapoconcentration),
- des eaux de purges des TAR,
- des eaux de purges des chaudières,
- des eaux pluviales collectées dans certains secteurs du site industriel (aires de stationnement des wagons, aires de rétention déportées).

Tableau 2 : Concentrations maximales admissibles des eaux résiduaires industrielles avant rejet au réseau d'assainissement (AP 278-DDPP-16))

Parametre	Valeurs limites d'	Fréquence minimale des analyses			
pH	6,5 < pH < 8,5 (ou 9,5 si neu				
Température	<30°C				
Débit moyen mensuel journalier	1000 m³/	1000 m³/i			
Débit maximum journalier	1200 m³/	1200 m³/j			
Débit horaire maximum	50 m³/h	50 m³/h			
Paramètre	Concentration maximale (mg/l)	Flux maximal (kg/j)	Tréquence minimale des analyses		
MEST	600	70	hebdomadaire		
DBO ₃	800 270		hebdomadaire		
DCO	2000	800	journalière		
Azote global (*)	150 75		mensuelle		
Azote NTK (*)	TK (*) 150 75		journalière		
Phosphore total	50	5	mensuelle		
Hydrocarbures totaux	10	10	journalière		

(*) Si les analyses réalisées montrent que les éléments azotés présents dans les rejets ne sont pas uniquement dus à l'azote NTK, la fréquence d'analyse de l'azote global est au minimum hebdomadaire.

Concernant uniquement les TAR, l'article 4.3.9.2 fixe les prescriptions suivantes :

« les eaux résiduaires des circuits de refroidissement doivent respecter les caractéristiques minimales mentionnées dans l'arrêté ministériel en vigueur applicable aux installations relevant du régime de l'enregistrement au titre de la rubrique 2921, avant dilution avec les autres effluents de l'établissement et rejet dans le réseau d'eaux usées communal ».

2.3.3. QUALITÉ ET DÉBIT

2.3.3.1. Caractérisation antérieure à 2017

D'un point de vue quantitatif, les volumes sont variables selon les dispositifs et leur positionnement dans leur process industriel. Il n'existe pas de comptage volumétrique des différentes purges de déconcentration mais celles-ci peuvent être évaluées facilement à partir des volumes d'eau consommés et du facteur de concentration au niveau de chaque dispositif.

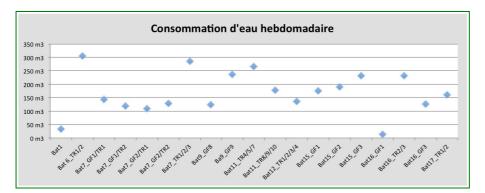


Illustration 7: Consommation d'eau pour l'alimentation des TAR - Moyenne 2016

La consommation d'eau est très variable selon les dispositifs. Au total en moyenne hebdomadaire, se sont environ 3200 m³ qui sont nécessaires pour réaliser les appoints d'eau aux différentes TAR.

Compte tenu des facteurs de concentration au niveau de chaque TAR, le volume moyen associé aux purges de déconcentration peut être évalué à environ 1000 à 1100 m³ hebdomadaire avec des fluctuations variables entre 550 et 1850 m³/semaine selon les périodes d'activité et le contexte climatique (consommation maximale et donc rejet maximal entre juin et septembre – période où les températures extérieures sont les plus importantes). Réparti à l'échelle journalière, le volume moyen des purges est évalué à environ 150 m³/j, avec des pointes maximales atteignant 265 m³/j.

D'un point de vue qualitatif, les rejets des différentes TAR sur le site font l'objet d'un suivi bimestriel par l'exploitant qui analyse les paramètres en lien avec :

- la minéralisation et l'équilibre calco-carbonique,
 - conductivité, pH, TH, TAC, Cl, facteur de concentration
- l'utilisation de fongicides et de produits « inhibiteur de corrosion » et « anti-tarte »,
 - brome.
 - M/T400 (= produit industriel à base de polycarboxylate de zinc et de chlorure),
 - zinc, fer, cuivre.

Concernant les paramètres en lien avec la minéralisation et le facteur de concentration, les résultats du suivi sur les différentes TAR du site en 2016 sont présentés sur l'illustration ci-après. Les valeurs mesurées peuvent être comparées à celles mesurées sur le réseau « Eau Potable » utilisé pour les appoints d'eau (abaissement du facteur de concentration et compensation des pertes par évaporation).

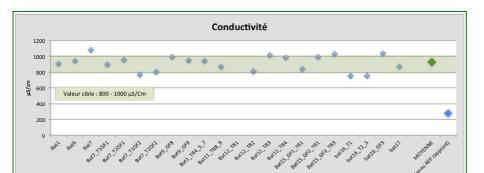
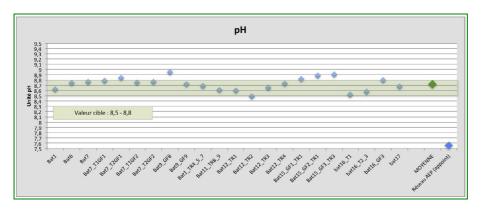
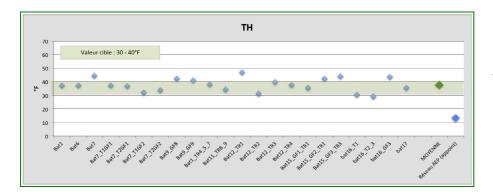
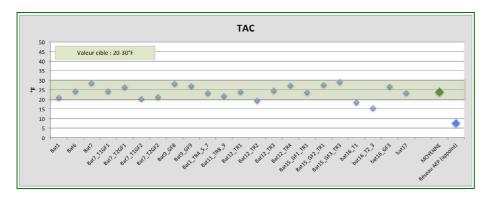
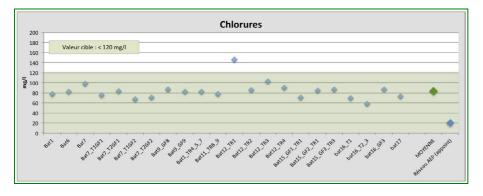
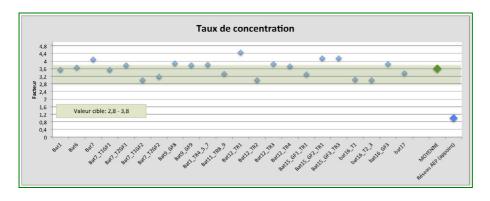



Illustration 8: Bilan analyses 2016 (suivi bimestriel SNF)


Conductivité moyenne maintenue aux alentours de 930 µs/s.


pH moyen maintenu aux alentours




Dureté moyenne de l'eau maintenue aux alentours de 38°F.

Titre alcalimétrique moyen maintenu aux alentours de 24°F.

Concentration en chlorures moyenne maintenue aux alentours de 85 mg/l

Taux de concentration moyen maintenu aux alentours de 3,6.

Concernant les paramètres en lien avec les traitements chimiques, les concentrations mesurées en 2016 mettent en évidence des concentrations pouvant atteindre 0,5 à 3 mg/l pour le zinc, 1 à 10 mg/l pour le brome et 50 à 100 mg/l pour le M/T400³. C'est la présence de ces composés dans les eaux de purge qui nécessite leur rejet vers un réseau d'assainissement en non vers le milieu naturel.

La mise en place progressive en fin d'année 2016 et en début d'année 2017 sur les différentes TAR du nouveau procédé de traitement (U.V. associé au péroxyde d'hydrogène) permet de ne plus utiliser ces produits qui ne se retrouvent donc plus dans les eaux de purge de déconcentration.

Ecotoxicité

Ce produit contient deux composants toxiques (Chlorure de Zinc et polycarboxylate de Zinc) pour les organismes aquatiques.

12.1 Toxicité aigue:

Les valeurs de toxicité aigue sont calculées selon les tests en vigueur et les valeurs obtenues sont calculées par référence aux produits initiaux et composants primaires du produit final et sont les suivantes : (données calculées à partir des sources IUCLID) CE :

Types	Organismes	OECD - EEC	Concentration	
NOEC (Non Observed Concentration)	Selenastrum capricornatum (Algues verte)	201 – C3	12 mg / l	
EC 50 / 96 heures	Navicula incerta (Algues siliceuse)	-	/	
EC 50 / 48 heures	Daphnia magna (micro crustacé) eau douce)	202 - C2	15 mg / l	
EC ₅₀ / 48 heures	Gammarus pulex (micro crustacé) eau de mer	-	/	
LC ₅₀ / 96 heures	Onconrhynchus mykiss	203 - C1	21 mg / l	
EC 10 / 32 heures	Zoogloea ramigera	-	/	

12.2 Persistance et dégradabilité:

Dégradabilité

La partie organique de ce produit est biodégradable à + de 90% après acclimatation (station d'épuration), le caractère de biodégradabilité de la partie minérale ne peut être appliqué. Début d'inhibition des boues activées à : Sans influence pour des concentrations < 5000 g / m3 (ppm)

12.3 Toxicité aquatique Chronique (prolongée)

Pour le produit final (données calculées à partir des sources IUCLID) CE :

Types	Organismes	OECD - EEC	Concentration
EC 16 / 21 jours	Daphnia magna (micro crustacé) eau douce) (inhibition de la reproduction)	211	2,5 mg / l
LOEC / 6 jours	Brachydanio rerio (poisson arlequin)		250 mg / l

 $\underline{\textbf{Comportement}} \colon \text{Traitabilité} \ \ \text{en} \ \ \text{station} \ \ \ \text{d'épuration} \ \ \text{biologique} \colon \xrightarrow{\textstyle \bullet} \ \ \text{Biodégradable} \ \ \text{après} \ \ \text{acclimatation}$ Traitement des effluents :

Classe de danger/ catégorie de danger	Phrase R	Phrase S
Irritant pour les yeux, et la peau. Toxique pour les organismes aquatiques peut entrainer des effets néfastes à long termes pour l'environnement aquatique.	R 36/38 R 51-53	\$ 26 : En cas de contact avec les yeux, laver immédiatement et abondamment avec de l'eau et consulter un spécialiste. \$ 37 : Porter des gants appropriés. \$ 57 : Utiliser un récipient approprié pour éviter toute contamination du milieu ambiant \$ 59 : Consulter le fabricant/ fournisseur pour des informations relatives à la récupération / au recyclage \$ 50 : Eliminer le produit et son récipient comme un déchet dangereux. \$ 61 : Eviter le rejet dans l'environnement. Consulter les instructions spéciales / la fiche de données de sécurité.

Extrait fiche sécurité M/T400 (source SNF)

2.3.3.2. Caractérisation 2017

Afin de caractériser les effluents issus des TAR en prenant en compte le nouveau procédé de traitement préventif, deux analyses ont été réalisées le 28 Mars 2017.

Les prélèvements ont été effectués sur les deux TAR référencées :

- « <u>B07-TR2-GF1</u> » (référence bordereau d'analyse TAR1) Installation à circuit fermé,
- « <u>B16-TR2</u> » (référence bordereau d'analyse TAR2) Installation à circuit ouvert.

Le prélèvement a été effectué sur les robinets du circuit lié au contrôle qualitatif. Les prélèvements ont été réalisés avec les installations en service et un facteur de concentration proche du maximum entrainant les opérations de purge et d'appoint (facteur de concentration compris entre 2,5 et 3).

Echantillonnage TAR 1 - « B07-TR2-GF1 »

Echantillonnage TAR2 « B16-TR2 »

On notera qu'avec le nouveau procédé de traitement, il est nécessaire de ne pas dépasser une dureté de l'eau dans le circuit supérieure à 40°f, ce qui correspond à un facteur de concentration compris entre 3 et 4 compte tenu de la dureté de l'eau entrante.

Les paramètres analysés correspondent à l'ensemble des paramètres cités dans l'arrêté ministériel du 14 décembre 2013 (article 38, article 60 et annexe IV).

20

→ <u>Résultats</u> (voir bordereaux d'analyses en annexes)

Tableau 3 : Résultats d'analyses – Prélèvements du 28 mars 2017

			ANALYSES SNF			Réglementation TAR (AM 14 décembre 2013)				
			TAR 1 B07-TR2-GF1	TAR 2 B16-TR2	Article 37	Article 38 "VLE rejet milieu naturel"	Article 60 "Emission dans l'eau" Programme surveillance	Annexe IV "VLE dans l'eau pour les rejets dans le milieu naturel"	Concentration maxima	
	pН	unité pH	8,87	8,67					5,5 – 9,5	
Mesures in-situ	Conductivité	μS/cm	962	705					2,0 2,0	
CESAME lors de la prise	Température	°C	21,3	13,2					< 30°	
d'échantillon	Oxygène dissous	mg/l	6,15	8,57						
Résidu	Oxygène dissous (saturation)	%	73	82						
traitement	Péroxyde d'hydrogène	mg/l	1	1					100 mg/l (flux ≤ 15 kg	
	Matières en suspension totales	mg/l	<2	3,1					35 mg/l (flux > 15 kg/	
	Bromures	mg/l	<1	<1						
	Chlorures	mg/l	78	46					-	
_	Fluorures	mg/l	<0,5	<0,5					15 mg/l	
⊢	Cyanures totaux Indice phénol	mg/l mg/l	<0,05 <0,02	<0,05 <0,02	1		-		0,1 mg/l 0,3 mg/l	
 	·				 				0,3 mg/l 300 mg/l (flux ≤ 50 kg	
L	Demande chimique en oxygène	mg/l	33	<30	<u></u>				125 mg/l (flux > 50 kg	
	AOX	mg/l	0,22	0,06					1 mg/l	
<u> </u>	Indice Hydrocarbures	mg/l	<0,1	<0,1				(#)	10 mg/l	
	Azote Kjeldahl	mg/l	<3	<3				(*)	-	
Physico-	Ammonium	mg/l	<1 0,144	<1 0,272	 			(*) (*)	-	
chimie	Nitrites Nitrates	mg/l mg/l	26	18				(*)	-	
	Azote global	mg/l	5,9	4,1					30 mg/l (flux ≥ 50 kg. 15 mg/l (flux ≥ 150 kg 10 mg/l (flux ≥ 300 kg (Concentration en moyenne mensuelle	
	Phosphore total	mg/l	<0,16	<0,16					10 mg/l (flux ≥ 15 kg/ 2 mg/l (flux ≥ 40 kg/j 1 mg/l (flux ≥ 80 kg/j (Concentration en moyenne mensuelle	
	Arsenic total	μg/l	<4	<4					50 μg/l	
	Cadmium total	μg/l	<2	<2					50 μg/l	
	Chrome total	mg/l	<0,005	<0,005					0,5 mg/l	
	Cuivre total	mg/l	0,008	<0,005	<u> </u>				0,5 mg/l	
Métaux	Mercure total Nickel total	μg/l	<0,5 <0,004	<0,5 0,004					50 μg/l	
ivietaux	Plomb total	mg/l	<0,004	<0,004					0,5 mg/l 0,5 mg/l	
	Zinc total	mg/l mg/l	0,195	0,002					2 mg/l	
-	Fer total	mg/l	0,029	0,066					5 mg/l	
	Manganèse total	mg/l	0,009	0,008					1 mg/l	
	Etain total	mg/l	<0,005	<0,005					2 mg/l	
	Bromoforme	μg/l	<0,05	<0,05			(*)		=	
COV	Chloroforme	μg/l	<0,05	<0,05					50 μg/l	
	Dibromochlorométhane	μg/l	<0,5	<0,5			(*)		-	
THM	Dichlorobromométhane	μg/l	<0,5	<0,5	1		(*)		- 4 0	
	Somme des trihalométhanes 1,2-dichloroéthane	μg/l	<0,5 <0,5	<0,5 <0,5	1				1 mg/l 50 μg/l	
├	Cis 1,2-dichloroéthylène	μg/l μg/l	<0,5	<0,5	1				- 50 μg/i	
 	Dichlorométhane	μg/l	<5	<5	 				- 50 μg/l	
COV	Hexachlorobutadiène	µg/l	<0,5	<0,5					50 μg/l	
-	Trans 1,2-dichloroéthylène (E)	μg/l	<0,5	<0,5				(*)	-	
Solvants	Somme des 1,2-dichloroéthylène	μg/l	<0,5	<0,5					50 μg/l	
	Tétrachloréthylène	μg/l	<0,5	<0,5					50 μg/l	
<u> </u>	Tétrachlorure de carbone (trans)	μg/l	<0,5	<0,5	ļ				50 μg/l	
	Trichloréthylène	µg/l	<0,5	<0,5	<u> </u>				50 μg/l	
 	Benzène Ethylbenzène	μg/l	<0,5	<0,5	1				50 μg/l	
<u> </u>	Isopropylbenzène	μg/l ug/l	<0,5 <0,5	<0,5 <0,5	1	-			50 μg/l 50 μg/l	
 	Toluène	μg/l μg/l	<0,5	<0,5	 				50 μg/l	
—	Xylène o	μg/l	<0,5	<0,5	<u> </u>				- 30 μg/i	
	Xylènes m + p	μg/l	<1	<1	1				-	
cov	Xylènes o + m + p	µg/l	<1,5	<1,5	 				50 μg/l	
	1,2,3-trichlorobenzène	µg/l	<0,2	<0,2	<u> </u>				50 μg/l	
BTEX	1,2,4-trichlorobenzène	µg/l	<0,2	<0,2	 				оо руп	
et dérivés du Benzène	1,2-dichlorobenzène	µg/l	<0,5	<0,5	†				50 μg/l	
aa Donzone	1,3,5-trichlorobenzène	µg/l	<0,2	<0,2					P9	
	1,3-dichlorobenzène	µg/l	<0,5	<0,5	l				50 μg/l	
	Monochlorobenzène	µg/l	<0,5	<0,5					50 μg/l	
	Somme des trichlorobenzènes	μg/l	<1	<1					50 μg/l	
	Hexachlorobenzène (HCB)	μg/l	<0,01	<0,01					50 μg/l	
<u> </u>	Pentaclorobenzène	μg/l	<0,02	<0,02					50 μg/l	

Paramètre cité dans l'article avec respect de la VLE pour les deux analyses sur TAR SNF
Paramètre cité dans l'article (VLE non définie)

Paramètre retenu dans le calcul d'une somme de paramètres

			ANALYSES SNF		Réglementation TAR (AM 14 décembre 2013)			
			TAR 1 B07-TR2-GF1	TAR 2 B16-TR2	Article 38 "VLE rejet milieu nature!"	Article 60 "Emission dans l'eau" Programme surveillance	Annexe IV "VLE dans l'eau pour les rejets dans le milieu naturel"	Concentration maximale (VLE)
	2,3,4-trichlorophénol	μg/l	<0,1	<0,1			(*)	
	2,3,5-trichlorophénol	µg/l	<0,1	<0,1			(*)	-
	2,3,6-trichlorophénol	μg/l	<0,1	<0,1			(*)	-
cov	2-chlorophénol	μg/l	<0,1	<0,1				50 μg/l
Dérivés phénols	3,4,5-trichlorophénol Somme des trichlorophénols	μg/l μg/l	<0,1 <0,5	<0,1 <0,5			(*)	- 50 μg/l
	Pentachlorophénol	μg/l	<0.1	<0,3				50 μg/l
Prictions E	4-chloro, 3-méthyl phénol	μg/l	<0,1	<0,1				50 μg/l
L	4-n nonylphénol	μg/l	<0,1	<0,1				50 μg/l
-	4-n octylphénol	μg/l	<0,1 <0,1	<0,1 <0,1				50 μg/l
+	4-ter octylphénol 2-nitrotoluène	μg/l μg/l	<0,05	<0,1	 			50 μg/l
cov	Epichlorhydrine	μg/l	<0,5	<0,5				50 μg/l
- [C10-13 chloroalcanes	μg/l	<5	<5				50 μg/l
Dérivés	Acide monochloroacétique	μg/l	<25	<25				50 μg/l
toluène	Hexachloropentadiene	μg/l	<0,05	<0,05				50 μg/l
-+	Phosphate de tributyle Anthracène	μg/l μg/l	<0,05 <0,01	<0,05 <0,01	 			50 μg/l 50 μg/l
HAP -	Benzo (a) pyrène	μg/I μg/I	<0,01	<0,01				50 µg/l
	Benzo (b) fluoranthène	µg/l	<0,01	<0,01				
	Benzo (g,h,i) pérylène	μg/l	<0,01	<0,01				
	Benzo (k) fluoranthène	μg/l	<0,01	<0,01				
	Indéno (1,2,3-c,d) pyrène Fluoranthène	μg/l μg/l	<0,01 <0,01	<0,01 <0,01				50 µg/l
	Naphtalène	μg/l	<0,01	<0,01				50 μg/l
0	Dibutylétain cation	µg/l	<0,0025	<0,0025				50 μg/l
Organo- métalliques	Monobutylétain cation	μg/l	0,0053	<0,0025				50 μg/l
otaquoo	Tributylétain cation	μg/l	<0,0005	<0,0005				50 μg/l
PBDE	Déca BDE 209 Hepta BDE 183	μg/l μg/l	<0,01 <0.0001	<0,01 <0.0001				50 μg/l
	Hexa BDE 153	μg/l	<0,0001	<0,0001				
	Hexa BDE 154	μg/l	<0,0001	<0,0001				
	Penta BDE 100	μg/l	<0,001	<0,001				
⊢	Penta BDE 99 Tétra BDE 47	μg/l	<0,001 <0,005	<0,001 <0,005				
	Atrazine	μg/l μg/l	<0,005	<0,005				50 μg/l
	Simazine	µg/l	<0,02	<0,02				50 μg/l
	24' DDT	μg/l	<0,02	<0,02				50 μg/l
	44' DDT	μg/l	<0,02	<0,02				50 μg/l
	Aldrine Dieldrine	μg/l μg/l	<0,02 <0,02	<0,02 <0,02				
F	Endrine	µg/l	<0,02	<0,02				
	Isodrine	μg/l	<0,02	<0,02				
	Endosulfan alpha	μg/l	<0,02	<0,02			(*)	-
	Endosulfan béta Endosulfan total	μg/l μg/l	<0,02 <0,02	<0,02 <0,02	-		(*)	- 50 μg/l
	HCH alpha	μg/I μg/I	<0,02	<0,02				эо µул
	HCH béta	μg/l	<0,02	<0,02				50 μg/l
esticides	HCH delta	μg/l	<0,02	<0,02				
	HCH epsilon	μg/l	<0,02 <0,02	<0,02 <0,02				
-	Lindane (HCH gamma) Chlorfenvinphos	μg/l μg/l	<0,02	<0,02				50 μg/l
	Chlorpyrifos éthyl	μg/l	<0,02	<0,02				50 μg/l
	2,4-D	μg/l	<0,02	<0,02				50 μg/l
L	2,4-MCPA	μg/l	<0,02	<0,02				50 μg/l
-	Alachlore Biphényle	μg/l μg/l	<0,05 <0,05	<0,05 <0,05	-			50 μg/l 50 μg/l
	Oxadiazon	μg/I μg/I	<0,05	<0,05	†			50 μg/l
	Trifluraline	μg/l	<0,05	<0,05				50 μg/l
	Chlorotoluron	μg/l	<0,05	<0,05				50 μg/l
	Diuron Isoproturon	μg/l	<0,05 <0,1	<0,05 <0,1	-			50 μg/l 50 μg/l
	Linuron	μg/l μg/l	<0,1	<0,1	 			50 μg/l 50 μg/l
Phtalates	Diethyl hexyl phtalate (DEHP)	μg/l	<1	<1				50 μg/l
Amines	3.4 dichloroaniline	μg/l	<0,1	<0,1				50 μg/l 50 μg/l
	PCB 28	μg/l	<0,01	<0,01				
	PCB 52 PCB 101	μg/l μg/l	<0,01 <0,01	<0,01 <0,01	-			
				<0,01	1			
PCB -	PCB 118	l µa/i	<0.01					
РСВ	PCB 118 PCB 138	μg/l μg/l	<0,01 <0,01	<0,01				эо рул

Paramètre cité dans l'article avec respect de la VLE pour les deux analyses sur TAR SNF

(*) Paramètre retenu dans le calcul d'une somme de paramètres

Les rejets issus des TARs se caractérisent par :

- une charge minérale moyenne de l'ordre de 0,5 à 1 g/l (compte tenu des mesures de conductivités),
- un pH légèrement basique restant inférieur à 9,
- une charge azotée sous forme oxydée et non réduite avec des concentrations en nitrates comprise entre 20 et 30 mg/l,
- une charge phosphorée et organique très faible,
- une concentration résiduelle en péroxyde d'hydrogène de l'ordre de 1 mg/l,
- l'absence ou la très faible présence de matières en suspension (< 4 mg/l),
- des éléments métalliques sous forme de traces (cuivre, zinc, fer, manganèse),

- l'absence⁴ de composés toxiques de type :

- Trihalométhanes (THM),
- Solvants,
- Benzènes et dérivés,
- Phénols et dérivés,
- Toluène et dérivés,
- Hydrocarbures aromatiques polycycliques,
- Organo-métalliques,
- PBDE,
- Pesticides,
- Phtalates et amines,
- PCB.

Tous les paramètres analysés présentent des <u>concentrations inférieures aux VLE fixées par l'arrêté</u> <u>ministériel du 15 décembre 2013</u> concernant les rejets vers le milieu naturel.

La qualité des eaux issues des purges des tours aéroréfrigérantes sur le site SNF ne présente donc pas d'incompatibilité pour un rejet vers le milieu naturel.

Remarque : On constate que les analyses mettent en évidence des qualités générales très proches dans les deux tours à l'exception du paramètre zinc (et dans une moindre mesure du paramètre AOX) pour lequel des concentrations beaucoup plus importantes sont mesurées sur l'échantillon TAR1. L'origine de cet élément peut être en lien avec la présence de résidus issus des anciens traitements dans la mesure où la prise d'échantillon sur cette tour s'est faite seulement 3 semaines après la mise en service du nouveau procédé de traitement par Ultra Violet et péroxyde d'hydrogène (phénomène de relargage possible du film protecteur initialement présent sur les parois des canalisations).

Parmi la centaine de composés recherchés dans l'eau, seul le Monobutylétain dépasse la limite de quantification sur l'analyse TAR1. La concentration mesurée reste toutefois très faible (5,3 nanogrammes par Litre pour une limite de quantification de 2,5 nanogrammes par Litre et une valeur limite d'émission (VLE), dans l'arrêté ministériel du 15 décembre 2013 fixée à 50 microgrammes par Litre (soit 50 000 nanogrammes par Litre). La présence de cet élément est très certainement lié à la pose de nouvelle canalisation PVC dans le circuit suite à la mise en place du nouveau procédé de traitement.

Matières inhibitrices

Afin de confirmer cette hypothèse, une nouvelle prise d'échantillons a été réalisée le 23 mai 2017. Ont été analysés les paramètres zinc et AOX et les paramètres en lien avec la réglementation IOTA (rejet vers milieu naturel – voir §8), non analysés le 28 mars 2017, ont été recherchés (DBO et Matières Inhibitrices⁵).

ANALYSES SNF TAR 1 TAR 2 B07-TR2-GF1 B16-TR2 DBO 1,8 0,6 AOX mg/l 0.2 0.11 7inc μg/l 15.8 2 69

Tableau 4 : Résultats d'analyses – Prélèvements du 23 mai 2017

La concentration en zinc mesurée dans l'échantillon TAR1 est beaucoup moins importante que celle mesurée lors de la campagne de prélèvement du mois de mars (plus de dix fois moindre) ce qui tend à confirmer l'influence des anciens traitements les premières semaines qui ont suivi la mise en service des nouvelles installations.

<1

eauitox/m3

Concernant la DBO, les concentrations mesurées apparaissent très faibles et aucune matière inhibitrice n'est mise en évidence.

Les deux teneurs en AOX sont très proches de celles mesurées en avril (0,22 mg/l sur la TAR 1 et 0,06 mg/l sur la TAR2) mais restent très inférieures à la norme de rejet dans le milieu naturel qui s'établit à 1 mg/l (voir tableau 1). L'origine de cet élément ne peu plus être attribuée aux traitements utilisés antérieurement par SNF. Elle peut être en lien avec une présence initiale de chlore dans le réseau d'eau potable alimentant les TAR (eau potable faisant l'objet d'une chloration conformément aux obligations sanitaires réglementaires et aux dispositions associées au plan « vigipirates » qui impose des teneurs en chlore minimale dans les eaux distribuées (0,3 mg/l minium en sortie de réseau et 0,1 mg/l minimum en tout point du réseau).

équitox
$$(/m^3) = 100 / CE(I)50-24h$$

avec CE(I)50-24h : nombre de dilutions réalisées sur l'eau brute polluée pour obtenir l'immobilisation, au bout de 24 heures de 50% des daphnies (crustacés d'eau douce) initialement présentes dans les eaux de dilution. Cette valeur est exprimée en %.

Il s'agit des polluants minéraux ou organiques susceptibles d'avoir une toxicité suffisante pour inhiber le développement et/ou l'activité des organismes aquatiques. Cette méthode d'analyse est standardisée par la norme ISO 6341 « détermination de l'inhibition de la mobilité de daphnia magna straus (cladocera crustacea) - Essai de toxicité aiguë ». L'unité de mesure est l'équitox, défini de la manière suivante :

<u>D'un point de vue quantitatif</u>, la mise en service des nouveaux dispositifs de traitement et de prévention nécessite des appoints et donc des purges légèrement plus importantes que ce qui se faisait jusqu'en 2016 (voir commentaire facteur de concentration associé à la dureté de l'eau maximale dans le circuit page 20). Une augmentation de l'ordre de 15 à 20% est envisagée par SNF.

Compte tenu de ces éléments, le volume journalier associé aux purges de déconcentration est évalué à 180 m³/j en moyenne avec des pointes atteignant 320 m³/j.

3. CONNAISSANCE DU MILIEU

3.1. RÉSEAUX EP-EU

3.1.1. AU NIVEAU DU SITE SNF-FLOERGER

Le site dispose d'un réseau séparatif « eaux pluviales » et « eaux usées ». Actuellement, les eaux issues des purges de déconcentration sont rejetées vers le réseau « eaux usées » raccordé au réseau public et traitées à la station d'épuration⁶ inter-communale.

Le réseau « eaux pluviales » collecte quant à lui l'ensemble des eaux de ruissellement des toitures et des surfaces imperméabilisées (environ 23 ha sont concernées). Les eaux de ruissellement sont orientées vers un important bassin situé sur la bordure Ouest du site.

Bassin de gestion des eaux pluviales sur le site SNF

Depuis ce bassin, les eaux sont pompées et évacuées vers l'extérieur du site par un réseau enterré sous la RD100 (ø1000 mm) puis un réseau de fossés raccordé au réseau hydrographique. Le pompage est assuré par deux groupes⁷ de pompes présentant chacun une capacité de pompage de 125 l/s. Le déclenchement de ces pompes est fonction du niveau de remplissage atteint dans le bassin (voir illustration 9).

1917_V2 - SM/EIE//2017

26

⁶ STEU des Trois Ponts située sur la commune d'Andrézieux-Bourhéon – Capacité nominale de 48 000 Equivalent-Habitants – Filière de traitement type boues activées avec dénitrification et déphosphatation – Syndicat mixte des Trois Ponts).

un troisième groupe de pompes est également présent en secours.

Le débit évacué vers l'aval (buse béton ø1000 mm pentée à 0,7%) est, conformément aux prescriptions réglementaires, limité en pointe instantanée à 250 l/s (900 m³/h).

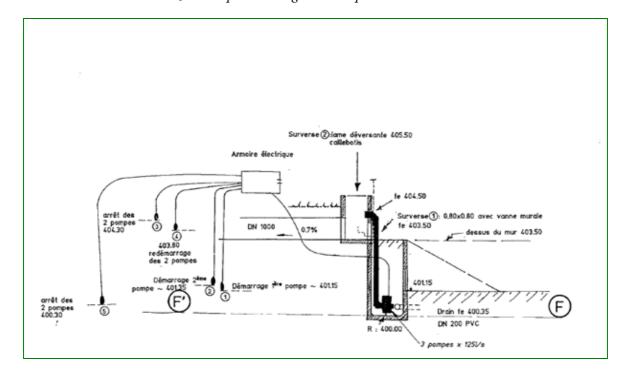


Illustration 9 : Principe du relevage des eaux pluviales vers l'aval du site SNF

Source: SNF

Les réseaux EP et EU bien individualisés sur le site SNF FLOERGER sont présents à proximité de toutes les TAR si bien que le raccordement des purges de déconcentration peut facilement se faire vers l'un ou l'autre de ces réseaux.

3.1.2. A L'AVAL DU SITE SNF-FLOERGER

Toutes les eaux pluviales du site qui arrivent dans le bassin sont pompées vers le réseau (ø1000 mm) traversant la RD100. Le point de rejet dans un fossé aérien se fait aux coordonnées suivantes :

- X:801 836 (L93)

- Y: 6 493 755 (L93)

- Z: 403 NGF

Vers l'aval, les écoulements sont acheminés vers le réseau hydrographique (ruisseau Sans Nom s'écoulant vers le Nord situé le long de l'aéroport d'Andrezieux) par un réseau de fossés profonds longeant les plateformes aménagées de la ZAC de l'Orme (Team pilotage – Easydis).

28

Point de rejet des EP SNF - aval RD100

Fossé le long du circuit « Team Pilotage »

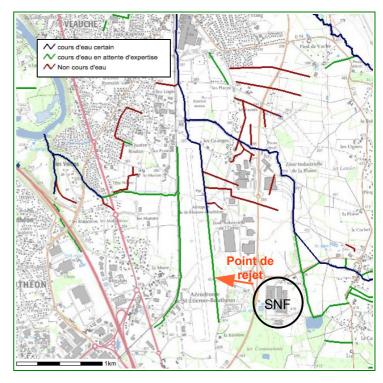
Fossé EP ZA de l'Orme

Rejet réseau EP ZA dans ruisseau Sans Nom

Illustration 10: Evacuation des eaux pluviales

Sens d'écoulement

3.2. CONTEXTE HYDROLOGIQUE


3.2.1. GÉNÉRALITÉS

Les eaux pluviales du site SNF finissent par rejoindre le ruisseau Sans Nom longeant l'aéroport d'Andrézieux. C'est au niveau de ce point de rejet que la notion de milieu naturel aquatique peut

potentiellement être envisagée.

On notera qu'à cet endroit la notion de cours d'eau n'est pas clairement établie, ce n'est qu'à l'aval de la ZA de l'Orme (voir illustration 11) que le réseau hydrographique est qualifié de cours d'eau au titre de l'inventaire⁸ validé le 22 juin 2016 par la DDT42. Ce ruisseau rejoint ensuite le ruisseau de Gourny, affluent du Volvon lui même affluent de la Coise qui constitue le principal cours d'eau de ce secteur.

Illustration 11 : identification des cours d'eau

source: http://carto.geo-ide.application.developpement-durable.gouv.fr

Le bassin versant du ruisseau Sans Nom en amont du point de rejet des eaux pluviales de la ZA de l'Orme est faible et couvre une superficie de l'ordre d'environ 4 km², ce qui ne lui permet pas d'avoir des écoulements pérennes. Ce n'est qu'à l'aval, après la confluence avec le ruisseau de Gourny, que des écoulements sont visibles tout au long de l'année. A partir de cet endroit, le ruisseau prend également l'appellation de « Petit Volvon ».

On notera que le ruisseau Sans Nom n'est réglementairement défini comme cours d'eau qu'en aval de l'aéroport de Saint-Etienne Bouthéon. Dans ce secteur, le bassin versant du cours d'eau couvre une superficie de l'ordre de 5,3 km².

Par instruction du gouvernement du 3 juin 2015, Madame la Ministre de l'écologie, du développement durable et de l'énergie, a demandé aux préfets de départements de procéder à l'établissement d'une cartographie exhaustive des cours d'eau lorsque cela est possible, ou lorsque cela ne le sera pas, une identification progressive en définissant la méthode d'application de cette caractérisation des cours d'eau du département

Saint-Galmi Chambœu Veauche Fond géorportail 1 km

Illustration 12 : Le réseau bydrographique

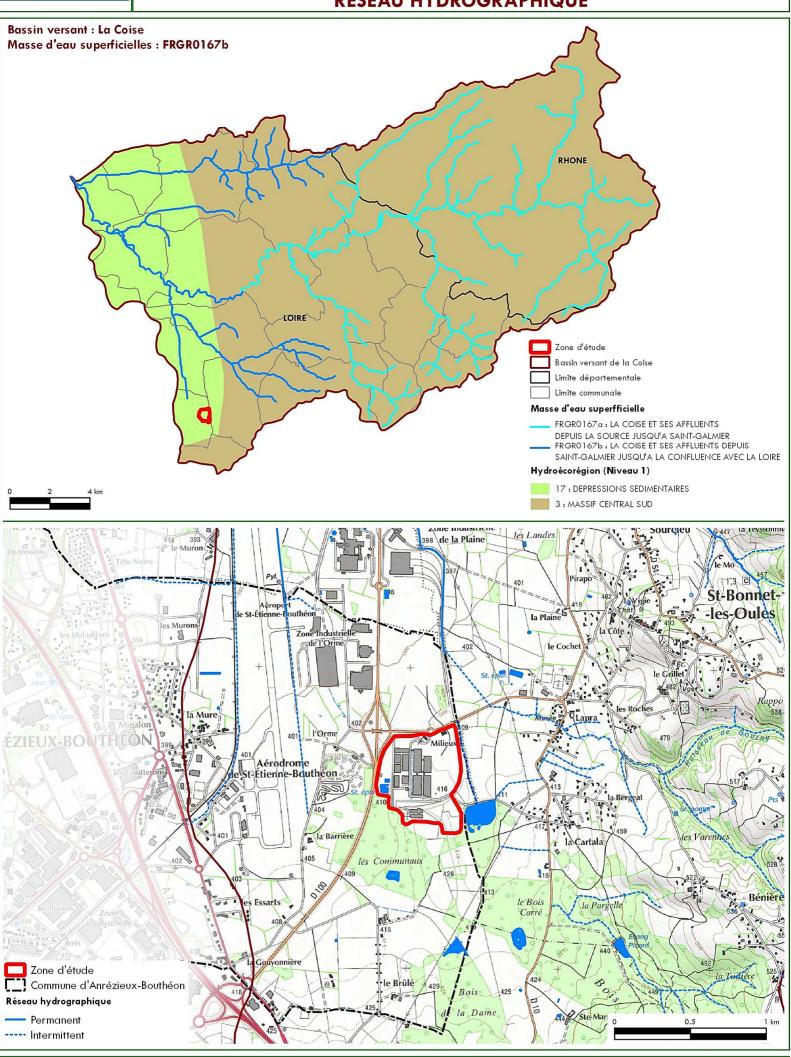
Ruisseau Sans Nom – ZA de l'Orme

Ruisseau Sans Nom - Aval aéroport

R. de Gourny - Confluence avec R.Sans Nom

Petit Volvon (Veauche – quartier Les Vernes)

Volvon (aval confluence petit Volvon) – Traversée RD101


Coise (aval confluence Volvon) - Traversée RD16

La zone d'étude appartient à la masse d'eau superficielle « FRGR0167b : La Coise et ses affluents depuis Saint-Galmier jusqu'à la confluence avec la Loire » et se situe dans le périmètre de l'hydroécorégion n°17 « dépressions sédimentaires ».

RESEAU HYDROGRAPHIQUE

3.2.2. DÉBITS CARACTÉRISTIQUES

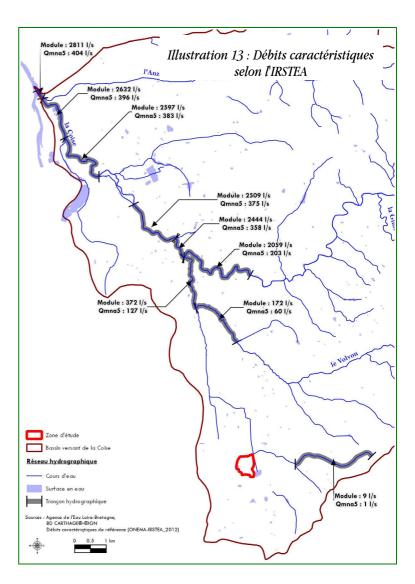

Les débits caractéristiques des cours d'eau (Gourny, Volvon, Coise) à proximité et en aval du site SNF peuvent être estimés à partir des études de l'IRSTEA⁹.

Tableau 5 : Débits caractéristiques des cours d'eau en aval du site SNF (source : IRSTEA)

Conditions moyennes	Module (m³/s)	Gamme d'incertitude (m³/s)	Fiabilité
Gourny Amont (à St Bonnet les Oules)	0,009	0,009 - 0,0012	Robuste
Volvon (amont Gourny)	0,172	0,130 - 0,227	Prudence
Volvon (aval Gourny)	0,372	0,280 - 0,492	Prudence
Coise (amont Volvon)	2,06	1,555 -2,727	Prudence
Coise (aval Volvon)	2,44	1,846 - 3,237	Prudence

Etiage	QMNA5 (m³/s)	Gamme d'incertitude (m³/s)	Fiabilité
Gourny Amont (à St Bonnet les Oules)	0,001	0 - 0,003	Fragile
Volvon (amont Gourny)	0,060	0,032 - 0,084	Fragile
Volvon (aval Gourny)	0,127	0,066 - 0,207	Fragile
Coise (amont Volvon)	0,203	0,054 - 0,447	Fragile
Coise (aval Volvon)	0,36	0,128 - 0,703	Fragile

Remarque: Aucune donnée indiquée sur le Gourny et le Petit Volvon dans sa partie aval (secteur aval SNF) jusqu'à sa confluence avec le Volvon.

Combinaison multi-modèle et cartographie de consensus du débit de référence d'étiage et du débit moyen à l'échelle de la France. CEMAGREF/IRSTEA - ONEMA - Avril 2012. Cette étude propose une cartographie nationale qui intègre, par modélisation, le débit moyen interannuel (appelé module ou QA) ainsi que le débit mensuel minimum annuel de retour 5 ans (QMNA5). Ce dernier, qui correspond à un débit mensuel minimum se produisant en moyenne une fois tous les cinq ans, est la référence pour l'application de la police de l'eau. Il est utilisé pour déterminer le régime de traitement des dossiers de rejet et de prélèvement en eau (déclaration ou autorisation) en fonction de la sensibilité des milieux concernés, ainsi que pour l'élaboration des objectifs de qualité des rivières. Cette cartographie a pour objectif de favoriser une gestion globale et équilibrée de l'eau, en identifiant par exemple le potentiel de dilution d'une rivière. Pour parvenir à cette carte et garantir une bonne estimation des statistiques d'étiage, un important travail de sélection des stations hydrométriques a été nécessaire. Au total, le jeu de stations de référence est constitué d'environ 630 unités dotées de chroniques journalières, d'au moins 26 ans sur la période 1970-2008, et considérées comme peu influencées au niveau métrologiques ou anthropiques. La cartographie résulte également d'une combinaison de trois modèles réalisés par les équipes de recherche de Irstea (modèles GRioieau_pixel). La meilleure estimation en chaque point de mesure est au final conservée ce qui diminue encore le risque d'imprécision. Enfin, un tableau de données fournit à l'utilisateur un indice de robustesse (fragile, prudence, robuste) et une fourchette d'incertitude.

CESAME

On constate que les valeurs indiquées pour les étiages sont considérées comme fragiles. En effet sur certains tronçons, les très faibles débits calculés correspondent certainement à un assèchement temporaire de certains tronçons lors d'étiages sévères (situation envisageable sur le ruisseau Sans Nom, le Petit Volvon et le Gourny). De plus les valeurs mensuelles des débits d'étiage (moyenne mensuelle des débits journaliers) sont artificiellement sur évaluées à cause de l'influence du ruissellement des orages estivaux sur les secteurs urbanisés à forts coefficients de ruissellement.

Pour le ruisseau Sans Nom et le Petit Volvon aucun débit n'est renseigné. Pour ce dernier, les débits caractéristiques peuvent être estimés par la différence entre les valeurs calculées sur le Volvon en amont et en aval de la confluence avec le Petit Volvon (voir illustration 13). Pour le ruisseau Sans Nom, les débits caractéristiques peuvent être évalués à partir d'un bilan hydroclimique prenant en compte le contexte climatique, géologique et l'occupation du sol.

• Estimation du module et du débit mensuel minimum annuel de retour 5 ans (QMNA5) du ruisseau Sans Nom

→ Module

Le débit moyen (= module) du ruisseau Sans Nom peut être évalué à partir d'un bilan hydroclimatique prenant en compte les données météorologiques de la station Météofrance de Saint-Etienne Bouthéon (42005001) située à proximité immédiate du site SNF.

En effet sur les zones végétalisées, les précipitations qui participent à l'infiltration vers le milieu souterrain et le ruissellement vers le réseau hydrographique ne correspondent pas à la pluie totale car une partie des eaux météoriques est utilisée par la végétation (= phénomènes d'évapotranspiration). A partir de données climatiques (température et précipitations), il est possible de calculer à partir de la méthode de Tornthwaite¹⁰, l'évapotranspiration potentielle (ETP) et l'évapotranspiration réelle¹¹ (ETR) sur la zone

ETR (évapotranspiration réelle) : c'est la valeur d'évapotranspiration qui peut réellement se produire en fonction de la quantité de pluie du mois (qui peut être inférieure à l'évapotranspiration potentielle) complétée de l'évapotranspiration prélevée dans la réserve du sol (RFU : réserve facilement utilisable).

1917_V2 - SM/EIE//2017

La méthode de Tornthwaite est une méthode régionale de calcul de l'évapotranspiration potentielle basée uniquement sur les données de température et de pluviométrie mensuelles d'une station météorologique, avec un coefficient correcteur mensuel dépendant de la latitude de la station (et intégrant des phénomènes d'ensoleillement, de rayonnement, d'albedo, etc...). La formule est la suivante : ETP (mm/mois) = 16(10t/l)^a.F(Y)

[•] F(Y): coefficient fonction de la latitude

[•] t : température moyenne mensuelle

[•] a : fonction complexe de l'indice I : a = $6.75.10^{-7}$. I³ - $7.71.10^{-5}$. I² + $1.79.10^{-2}$. I + 0.49

[•] I : indice thermique annuel correspondant à la somme des douze indices mensuels i

[•] $i = (t/5)^{1,514}$

d'étude est de déduire ainsi la lame d'eau disponible pour le ruissellement et l'infiltration.

Illustration 14 : Calcul du bilan hydroclimatique

	Saint-Etie	ofrance 42005001 enne Bouthéon ue 1980-2016											
	PLUIE	TEMPERATURES	indice i	ETP	ETR	RFU	11	I + R	Q spéc.				
Mois	(mm)	(°C)		(mm)	(mm)	(mm)	infiltration + ruissellement bruts (mm)	répartis sur trois mois (mm)	(l/s/km²)				
JANVIER	37,25	3,41	0,56	8,55		50,00							
FEVRIER	29,60	4,19	0,77	11,22	11,22	50,00	18,37	19,43	7,75				
MARS	38,67	7,41	1,82	28,85	28,85	50,00	9,82	17,92	6,69				
AVRIL	60,85	10,09	2,90	47,03	47,03	50,00	13,82	14,01	5,40				
MAI	88,78	14,24	4,88	82,01	82,01	50,00	6,77	10,14	3,79				
JUIN	76,50	17,91	6,90	110,12	110,12	16,38	0,00	6,86	2,65				
JUILLET	70,79	20,36	8,38	131,37	87,17	0,00	0,00	2,26	0,84				
AOUT	69,80	20,11	8,23	119,47	69,80	0,00	0,00	0,00	0,00				
SEPTEMBRE	72,17	16,48	6,09	80,04	72,17	0,00	0,00	0,00	0,00				
OCTOBRE	70,18	12,56	4,03	51,46	51,46	9,36	9,36	3,12	1,17				
NOVEMBRE	67,94	7,23	1,75	21,66	21,66	32,50	23,14	10,83	4,18				
DECEMBRE	39,07	4,19	0,76	10,37	10,37	46,86	14,35	15,62	5,83				
JANVIER	37,25	3,41	0,56	8,55	8,55	50,00	25,55	21,01	7,85				
ANNEE	721,6	11,52	47,05	702,14	600,39		121,2	121,2					
Pluie (I/s/km²)	22,88	indice a :	1.25	déficit :	101.74	1,74 lame d'eau (mm)							

Sur le bassin versant du ruisseau Sans Nom, la pluie efficace annuelle atteint seulement 3,85 l/s/km². Compte tenu du contexte géologique local (argiles sableuses datées du Tertiaire liées au remplissage de la plaine du Forez), une part significative (≈ 80%) de cette lame d'eau s'évacue par ruissellement vers le cours d'eau soit une valeur de l'ordre de 3 l/s/km².

Sur les surfaces imperméabilisées, les phénomènes d'évapotranspiration et d'infiltration vers le milieu souterrain sont limités et une part significative des précipitations ruisselle directement vers le réseau hydrographique. Au regard du contexte climatique local (pluie annuelle de 720 mm soit 22,9 l/s/km²), on peut raisonnablement considérer qu'au droit des territoires urbains et artificialisés une lame de l'ordre 15 l/s/km² se retrouve vers le réseau hydrographique.

Le tableau ci-après précise le débit moyen du ruisseau Sans Nom en fonction du type d'occupation du sol et de la lame d'eau ruisselée associée.

Tableau 6 : Evaluation du module du ruisseau Sans Nom

			Ruisseau S	ans Nom
			Au niveau du point de rejet SNF	Aval ZA de l'Orme
Su	urface bassin versant	km2	3,99	5,47
Occupation du	Territoires agricoles	km2	2,28	2,85
sol (selon CORINE Land Cover	Forêts et milieux semi-naturels	km2	0,67	0,67
niveau 1)	Territoires artificialisés	km2	1,04	1,95
Lame d'eau	Territoires agricoles	l/s/km2	3	3
ruisselée associée à l'occupation du	Forêts et milieux semi-naturels	l/s/km2	3	3
sol	Territoires artificialisés	l/s/km2	15	15
Module	Débit moyen	1/s	24	40
	Référencement cours d'eau		Non établi	Oui

→ Etiage (Qmna5)

Le bilan hydroclimatique (voir illustration 14) montre qu'au cours de la période estivale (mai à septembre) l'intégralité des précipitations est reprise par les phénomènes d'évapotranspiration, ce qui tend à indiquer que le débit des cours d'eau est peu influencé par les précipitations. Localement ce phénomène est d'autant plus marqué compte tenu du caractère argileux des sols qui limite les apports potentiels associés à la réserve régulatrice du sol et du sous-sol (= influence de l'hydrogéologie dans le soutien d'étiage des cours d'eau).

Le bassin versant du ruisseau Sans Nom présente donc des caractéristiques naturellement séchantes compte tenu de sa faible superficie et du contexte hydroclimatique et géologique. Toutefois en période estivale, le cours d'eau continue à recevoir des apports très ponctuels liés aux phénomènes orageux et aux ruissellements sur les territoires urbanisés et imperméabilisés. Ces apports font que le Qmna5 du cours d'eau au droit de la zone d'étude ne peut pas être considéré comme totalement nul.

Sur l'illustration 15, nous avons représenté, sur la période 1980-2016, les précipitations mensuelles minimales (exprimées en l/s/km²) entre mai et septembre (période où les étiages hydrologiques associés au Qmna5 sont habituellement observés). On constate des valeurs généralement comprises entre 10 et 25 l/s/km² avec des extrêmes pouvant atteindre 6 à 9 l/s/km². Compte tenu de ces éléments, nous pouvons raisonnablement considérer des apports de l'ordre de 4 l/s/km² pour des conditions de Qmna5 en provenance des secteurs urbanisés.

37

1917_V2 - SM/EIE//2017

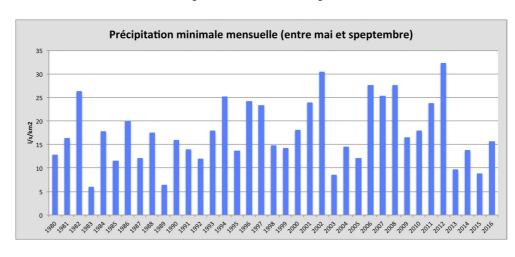


Illustration 15 : Précipitations minimales en période estivale

Hauteurs des précipitations issues de la station Météofrance Saint-Etienne Bouthéon (exprimées en l/s/km²)

Le tableau présente un calcul du Qmna5 pouvant être associé au ruisseau Sans Nom en s'appuyant sur le contexte hydroclimatique estival et l'occupation du sol.

Tableau 7 : Evaluation du Qmna5 du ruisseau Sans Nom

			Ruisseau S	ans Nom
			Au niveau du point de rejet SNF	Aval ZA de l'Orme
Sı	ırface bassin versant	km2	3,99	5,47
Occupation du	Territoires agricoles	km2	2,28	2,85
sol (selon CORINE Land Cover	Forêts et milieux semi-naturels	km2	0,67	0,67
niveau 1)	Territoires artificialisés	km2	1,04	1,95
Lame d'eau	Territoires agricoles	l/s/km2	0	0
ruisselée associée à l'occupation du	Forêts et milieux semi-naturels	l/s/km2	0	0
sol	Territoires artificialisés	l/s/km2	4	4
Etiage	Qmna5	l/s	4	8
	Référencement cours d'eau		Non établi	Oui

• Débits caractéristiques retenus pour le réseau hydrographique en aval du site SNF

Pour les calculs d'impact, les débits caractéristiques retenus pour le réseau hydrographique local sont évalués comme suit :

Tableau 8 : Débits caractéristiques retenus

		Caractérisation cours d'eau	Etiage (Qmna5) (l/s)	Module (l/s)
Ruisseau Sans Nom	au niveau du point de rejet SNF	Non défini	4	24
Ruisseau Sans Nom	aval ZA de l'Orme	OUI	8	40
Petit Volvon	aval confluence R. Sans Nom	OUI	70	200
Volvon	aval confluence Petit Volvon	OUI	130	370
Coise	aval confluence Volvon	OUI	360	2400

3.2.3. QUALITÉ

3.2.3.1. Généralités

La qualité générale d'un cours d'eau s'apprécie à partir de plusieurs critères (morphologique, écologique et chimique). Les paramètres à prendre en compte sont définis dans l'arrêté ministériel du 25 janvier 2010 modifié le 4 février 2015.

On notera que le débit du rejet industriel n'est pas de nature à avoir d'incidence sur les critères morphologiques des cours d'eau en aval. En effet, la morphologie du lit du réseau hydrographique est directement en lien avec les aménagements privatifs de part et d'autre du cours d'eau et les crues morphogènes (crue à partir de la fréquence annuelle et biennale) dont les débits sont sans rapport avec ceux du rejet industriel.

→ ETAT ECOLOGIQUE

L'état écologique d'un milieu aquatique s'évalue essentiellement sur la base des critères biologiques, physico-chimiques et des polluants spécifiques de l'état écologique définis dans l'arrêté du 25 janvier 2010 modifié le 4 février 2015. Selon cet arrêté ministériel, le bon état écologique dépend de la qualité de la structure et du fonctionnement des écosystèmes aquatiques et varie selon le type de masse d'eau. L'évaluation de l'état écologique des cours d'eau se fait à partir d'indices biologiques et d'analyses physico-chimiques en comparaison à un référentiel prenant en compte l'axe longititudinal (rang de Strahler) et la localisation géographique (la France a été découpée en 22 hydroécorégions HER afin de prendre en compte la diversité des régimes hydrologiques et les caractéristiques morphologiques des cours d'eau).

• Paramètres biologiques

• I.B.G.N.: indice biologique global normalisé

Le fond des cours d'eaux est peuplé de petits animaux (invertébrés visibles à l'oeil nu), qui vivent sur ou sous les cailloux, dans le sable ou les vases, fixés aux rochers ou encore accrochés aux feuilles ou aux tiges des végétaux aquatiques. Il s'agit de larves d'insectes, de mollusques, de crustacés ou de petits vers dont la présence est indispensable au bon équilibre de la rivière. Ils sont la ressource alimentaire de nombreux poissons. L'altération de la qualité de l'eau ou du milieu naturel est susceptible de provoquer des modifications plus ou moins importantes de la faune : disparition des espèces sensibles ou très exigeantes, prolifération d'autres plus tolérantes. La composition du peuplement d'invertébrés constitue ainsi une image de la qualité globale du milieu (eau et habitat) associée à une note variant de 0 (qualité très dégradée) à 20 (très bonne qualité). Ces peuplements benthiques intègrent dans leur structure toutes les modifications de leur environnement.

NB: les évolutions entraînées par la directive cadre européenne sur l'eau dans la caractérisation de la qualité biologique ont conduit à partir de 2007 au remplacement de l'Indice Biologique Global Normalisé (IBGN) par l'Indice Biologique Global (IBGN DCE).

• I.B.D.: indice biologique diatomées,

Les diatomées sont des algues unicellulaires qui peuvent vivre en solitaire ou former des colonies libres ou fixées, en pleine eau ou au fond de la rivière ou bien encore fixées sur les cailloux, rochers, végétaux. Elles sont bien développées dans les cours d'eau du département. La rapidité de leur cycle de développement et leur sensibilité aux pollutions, notamment organiques, azotées et phosphorées en font des organismes intéressants pour la caractérisation de la qualité d'un milieu. A partir d'un prélèvement d'algues dans la rivière, effectué sur un support solide immergé, il est possible, en examinant au microscope les espèces d'algues présentes, de faire l'inventaire du peuplement et d'établir des indices : note variant de 1 (eaux polluées) à 20 (eau pure). Le peuplement est influencé et déterminé par les teneurs en matières

organiques et en nutriments (azote et phosphore).

• I.P.R. : Indice poissons rivière.

L'IPR vise en particulier à évaluer l'écart existant entre la qualité du peuplement échantillonné par pêche électrique et l'écopotentialité piscicole du site (un état de référence de la population piscicole s'il n'y avait pas eu d'impacts significatifs de l'homme sur le milieu). Pour cela l'IPR modélise les peuplements piscicoles tels qu'ils devraient être selon la distance du point d'échantillonnage à la source, la superficie du bassin versant, la largeur et profondeur moyenne du cours d'eau au niveau de la station étudiée, la température moyenne de l'air.

La valeur de l'IPR correspond à la sommes des scores obtenues par 7 métriques (nombre total d'espèces, nombre d'espèces rhéophiles, nombre d'espèces lithophiles, densité des individus tolérants, densité des individus invertivores, densité d'individus omnivores, densité totale d'individus). La valeur de l'IPR est de 0 lorsque le peuplement évalué est en tous points conforme au peuplement attendu en situation de référence. Elle devient d'autant plus élevé lorsque les caractéristiques du peuplement échantillonné s'en éloignent.

Pour chaque indice biologique, des grilles associées à des EQR (Ecological Qualité Ratio) fixant les limites à prendre en compte pour évaluer l'atteinte ou la non atteinte du bon état ont été définies selon les masses d'eau et leur appartenance à une hydro-écorégions (HER). 5 classes d'état associées à un code couleur sont fixées par l'arrêté ministériel (état¹² « très bon », « bon », « moyen », « médiocre », « mauvais »). Les limites (EQR) encadrant ces classes d'état sont fonction de la station de station de mesure dans une hydro-écorégions.

La présence d'assec sur le cours d'eau une partie de l'année au niveau du point de déversement limite très fortement son intérêt biologique (faible richesse microbiologique et piscicole).

C'est plus en aval, au niveau du Petit Volvon, du Volvon et de la Coise que l'intérêt biologique se précise.

• Paramètres physico-chimiques généraux

Selon l'arrêté du 25 janvier 2010 modifié le 5 février 2015, **les éléments physico-chimiques généraux** peuvent être classés en plusieurs classes d'état, chacune associée à un code couleur (Très bon – Bleu, Bon – Vert, Moyen – Jaune, Médiocre – Orange, Mauvais – Rouge).

Les paramètres retenus sont regroupés en familles constituant des « bilans » (oxygène, température,

¹² associé respectivement au code couleur : bleu, vert, jaune, orange, rouge

nutriments, acidification, salinité). En plus des paramètres tels que l'acidité (pH) et la température, les paramètres physico-chimiques susceptibles d'être présents sous forme dissoute dans les eaux superficielles et retenus par l'arrêté ministériel concernent :

- la charge organique (DBO, COD, O₂ dissous),
- la charge azotée (NH₄, NO₂, NO₃),
- la charge phosphorée (PO₄, P_{tot}).

Les différentes classes d'état associés à ces paramètres sont les suivantes :

Tableau 9 : Classe d'état physico-chimique (macropolluants)

			, .		11.71	
Paramètres par élément de qualité					s d'état	
· · · · · · · · · · · · · · · · · · ·	très bon	<u> </u>	on	moyen	médiocre	mauvais
Bilan de l'oxygène						
oxygène dissous (mg O ₂ .l-1)		8	6	4		3
taux de saturation en O2 dissous (%)	9	0	70	50) :	30
DBO ₅ (mg O ₂ . I^{-1})		3	6	10) 2	25
carbone organique dissous(mg C.l-1)		5	7	10)	15
Température						
eaux salmonicoles	2	20	21.	5	25	28
eaux cyprinicoles	2	24	25.	5	27	28
Nutriments						
PO ₄ 3- (mg PO ₄ 3l-1)	(0.1	0	.5	1	2
phosphore total (mg P.I-1)	(0.05	0	.2	0.5	1
NH ₄ + (mg NH ₄ + I-1)	(0.1	0	.5	2	5
NO_{2}^{-} (mg NO_{2}^{-} . I^{-1})	(0.1	0	.3	0.5	1
No ₃ - (mg NO ₃ l ⁻¹)	10)	50		*	*
Acidification ¹						
pH minimum	6	.5	(5 .	5.5	4.5
pH maximum	8	.2	9)	9.5	10
Salinité						
conductivité		*	*		*	*
chlorures		*	*		*	*
sulfates		*	*		*	*

Les limites de chaque classe sont prises en compte de la manière suivante :]valeur de la limite supérieure (exclue), valeur de la limite inférieure (inclue)]

Remarques:

- 1: les paramètres et seuils retenus pour les différentes classes d'état ou de qualité sont ceux initialement retenus dans l'ancien outil d'évaluation de la qualité des cours d'eau à savoir la classification potentialités biologiques du SEQ-EAU.
- 2 : les seuils concernant les matières en suspension retenus dans la classification SEQ-EAU n'ont pas été repris dans l'arrêté ministériel dans la mesure où en crue les cours d'eau peuvent présenter des concentrations très importantes suite au lessivage des sols nus. On rappellera que le SEQ-EAU considérait une qualité bonne du milieu pour la fonction potentialités biologiques et les usages AEP, loisirs aquatiques jusqu'à la valeur de 50 mg/l de MES.

¹ acidification: en d'autres termes, à titre d'exemple, pour la classe bon, le pH min est compris entre 6.0 et 6.5; le pH max entre 9.0 et 8.2.

^{* :} pas de valeurs établies, à ce stade des connaissances ; seront fixées ultérieurement

• Polluants spécifiques de l'état écologique.

Les éléments retenus sont les suivants :

- polluants spécifiques non synthétiques (4 micropolluants métalliques (code sandre)) :
 - Arsenic (1369),
 - Chrome (1389),

- Oxadiazon (1667),

- Cuivre (1392),
- **Zinc** (1383),
- polluants spécifiques synthétiques (13 pesticides retenus dans le bassin Loire Bretagne (code sandre)) :

- Chlortoluron (1186), - AMPA (1907) - Toluène (1278) - Métazachlore (1670) - Glyphosate (1506) - Boscalid (5526) - Aminotriazole (1105) - 2.4 MCPA (1212) - Métaldéhyde (1796) - Nicosulfuron (1882) - Diflufenicanil (1814)

- 2.4 D (1141)

Les normes concernant le support EAU (eau filtrée à $0.45 \mu m$ pour les métaux) pour ces paramètres sont définies en concentration <u>moyenne annuelle</u> (NQE_MA) et en $\mu g/l$ à ne pas dépasser (voir tableau cidessous).

Tableau 10 : Polluants spécifiques de l'état écologique - Normes de qualité environnementale

Très bon état	Bon état	État mauvais
Pour les polluants non synthétiques Les concentrations restent dans la fourchette normalement associée à des conditions non perturbées (niveau de fond géochimique)	Concentrations ne dépassant pas les normes définies (NQE_MA) Polluants non synthétiques - As : $0.83 \mu g/l$ - Cr : $3.4 \mu g/l$ - Cu : $1 \mu g/l$ - Zn : $7.8 \mu g/l$ Polluants synthétiques - Chlorotoluron : $0.1 \mu g/l$ - Aminotriazole : $0.08 \mu g/l$ - Oxadiazon : $0.09 \mu g/l$ - AMPA : $452 \mu g/l$	État mauvais Concentrations dépassant les normes définies (NQE)
	- Glyphosate : 28 μg/l - 2.4 MCPA : 0,5 μg/l - Diflufenicanil : 0,01 μg/l - 2.4 D : 2,2 μg/l - Toluène : 74 μg/l - Boscalid : 11,6 μg/l	
	- foluene : /4 μg/l - boscand : 11,6 μg/l - Métaldéhyde : 60,6 μg/l	

1917_V2 - SM/EIE//2017

→ ETAT CHIMIQUE

Selon l'arrêté ministériel, **le bon état chimique d'un cours d'eau** dépend de la présence ou non de certaines substances dans les eaux superficielles. Leur liste a été établie à partir des substances suivies au titre de la circulaire DCE 2006/16/ du 13 juillet 2006 (substances prioritaires, substances pertinentes, pesticides). Les substances retenues (45 au total dans l'arrêté du 4 février 2015) appartiennent à 4 familles : pesticides, micro-polluants métalliques, polluants industriels, autres polluants.

Des normes de qualité environnementale sont définies pour chacun des paramètres :

- NQE_MA : norme de qualité en moyenne annuelle,
- NQE CMA: norme de qualité en concentration maximale admissible.

L'état chimique est considéré comme bon lorsque les teneurs mesurées sont inférieures aux NQE établies sur la base d'études écotoxicologiques. Le non respect de le norme (= état mauvais) est attribué au cours d'eau lorsqu'elles sont dépassées.

On notera que la plupart des substances retenues pour l'évaluation de l'état chimique d'un cours d'eau correspondent à celles citées dans l'arrêté ministériel relatif à la rubrique ICPE 2921 fixant les modalités de rejet vers le milieu naturel (voir tableau 11).

Tableau 11 : Polluants retenus pour l'état chimique et normes de qualité environnementale

		Paramètres cités dans A.M ICPE 2921	×	×	× >	<	×	×	×	×	×	×	×	×	×	× ×	< ×	: ×	: ×	×	×	×	× :	< ×	× ×	×	×	×	× ×	× ×	×	×	×	×	×	×	×	× >	× ×	×	×	×	×													
	du 22/12/2018)	Respect NQE à compter de (arrêté 28 juin 2016)																																										72/12/2027	72/12/202/	the last	man of any on	72/12/2027	22/12/2027	22/12/2027	22/12/2027	7202/21/22	22/12/2027	75/12/2027	7707 771 777	
	modifié uation à compter	Commentaire NQECMA																																												NQE sur biote	uniquement					NQE biote	NQE biote	egalement		
	Arrêté du 25 Janv 2010 modifié (REEE2018 - NQE à prendre en compte dans l'évaluation à compter du 22/12/2018)	NQE_CMA																																									-	5.0.	35	cans ohier	Sura vaja	0,12	0,02	0	0	9'0	3×10-4	034	460	
	Arrêt QE à prendre en c	Commentaire NQEMA			T	Ī									Ī										Ī																					NQE sur biote	uniquement	T				NQE biote	NQE biote	egalement	1	
(V)	(REEE2018 - N	NQE_MA																																									¢	0	0.15	cane ohiot	Sure surje.	0,12	0	0	0	0	2×10-7	200	70'0	êté).
; (unité : µg		Respect NQE à compter de (arrêté 28juin 2016)		22-déc21																22-déc21				22-déc21	*** ****	22-déc21	22-déc21				22-déc21																									xe II du présent arr
NQE prises en compte selon les régles de l'évaluation de l'état des eaux (REEE) utilisées (unité : µg/L)	Arêtê du 25 janv 2010 modiffé (REEE201 6- NQE après le 22/12/2015)	Commentaire NQECMA						Selon les dasses de dureté de l'eau Classe1 : ≤ 0,45 Classe 2 : 0,45 Classe 3 : 0,6 Classe 4 : 0,9	24.0 3000																							Nour is groupe de subsances prioritaires de lonnine « Indrocarbures aromatiques polycytiques (NAP) » (n.o.	28), la NOE pour le bace et la Mote-in Adars Feau correspondante se rapportent à la concentration de	zoja jpyvene, sur la toxici te duquel elles sont fondets. Le beszo(a)pyréne peut être considéré comme un	marqueur des autres HVP et, donc, soul le nax(a)pyrène doit faire fobjet d'une surveillance aux	is de la comparation avec la NQE pour le biote ou la NQE-MA, dans l'eau correspondante.																				. 35. 37. 43. 44 (Tableau 16 de l'anne
l'état de	êté du 25 janv. 2016 - NQE aprè	NQE_CMA	2'0	0,1	7 5	8	0,14	0,45	1	1,4	0,1	0,1	\$.0.	\$.0.	8.0.	.03	S.p.	1,8	0,01	0,12	0,05	9'0	0,04	14	0,07	130	34	2	0.0	1	0,27	0,02	0,02		8.0.	0,01	·	, 5	8.0.	0	8.0.	8.0.	\$.0.				1	1	İ							18 5, 21, 28, 30
es de l'évaluation de	Art (REEEZ	Commentaire NQEMA						Selon les classes de dureté de l'ea u Classe1 : s 0,08 Classe 2 : 0,08 Classe 3 : 0,09 Classe 4 : 0,15	, c.																							Noune groupe de substances prioritaires concurne « Nydrocarbures aromatiques polycycliques (NAP) » (n o	All, landt pour le bete et la Mithel Adais i eau correspondante se rapportent à la concentration de	benzo, a)pyrène, sur la toxicité duquel elles sont fondées. Le benzo(a)pyrène peut être considéré	comme un marqueur des autres IMP et, donc, seul la penacia jayrène doit faire fobjet d'une surveillance au	fits de la comparation avec la NQE pour le biote ou la NQE-MA, dans l'eau correspondante.																				Substances ubiquistes : substances numérotées 5, 21, 28, 30, 35, 37, 43, 44 (Tableau 16 de l'annexe II du présent arrêté)
les régl		NQE_MA	0,3	0,1	9,6	9		80'0	12	0,4	0,03	0,03	0,01	10'0	0,03	70	13	0,2	10'0	10'0			0,02	1.2 (13)		2	4(13)	0,3	1,00	0,4]	ŀ	۽ ,	97	٥	0,4	2,5	0,03	Į	I		I	I	L]	Substance
ote selon		Référence men Ubisquiste				:	×																		×						×	×	×		×	×	×			×				>	×											×
rises en comp		Code famille	Pesticides	Polluants industriels	Pesticides Dollingote industriale	Louingill's illingisties	Autres polluants	Métaux	Polluants industriels		Pesticides	Pesticides	Pesticides	Autres polluants	Autres polluants	ants indus	Pesticides	Pesticides	Pesticides	Autres polluants	Autres polluants	Autres polluants	Pesticides	Métaux	Métaux	Polluants industriels	Métaux	Polluants industriels	Polluants industries Pecticides	Autres polluants	Autres polluants	Autres polluants	Autres polluants		Autres polluants	Autres polluants	Autres polluants	Polliante industriale	Polluants industriels	Autres polluants	Autres polluants	Polluants industriels	Polluants industriels	Pesticides	Pesticides			Pesticides	Pesticides	Pesticides	Pesticides			Decticides	canonca	
Valeurs NQE p		Nom	Alachlore	Anthracène	Atrazine	2127120	Diphenylethers bromes (PBDE)	Cadmium	Tétrachlorure de carbone	Chloroalcanes C10-13	Chlorfenvinphos	Ethylchlorpyritos Pesticides cyclodiènes	(aldrine, dieldrine, endrine, is odrine)	Para-para-DDT	DDT total	L,z-dichloroetnane Dichlorométhane	Di(2-éthylhexyllohtalate (DEHP)	Diuron	Endosulfan	Fluoranthène	Hexachlorobenzène	Hexachlorobutadiène	Hexachlorocyclohexane	Plomb	Mercure	Naphtalène	Nickel	Nomylphénols	Dentachlorohenzène	Pentachlorophénol	Benzo(a)pyrène	Benzo(b)fluoranthène	Benzo(k)fluoranthène	Benzo(b+k)fluoranthène	Indeno(1,2,3-cd)pyrène	Benzo(g, h, i)pérylène	HAP Benzo + Indéno	Tétrachloroéthylène	Trichloroéthylène	Tributylétain	Trichlorobenzène	Trichlorométhane (chloroforme)	Trifluraline	Dicatol		Diovines at monosée de troe diovine	Modern of the second of the second	Acionitène	Cybutryne	Cyperméthrine	Dichlorvos	Hexabromocyclododécane (HBCDD)	Heptachlore et époxyde d'heptachlore	Torbitano	and in the same	
		Abréviation	ALACHLORE	ANTHRACENE	ATRAZINE	DENZENE	ZPHBKOME	CD	CCL4	Chloroalcanes C10-13	CHLORFENVI	ETCHLORPY	PESTCYCLO	DDT 44	DDT	2CIMETHANE	DEHP	DIURON	ENDOSULFAN	FLUORANTH	HCB	- 1	HCH	1		NAPHTALENE	Z	4-N-NONYLP	PENTACIB2	PCP	BENZO(A)PY	BE(B)FLU	BE(K)FLU		INDENOPYREN	BE(GHI)PERYL	CINAAZINE	TTCF	TCE	TRIBUTYTIN	SOMTRICLBZ	CHCL3	TRIFLURAL	DICOFOL	OHNOXVEEN	DIOXINES	200000000000000000000000000000000000000	ACLONIFEN	CYBUTRYNE	CYPERMETH	DICHLORVOS	НВСОО	HEPTACHLORE	TERBITTRVNF	ENDO IN INC	
		Code sandre	1101	1458	1107	7705 = 2920 + 2919 + 2916 + 2915	+2912 + 2911	1388	1276	1955	1464	1083	5534 = 1103 + 1173 + 1181 + 1207	1148	1146 = 1148 + 1147 + 1146 + 1144	1161	6616	1177	1743 = 1178 + 1179	1191	1199	1652	5537 = 1200 + 1201 + 1202 + 1203	1382	1387	1517	1386	1958	1888	1235	1115	1116	1117	1116+117	1204	1118	1118 + 1204	1272	1286	2879	1774 = 1630+1283+1629	1135	1289	1172	2028	7022	1011	1119	1935	1140	1170	7128	2706	1269	1503	
		uméro	L	2	, ,	+	'n	9	6bis	7	00 0		9bis 5	9ter	oter :	11	12	13	14	15	16	17	18	20	21	22	23	24	57	27	28	28	28	28	28	28	28	29 hic	29ter	30	31	32	33	34	36	2 2	'n	38	40	41	42	43	44	45	2	

CESAME

3.2.3.2. Qualité générale de la masse d'eau FRGR0167b

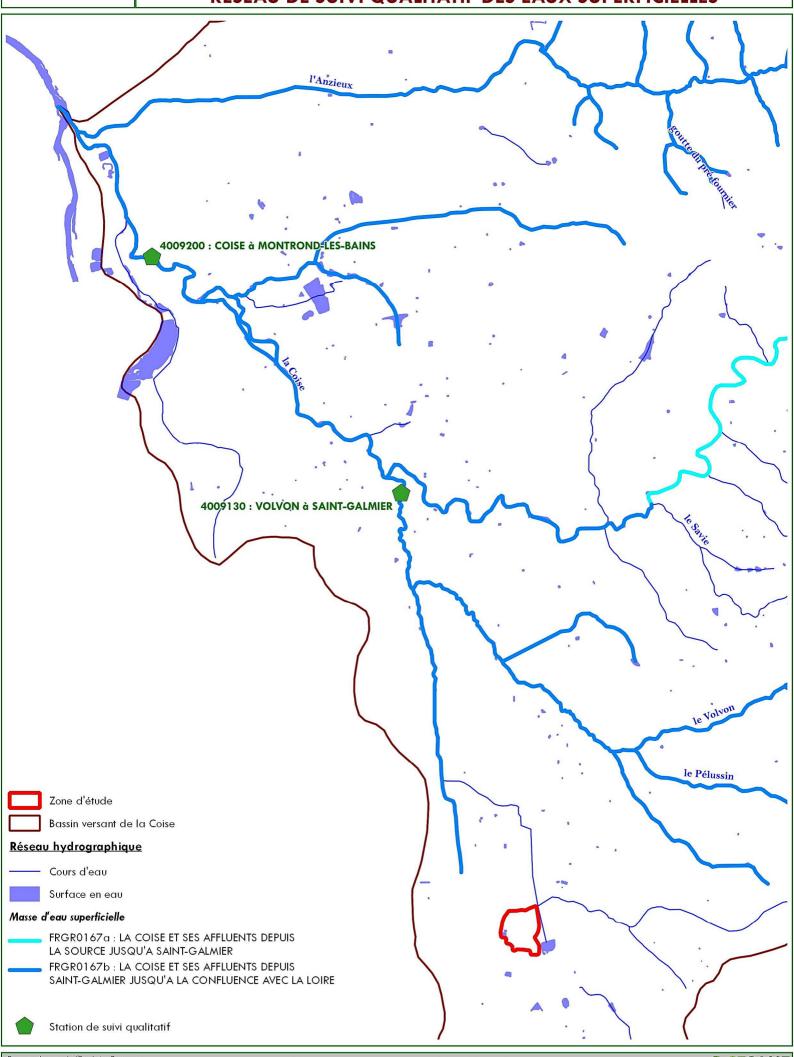
A l'aval proche de la zone d'étude, au niveau du ruisseau Sans Nom et du Petit Volvon, aucun suivi qualitatif n'est réalisé. Le caractère non pérenne des écoulements associé au contexte urbain du bassin versant (pression assainissement) limitent très certainement l'intérêt biologique du cours d'eau. Les observations de terrain réalisées dans le cadre de l'étude ont d'ailleurs mis en évidence des développements algaux et un colmatage du lit du ruisseau très importants dans le Volvon au niveau de la traversée de Veauche.

Algues dans le lit du Petit Volvon au niveau de la traversée de Veauche (secteur Les Vernes) – Avril 2017

A l'aval éloigné de la zone d'étude, il existe deux stations de suivi de la qualité des eaux superficielles appartenant au réseau de contrôle de l'Agence de l'Eau Loire Bretagne et du Conseil Départemental :

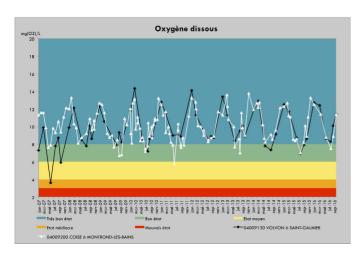
- le Volvon à Saint-Galmier (station 4009130),
- la Coise à Montrond les Bains (station 4009200).

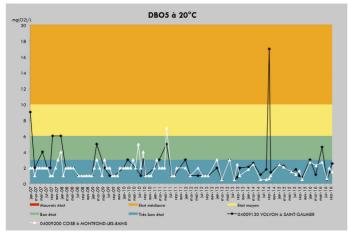
→ Etat écologique

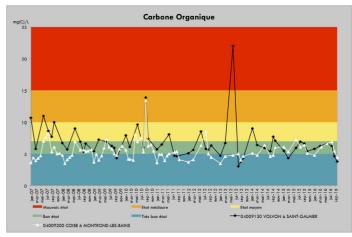

Les suivis physico-chimiques et biologiques réalisés sur le Volvon et la Coise montrent une qualité moins dégradée que ce qui est observée dans le Petit Volvon.

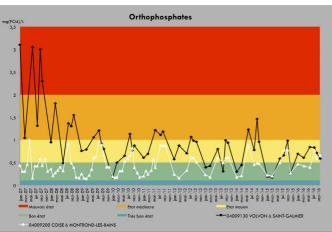
La qualité physico-chimique générale est dans son ensemble meilleure sur la Coise que sur le Volvon. Les bilans annuels indiquent un état annuel « moyen » ou « médiocre » sur les deux cours d'eau en lien avec la présence de nutriments (PO₄ notamment) en période estivale. Concernant la qualité biologique, c'est au niveau des indices IBD que la situation est la plus dégradée (qualité moyenne à médiocre). La présence de nutriments (orthophosphates et nitrates) dans l'eau permet le développement algal sur le substrat pénalisant ainsi la note IBD. Concernant la faune benthique (indice IBGN), la qualité se maintient depuis quelques années à un état bon à très bon sur les deux cours d'eau. Concernant la qualité piscicole (indice IPR), la Coise se caractérise par un état bon et le Volvon par un état moyen.

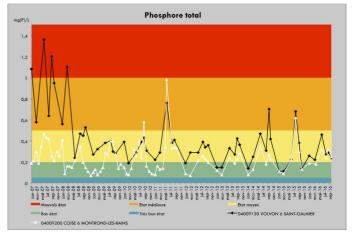
RESEAU DE SUIVI QUALITATIF DES EAUX SUPERFICIELLES

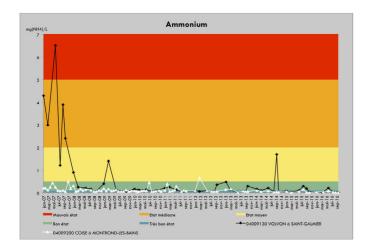


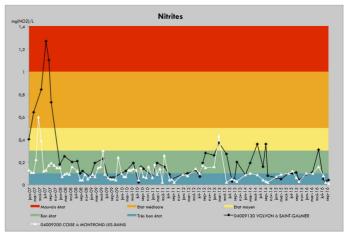


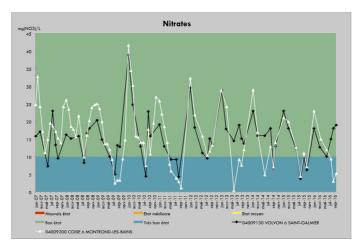

Illustration 16: Bilan qualitatif 2007-2016 – Stations 4009130 (Volvon) et 4009200 (Coise)


• Suivi physico-chimique 2007-2016









• Suivi biologique 2007-2016

Tableau 12 : Indice biologique

		IE	GN	IB	BD	11	PR
	Année	Note	Etat	Note	Etat	Note	Etat
	2009	13					
VOLVON	2011	11					
	2012			13,5		16,83	
4009130	2014			10,5			
	2015	14					
	2009	15					
COLCE	2010	12		9,4			
COISE	2011	12		12,8		14	
4009200	2012	12		11,6		11,27	
100/200	2013	16		7,6			
	2014	15		8,1			

→ Etat chimique

Aucune évaluation n'existe sur le Volvon pour l'état chimique. Sur la Coise, l'évaluation réalisée par l'Agence de l'eau Loire Bretagne est partielle¹³ et prend en compte les analyses réalisées entre 2011 et 2015.

Pour la Coise (au niveau de la station de Montrond-les-Bains), l'état chimique sur la période 2009-2015 est qualifié de « *indéterminé* » pour les paramètres non ubiquistes. Par contre, l'état est qualifié de « *mauvais* » en tenant compte des ubiquistes. Les paramètres déclassants sont les hydrocarbures aromatiques polycycliques (HAP) avec comme substances déclassantes : le benzo(a) pyrène, le benzo(b) fluoranthène, le benzo(ghi) pérylène et l'indeno(1-2-3cd) pyrène.

Le réseau hydrographique <u>en aval immédiat</u> de la zone d'étude présente un faible intérêt piscicole et hydrobiologique compte tenu de la faiblesse des écoulements.

Plus en aval au niveau du Petit Volvon, le cours d'eau présente un état dégradé par la présence probable de rejets en lien avec l'assainissement dans la traversée urbaine (agglomération de Veauche). De nombreux développements algaux dans le lit du ruisseau sont d'ailleurs visibles tout au long de l'année.

A l'aval éloigné du site (≈ 5,5 km), c'est au niveau du Volvon et de la Coise que l'intérêt patrimonial du réseau hydrographique se précise. Les suivis qualitatifs réalisés par l'Agence de l'Eau Loire Bretagne et le Conseil Départemental font état de cours d'eau présentant des bilans annuels moyens à médiocres. Ce constat est lié à des teneurs élevées en phosphore en période estivale (suite à la baisse de la capacité de dilution du milieu) qui participent à la baisse de l'indice IBD. Concernant les autres indices biologiques (IBD et IPR), les deux cours présentent une qualité meilleure avec un état moyen à très bon selon les années.

Concernant l'état chimique des cours d'eau dans ce secteur, aucun diagnostic exhaustif n'est disponible. Un état mauvais sur la Coise en lien avec le présence de polluants ubiquistes dans l'environnement (HAP) est cependant signalé.

L'ensemble des paramètres listés dans le tableau 7 n'ont pas été analysés sur la période 2009-2015 (cas par exemple des chloroalcanes, acide perfluorooctane-sulfonique, heptachlore et HBCDD)

D'un point de vue plus général, la zone d'étude appartient à la masse d'eau « FRGR0167b : La Coise et ses affluents depuis Saint-Galmier jusqu'à la confluence avec la Loire » » pour laquelle les objectifs d'atteinte du bon état chimique et écologique ont été fixés par le SDAGE Loire Bretagne 2016-2021 :

- Objectif de bon état écologique : 2021
- Objectif de bon état chimique : Non défini

Le SDAGE précise toutefois qu'il existe de nombreux risques de non atteinte du bon état pour cette masse d'eau. Ces risques sont au niveau des critères « macropolluants », « morphologie » et « hydrobiologie ». Concernant les polluants de l'état chimique aucun diagnostic répondant à l'ensemble des critères de l'arrêté ministériel n'a été réalisé sur cette masse d'eau. La présence de polluants ubiquistes (HAP notamment) est signalée sur cette masse d'eau.

La Coise constitue une masse d'eau qui ne répond pas actuellement aux critères du bon état écologique et chimique fixés par l'arrêté ministériel du 25 janvier 2010 modifié le 27 juillet 2015.

Les principales sources de dégradation de la qualité superficielles sont liées :

- à l'assainissement (présence de rejets non ou partiellement traités) pouvant entrainer des concentrations en phosphore sous forme de phosphates (PO₄) importantes,
- aux ruissellements et retombées atmosphériques issus des secteurs anthropisés (zones urbaines et industrielles, voies de communication).

3.3. CONTEXTE GÉOLOGIQUE ET HYDROGÉOLOGIQUE

3.3.1. GÉOLOGIE

D'après la carte géologique du BRGM au 1/50 000°, le substratum au niveau de la zone d'étude est constitué d'alluvions anciennes (Fx et Fw2) reposant sur une ossature datée du tertiaire (Eocène (e2)).

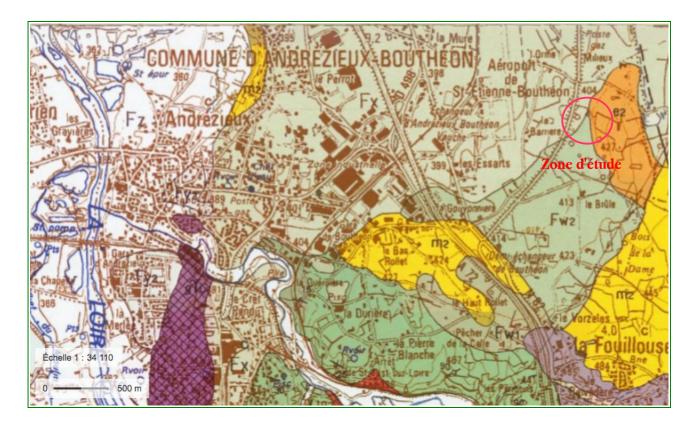


Illustration 17 : Extrait de la carte géologique du BRGM au 1/50 000e

Source : BRGM - Feuille de Firminy

• Formations Fx :

Il s'agit des alluvions des moyennes terrasses de la Loire. Elles sont composées de galets et cailloutis. Leur épaisseur est variable selon les secteurs géographiques : de l'ordre de 5 à 7 m à Saint-Just-Saint Rambert et métrique au sud de l'aéroport d'Andrezieux-Bouthéon (= zone d'étude).

• Formations Fw2:

II s'agit de dépôts fluviatiles constitués de galets quartzeux, granitiques et basaltiques liés par des sédiments gravillonaires et limono-sableux. Cette formation atteint au maximum une dizaine de mètres d'épaisseur.

Cette épaisseur maximale est observée dans la partie haute de l'ancienne terrasse de la Loire qui se situe aux alentours de 420-425 NGF.

• Formations e2:

Il s'agit du substratum tertiaire de la zone d'étude. Ces formations peuvent être rattachées à la mégaséquence inférieure de la plaine du Forez. **Il s'agit d'argiles et d'argiles sableuses rougeâtres** à kaolinite et smectite qui ont été exploitées par les potiers de Saint-Bonnet-les-Oules, au niveau d'anciennes carrières situées juste sur le flanc Est de la zone d'étude. Plus d'une trentaine de mètres d'épaisseur sont observés dans ce secteur.

Les travaux de terrassements préparatoires au projet d'extension et les reconnaissances géotechniques réalisées sur le flanc Sud du site industriel en 2016 permettent de confirmer ce contexte géologique au niveau de la zone d'étude.

En effet les forages mettent en évidence la présence du haut vers le bas (rapport SICINFRA 42/4B/2833-74-EP ERI) :

- de matériaux remaniés liés aux opérations de terrassements sur une épaisseur comprise entre 0,05 et 0,2 m,
- de l'ossature tertiaire altérée constituée de niveaux sablo-argileux grossiers gris rougeâtres sur une épaisseur comprise entre 0,2 et 2,4m selon le degré d'altération,
- de l'ossature tertiaire saine constituée de niveaux argilo-sableux à sablo-argileux marrons rougeâtres à grisâtres. Cette formation a été reconnue jusqu'à la cote +395 NGF environ dans les forages les plus profonds (hauteur forée de l'ordre de 11 m).

Matériaux rencontrés au droit du site (source : rapport SICINFRA42)

Dans ce rapport, il est évoqué que les formations alluvionnaires de recouvrement (Fx et FW2) ont été décapées par les opérations de terrassement liées à l'aménagement de la plateforme industrielle entre les cotes ± 411 et ± 407 NGF.

Au droit de la zone d'étude, les terrains sont constitués des formations argilo-sableuses datées du Tertiaire que l'on rencontre sur plusieurs mètres voire dizaines de mètres d'épaisseur. Les formations alluvionnaires de recouvrement ont été décapées lors des opérations de terrassement du tènement industriel.

3.3.2. HYDROGÉOLOGIE

3.3.2.1. Généralités

Compte tenu du caractère très argileux des formations de remplissage, la Plaine du Forez n'a jamais été référencée comme présentant un intérêt majeur vis-à-vis de la ressource en eau souterraine. Les niveaux les plus sableux sont le siège de circulations d'eau dont l'extension latérale et verticale est faible compte tenu de l'hétérogénéité des matériaux et du caractère argileux de la matrice.

Dans les formations de recouvrement (anciennes terrasses de la Loire), les matériaux sont plus favorables à la présence d'eau. Toutefois les capacités de production et d'exploitation de cette ressource apparaissent limitées dans la zone d'étude compte tenu des faibles perméabilités liées à la présence de matériaux argileux. Plus au Nord, un captage AEP a pendant de nombreuses années exploité cette ressource en eau dans les niveaux les plus sableux et graveleux. Il s'agit du puits des Brosses situé sur la commune de Saint-Bonnet-les-Oules, environ 2,7 km au Nord de la zone d'étude. Ce puits est actuellement abandonné en raison de la qualité médiocre de l'eau et de la vulnérabilité de la ressource en eau (habitats et activités agricoles en amont hydrogéologique).

Les alluvions modernes situées le long de la Loire constituent une ressource en eau potentiellement plus intéressante. A proximité de la zone d'étude, à environ 3,6 km vers le Nord-Ouest, les puits AEP de Veauche situés sur la rive droite de la Loire, ont pendant de nombreuses années exploité cette ressource en eau souterraine. Celle-ci est maintenant abandonnée suite à des problèmes quantitatif (liés à l'enfoncement du lit de la Loire) et qualitatif (mesure de protection de la ressource difficile compte tenu de l'environnement de la plaine alluviale).

3.3.2.2. Piézométrie - Direction d'écoulement

Une carte piézométrique établie dans les années 70, sur l'ensemble de la plaine du Forez, à partir d'un levé relativement exhaustif de niveau d'eau (puits, forages) met en évidence au niveau de la zone d'étude un gradient général dirigé vers le Nord-Ouest, en direction de la Loire avec des niveaux piézométriques compris entre +400 et +405 NGF.

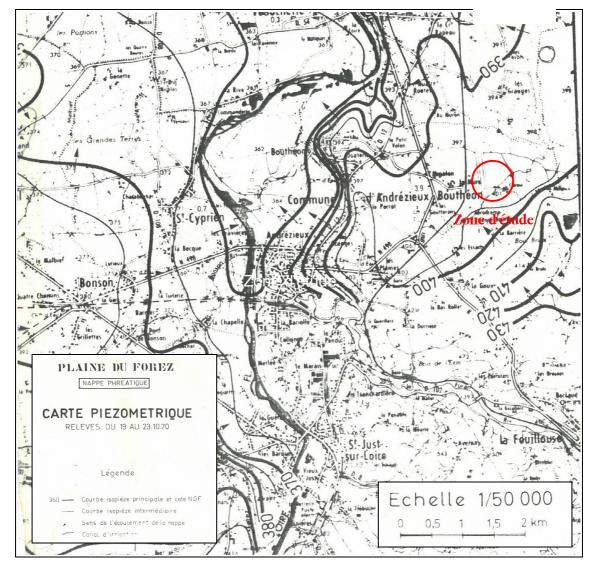


Illustration 18 : Contexte bydrogéologique

Source: BRGM DDA 42 - Rapport JAL73/27

Au droit de la zone d'étude, les écoulements souterrains se font en direction de la plaine alluviale de la Loire vers le Nord-Ouest.

3.3.2.3. Usages et qualité

On notera que la masse d'eau souterraine définie par le SDAGE Loire Bretagne au droit du site SNF correspond la masse d'eau n° FRGG091 « sables et marnes du Tertiaires de la plaine du Forez ». Cette masse d'eau est en fait constituée de multiples aquifères hétérogènes de petites tailles situés de part et d'autres de la Loire.

Dans certains secteurs, la présence dans des points de prélèvements (puits d'alimentation en eau potable par exemple) de concentration en nitrates avoisinant les 50 mg/l à conduit à placer une grande partie du territoire situé sur la rive droite de la Loire en « zone vulnérable nitrates ».

Le bassin versant de la Coise se situe à l'intérieur de cette zone qui permet réglementairement de limiter les fertilisations azotées sur les sols en vue de protéger la ressource en eau souterraine.

Au droit de la zone d'étude le caractère très argileux de l'assise tertiaire limite fortement la présence d'eau et les débits potentiellement exploitables.

La qualité générale des eaux souterraines apparaît directement liée à la qualité des eaux issues de l'infiltration des eaux météoriques (qualité influencée par le lessivage des sols potentiellement impacté par l'activité anthropique (agriculture, activités industriels, voies de communication,...).

3.4. MILIEU NATUREL

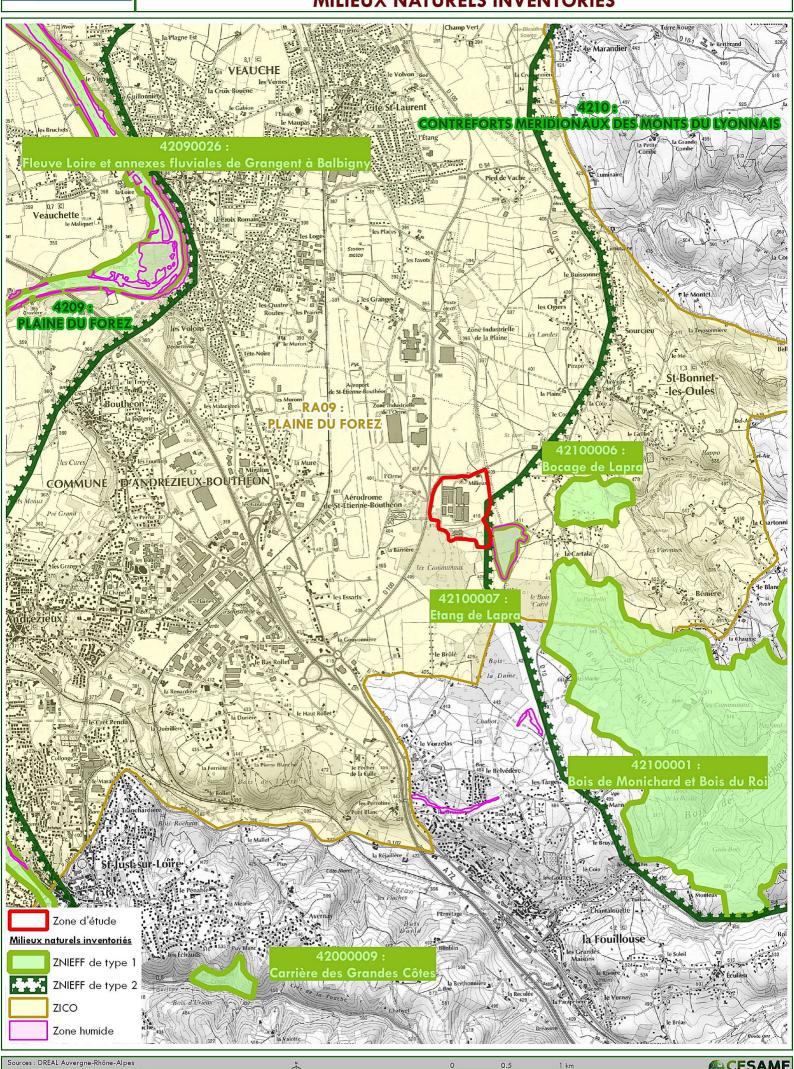
3.4.1. ESPACES NATURELS RÉPERTORIÉS

• Définitions

L'inventaire national des Zones Naturelles d'Intérêt Ecologique, Faunistique ou Floristique (ZNIEFF) recense les sites naturels importants. Cet inventaire ne représente pas une mesure de protection réglementaire mais constitue un outil de connaissance et une base de dialogue pour la prise en compte des richesses naturelles dans l'aménagement du territoire. On distingue deux types de zones :

- Le zonage ZNIEFF 2 est de façon générale peu contraignant pour les aménagements : les ZNIEFF de type 2 sont des grands ensembles naturels riches et peu modifiés, ou qui offrent des potentialités biologiques importantes. Il importe de respecter les grands équilibres écologiques, en tenant compte notamment, du domaine vital de la faune sédentaire ou migratrice. Les ZNIEFF 1 sont des secteurs d'une superficie en général faible, caractérisés par la présence d'espèces ou de milieux rares, remarquables, ou caractéristiques du patrimoine naturel régional ou national. Ces zones sont particulièrement sensibles à des transformations même limitées. Même si elles ne constituent pas à proprement parler une protection réglementaire, elles doivent être prises en compte par l'aménageur, et les administrations instruisant les dossiers sont tenues de vérifier qu'elles l'ont bien été.
- Les Zones importantes pour la conservation des oiseaux (ZICO) sont des sites identifiés comme importants pour la conservation de certaines espèces d'oiseaux (aire de reproduction, de mue, d'hivernage, de relais...). Ces zones ne confèrent pas au site de protection réglementaire mais doivent permettre de prendre en compte la conservation des oiseaux dans les projets d'aménagement.

Contexte local


La zone d'étude est incluse dans la ZICO RA09 « Plaine du Forez » qui couvre une grande partie de la plaine du Forez et du plateau de Neulise jusqu'à Villerest. Elle représente une superficie d'environ 80 850 ha et recoupe en grande partie le périmètre de la ZPS « Plaine du Forez ». Cette ZICO est notamment importante pour les oiseaux d'eau, les oiseaux des espaces agricoles et des gorges de la Loire aval.



INCIDENCE DU REJET DES TAR SUR LES EAUX SUPERFICIELLES

MILIEUX NATURELS INVENTORIES

Le site industriel s'étend en bordure de la vaste ZNIEFF de type 2 n°4210 « Contreforts méridionaux des Monts du Forez ». Cette ZNIEFF de 13 497 ha délimite la retombée Sud-Ouest des Monts du Lyonnais, au-dessus de la plaine du Forez et du bassin stéphanois. Les boisements de feuillus, bocages et secteurs de polyculture composent un ensemble diversifié de milieux et sont favorables au maintien d'une flore (Ornithogale penchée...) et surtout d'une faune digne d'intérêt : la ZNIEFF accueille des oiseaux patrimoniaux (Alouette lulu, Bruant fou, Busards, Circaète Jean-le-Blanc, Engoulevent d'Europe, Traquet motteux...), mais aussi des chauves-souris, des batraciens (Sonneur à ventre-jaune) et des Libellules. Le zonage de type 2 souligne les multiples interactions existant au sein de cet ensemble.

La zone d'étude et son aval topographique n'est également concernée par aucune ZNIEFF de type 1, toutes les ZNIEFF de type 1 intégrées à la ZNIEFF de type 2 « Contreforts méridionaux des Monts du Forez » se situent à l'amont topographique du site industriel (« 42100007-Etang de Lapra », « 42100006-Bocage de Lapra » et « 42100001-Bois de Monichard et bois du Roi »).

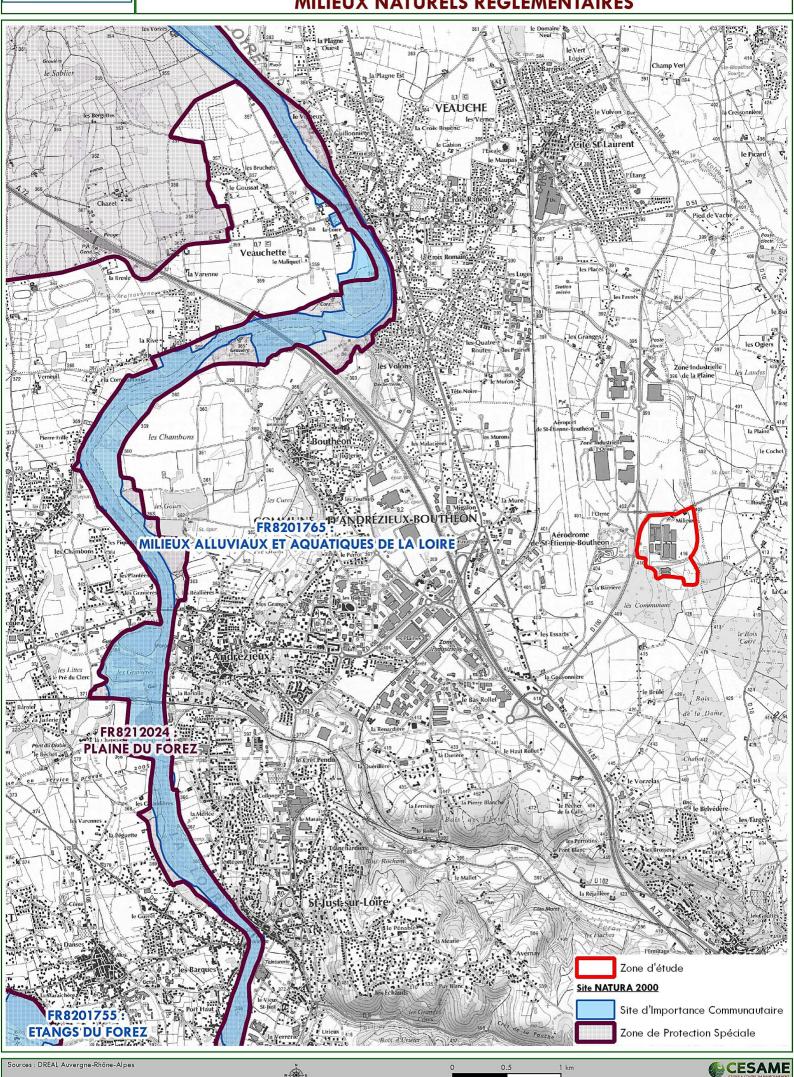
3.4.2. RÉSEAU NATURA 2000

• Définition

Les sites NATURA 2000 constituent un réseau européen de sites écologiques dont les objectifs sont doubles : préserver la diversité biologique et valoriser le patrimoine naturel des territoires européens. Ils sont désignés au titre de deux directives importantes, la directive « Oiseaux » (1979) et la directive « Habitats faune flore » (1992). Ces deux directives établissent un cadre communautaire respectivement pour la conservation des espèces d'oiseaux sauvages de l'Union Européenne via la création de Zones de Protection Spéciale (ZPS), et pour la conservation d'espèces animales et végétales sauvages ainsi que de leurs habitats, via la création de Zones Spéciales de Conservation (ZSC).

La zone d'étude n'est concernée par aucun zonage Natura 2000 (site SNF FLOERGER et point de rejet des eaux pluviales de la zone industrielle).

• Sites Natura 2000 proches


- SITE NATURA 2000 FR8212024 « PLAINE DU FOREZ »

La zone d'étude se situe en périphérie de la **Zone de Protection Spéciale** FR8212024 « **Plaine du Forez** ». Elle occupe environ 32 800 hectares et concerne 54 communes. Ce site a été désigné comme ZPS en avril 2006, au titre de la directive « oiseaux », il est porté par le Conseil Départemental de la Loire. Le Document d'Objectifs a été validé en juillet 2009.

INCIDENCE DU REJET DES TAR SUR LES EAUX SUPERFICIELLES

MILIEUX NATURELS REGLEMENTAIRES

Oiseaux remarquables

Dryocopus martius

Lullula arborea

38 espèces d'oiseaux inscrites à l'annexe I de la Directive Oiseaux sont mentionnées dans le Formulaire Standard de Données de la ZPS. Parmi celles-ci 30 sont reproductrices, résidentes ou hivernantes et 8 sont présentes en concentration uniquement.

NOM VERNACULAIRE TAILLE MIN. TAILLE MAX. CONSERVATION EVALUATION GLOBALE NOM SCIENTIFIQUE Hivernage/Reproduction Botaurus stellaris Butor étoilé Couples Bonne Moyenne Ixobrychus minutus Reproduction 5 Couples Moyenne Blongios nain Bonne Nycticorax nycticorax Bihoreau gris Reproduction 100 Couples Bonne Bonne Ardeola ralloides Crabier chevelu Reproduction 5 Couples Bonne Moyenne Hivernage/Reproduction 11 50 Egretta garzetta Aigrette garzette Couples Bonne Bonne Egretta alba Hivernage 100 Grande Aigrette 51 Individus Bonne Bonne 140 Ardea purpurea Héron pourpré Reproduction 140 Couples Bonne Bonne Ciconia ciconia Cicogne blanche Reproduction 1 Couples Falco columbarius Faucon émerillon Hivernage Individus Pernis apivorus Bondrée apivore Reproduction 30 Couples Excellente Bonne 100 Excellente Milvus migrans Milan noir Reproduction 51 Couples Bonne Milvus milvus Milan royal Hivernage/Reproduction Couples Moyenne Moyenne Circaetus gallicus Circaête Jean-Le-Blanc Reproduction Individus Circus aeruginosus Hivernage/Reproduction 12 20 Excellente Busard des roseaux Couples Bonne Circus cvaneus **Busard Saint-Martin** Résidence Individus Circus pygargus Reproduction Individus Busard cendré Falco peregrinus Faucon pèlerin Hivernage Individus Porzana porzana Marouette ponctuée Reproduction 5 Couples Moyenne Moyenne Himantopus himantopus Echasse blanche Reproduction 10 Couples Moyenne Moyenne Burhinus oedicnemus Oedicnème criard Reproduction 100 Couples 51 Bonne Bonne Pluvialis apricaria Pluvier doré Hivernage 50 ndividus Movenne Sterna hirundo Sterne pierregarin Reproduction Individus Chlidonias hybridus Guifette moustac Reproduction 50 150 Couples Moyenne Bonne Chlidonias niger Guifette noire Reproduction 10 Couples Movenne Bonne Excellente Grand Duc d'Europe 6 10 Couples Excellente Bubo bubo Résidence Caprimulgus europaeus Engoulevent d'Europe Reproduction Individus Alcedo atthis Martin-pêcheur d'Europe Résidence 10 100 Couples Bonne Bonne

Tableau 13: Oiseaux remarquables - FR8212024

11 espèces inscrites en annexe 1 de la Directive Oiseaux présentent un enjeu majeur. La majorité est inféodée aux étangs et aux cours d'eau : Aigrette garzette, Blongios nain, Bihoreau gris, Busard des roseaux, Echasse blanche, Guifette moustac, Héron pourpré, et Sterne pierregarin. Quelques espèces sont liées aux espaces agricoles : Milan noir, Œdicnème criard, Pluvier guignard, Pluvier doré, Busard cendré et Pie-grièche écorcheur.

100

Couples

Individus

Excellente

Bonne

Vulnérabilité et objectifs de conservation

Pic noir

Alouette lulu

D'après le document d'objectifs, la vulnérabilité des espèces d'intérêt communautaire de la ZPS « Plaine du Forez » réside principalement dans une perte de leur habitat, causée par :

- le développement de zones urbanisées sur des zones agricoles
- la réduction des espaces de zones humides, par drainage

Résidence

Résidence

- la réduction des zones boisées et des haies, au profit de grandes cultures...

Le document d'objectifs du site a également identifié les objectifs de conservation suivants :

- le maintien d'un équilibre visant à concilier développement urbain et agricole, préservant des espaces de pâturage extensif ;
- la préservation de l'écosystème « Etang » et des différents types d'habitats qu'il abrite.

- <u>SITE NATURA 2000 FR8201765 « MILIEUX ALLUVIAUX ET AQUATIQUES DE LA LOIRE»</u>

La zone d'étude se situe en périphérie du **Site d'Intérêt Communautair**e FR8201765 « Milieux alluviaux et aquatiques de la Loire » qui a été agréé par la Commission Européenne comme site Natura 2000 le 7 décembre 2004, au titre de la Directive Habitats. Son Document d'Objectifs a été validé en juillet 2010. Ce site s'étend sur 44 communes, et forme un linéaire d'environ 110 km qui traverse le département de la Loire du sud au nord, depuis le barrage de Grangent en amont, jusqu'à la limite avec le département de Saône-et-Loire à l'aval. **Sa surface totale est de 3 284 ha** en tenant compte de la révision du périmètre validée par le comité de pilotage et en cours d'instruction par les services de l'État.

Espèces d'intérêt communautaire

Treize espèces d'intérêt communautaire présentes ou potentielles, inscrites à l'annexe II de la directive Habitats, ont justifié la désignation du SIC :

Tableau 14 : Espèces communautaires - FR82017656

Nom commun	Nom latin	Etat de conservation	Enjeux de conservation					
Plantes								
1428 - Marsilée à 4 feuilles	Marsilea quadrifolia	Mauvais	Fort					
Mammifères								
1337 - Castor d'Europe	Castor fiber	Bon	Modéré					
	Amphibiens							
1193 - Sonneur à ventre jaune	Bombina variegata	Mauvais	Faible					
	Poissons							
1095 - Lamproie marine	Petromyzon marinus	Mauvais	Fort					
1096* - Lamproie de Planer	Lampetra planeri	Mauvais	Faible					
1102 - Grande Alose	Alosa alosa	Mauvais	Fort					
1134 - Bouvière	Rhodeus sericeus	Bon	Modéré					
	Insectes							
1083 - Lucane Cerf-volant	Lucanus cervus	Moyen	Faible					
1088 - Grand Capricorne	Cerambyx cerdo	Mauvais	Modéré					
1060 - Cuivré des marais	Thersamolycaena dispar	Mauvais	Faible					
1074 - Laineuse du Prunellier	Eriogaster catax	Mauvais	Modéré					
1078* - Ecaille chinée	Euplagia quadripunctaria	Bon	Faible					
1044 - Agrion de Mercure	Coenagrion mercuriale	Mauvais	Faible					

^{* :} Espèces prioritaires d'après la Directive Habitats - Source : Docob « Milieux alluviaux et aquatiques de la Loire »

Habitats d'intérêt communautaire

Dix habitats d'intérêt communautaire, dont 2 prioritaires ont justifié la désignation du site. On compte 4 habitats humides, 4 habitats agro-pastoraux et 2 habitats forestiers.

Tableau 15: Habitats communautaires - FR82017656

Code	Habitats d'intérêt communautaire	Etat de conservation	Enjeu de conservation	
	Habitats humic	les		
3130	Eaux stagnantes, oligotrophes à mésotrophes avec végétation des Littorelletea uniflorae et/ou des Isoeto-Nanojuncetea	Mauvais	Modéré	
3150	Lacs eutrophes naturels avec végétation du Magnopotamion ou de l'Hydrocharition	Moyen à mauvais	Fort	
3270	Rivières avec berges vaseuses avec végétation du Chenopodion rubri p.p. et du Bidention p.p.	Mauvais	Fort	
6430	Mégaphorbiaies hydrophiles d'ourlets planitiaires et des étages montagnard à alpin	Assez bon Faible		
	Habitats agro-past	oraux		
8230	Roches siliceuses avec végétation pionnière du Sedo- scleranthion ou du Sedo albi-Veronicion dillenii	Moyen à mauvais	Fort	
6120*	Pelouses calcaires des sables xériques	Très mauvais	Fort	
6210	Pelouses sèches semi-naturelles et faciès d'embuissonnement sur calcaires (Festuco-Brometalia)	Mauvais	Fort	
6510	Pelouses maigres de fauche de basse altitude (Alopecurus pratensis, Sanguisorba officinalis)	Assez bon	Faible	
	Habitats foresti	ers		
91E0*	Forêts alluviales à Alnus glutinosa et Fraxinus excelsior (Alno- Padion, Alnion incanae, Salicion albae)	Moyen	Modéré	
91F0	Forêts mixtes de Quercus robur, Ulmus laevis, Ulmus minor, Fraxinus excelsior ou Fraxinus angustifolia riveraines de grands fleuves (Ulmenion minoris).	Mauvais	Modéré	

 $^{*:} Habitats\ prioritaires\ d'après\ la\ Directive\ Habitats\ -\ Source: Docob\ «\ Milieux\ alluviaux\ et\ aquatiques\ de\ la\ Loire\ »$

<u>Vulnérabilité et objectifs de conservation</u>

L'amélioration de la dynamique fluviale est le principal objectif de conservation défini par le Document d'Objectifs. On trouve ensuite d'autres objectifs, dont les plus importants sont :

- Limiter l'incision du lit mineur de la Loire,
- Améliorer la gestion du débit du fleuve et la qualité des eaux,
- Préserver les stations remarquables des habitats et des espèces d'intérêt communautaire,
- Lutter contre les espèces invasives.

La sensibilité « milieu naturel » dans l'environnement de la zone d'étude est principalement liée à l'ornithologie et aux milieux alluviaux présents en bord de Loire. A l'aval proche de la zone d'étude, cette sensibilité est moindre compte tenu de la forte anthropisation du milieu notamment le long du réseau hydrographique (aéroport Andrézieux-Boutheon, zones d'activités, agglomération de Veauche, ...).

4. IMPACT DU REJET SUR LES EAUX SUPERFICIELLES

4.1. <u>IMPACT QUANTITATIF</u>

Cet impact est estimé sur la base des débits maximaux potentiellement générés par les purges de déconcentration, soit un débit journalier pendant le fonctionnement des installations de l'ordre 180 m³/j en moyenne annuelle et 320 m³/j en pointe (pointe correspondant à un débit instantané sur 24 heures de 3,7 l/s, 18 l/s sur 5 heures et 88 l/s sur 1 heure).

• Sur le réseau « eaux pluviales » interne au site SNF

Il existe au niveau de chaque TAR, un point de raccordement au réseau eaux pluviales du site. Selon la situation géographique, le raccordement se fait sur des réseaux de diamètres ø300 mm à ø1000 mm.

L'évacuation des débits pour chaque TAR se fait de manière non simultanée et est directement liée aux opérations automatisées d'appoints. Les débits évacués restent limités à quelques litres par secondes en sortie de chaque installation sur des durées relativement courtes.

Ces débits de quelques litres par seconde peuvent potentiellement atteindre une dizaine voire quinzaine de litres par seconde à l'entrée du bassin en cas de purges simultanées de plusieurs installations

Remarque : Si les purges journalières des 33 TAR se faisait simultanément sur une durée d'une beure seulement, le volume en pointe journalière associé à ces purges correspondrait à un débit de 88 l/s $(=320\ 000\ l/(24\ x\ 3600))$ et à un débit de 50 l/s sur la base du débit journalier moyen.

Ces ordres de grandeur confirment que les rejets se faisant de toute façon de manière aléatoire et non simultanée ne sont pas de nature à remettre en cause le bon fonctionnement du réseau « eaux pluviales » compte tenu de sa capacité d'écoulement qui atteint plusieurs centaines de litres par seconde (d'après la formule de Manning Strikler¹⁴).

Avec une capacité d'écoulement du réseau eaux pluviales supérieure à 1000 l/s à l'entrée du bassin, on constate que les rejets des TAR ne sont pas de nature à remettre en cause son bon fonctionnement ou d'accentuer de manière significative sa fréquence de débordement en période pluvieuse (périodes durant lesquelles le rejet industriel reste stable alors que les écoulements pluviaux peuvent centupler).

Il en est de même au niveau du bassin « eaux pluviales » et de son système de pompage. En effet le volume journalier en pointe maximale provenant des TAR correspond à une lame d'eau stockée de seulement 12 cm sur les 2600 m² du bassin et de 7 cm sur la base de la moyenne journalière.

Capacité des ouvrages hydrauliques (buses, fossés) - section d'écoulement pleine sans mise en charge : Formule empirique de Manning Strickler.

$$Q = K \times S \times R^{2/3} \times I^{1/2}$$

avec

Q : capacité de l'ouvrage en m³/s.

K : coefficient de rugosité (coefficient allant de 0 à 110, par exemple K = 80 pour des buses bétons).

S: Section de l'ouvrage (m²).

R : Rayon hydraulique (= rapport entre la section mouillée de l'ouvrage et de son périmètre mouillé).

I : pente de l'ouvrage en m/m.

Résultats:

- buse béton ø300 mm : 70 l/s (pente très faible 0,5%) - 101 l/s (pente faible 1%)

- buse béton ø400 mm: 150 l/s (pente très faible 0,5%) - 217 l/s (pente faible 1%)

- buse béton ø500 mm : 970 l/s (pente très faible 0,5%) - 1375 l/s (pente faible 1%)

- buse béton Ø800 mm : 970 l/s (pente très faible 0,5%) - 1375 l/s (pente faible 1%)

- buse béton ø900 mm : 1330 l/s (pente très faible 0,5%) - 1880 l/s (pente faible 1%)

- buse béton ø1000 mm : 1763 l/s (pente très faible 0,5%) - 2493 l/s (pente faible 1%)

Cette faible lame d'eau ne remet donc pas en cause significativement, en cas d'épisode pluvieux, la capacité de stockage dans le bassin qui atteint 4,35 m de profondeur à son maximum (stockage possible entre 401,15 et 405,5 NGF).

On peut également préciser que le volume journalier maximal provenant des TAR correspond à <u>une pluie</u> <u>journalière ruisselée</u> sur le site (23 ha gérés par le bassin EP) de <u>seulement 1,4 mm</u> ce qui est très faible au regard des pluies journalières¹⁵ d'occurrence rare pour lesquelles le bassin est dimensionné.

Le rejet issu des purges de déconcentration des TAR dans le réseau eaux pluviales ne remet pas en cause son bon fonctionnement en période pluvieuse et n'a pas d'incidence quantitative significative compte tenu :

- de son faible débit par rapport à celui susceptible de s'écouler en période pluvieuse,
- des volumes ruisselés sur le site à l'échelle jounalière en période pluvieuse.

• <u>Sur le réseau « eaux pluviales » externe au site SNF (traversée RD100 et ZA de l'Orme) et « eaux</u> usées »

L'impact sur le réseau « eaux pluviales » à l'aval du site sera nul dans la mesure où l'évacuation des purges des TAR est régulé par un pompage déjà existant. C'est uniquement la fréquence de déclenchement de ce pompage qui sera modifiée avec des déclenchements pouvant se faire hors période pluvieuse, c'est à dire à des périodes où aucun écoulement ne se fait dans le réseau « eaux pluviales » (buses, fossés) en aval des installations SNF.

En période pluvieuse, le rejet issu des purges de déconcentration des TAR s'intègre avec le rejet des eaux pluviales du site qui techniquement est limité 125 l/s ou 250 l/s quel que soit le contexte climatique. On notera qu'aucun désordre sur le réseau de buses et de fossés en aval du site, au niveau de la traversée de la RD100 et de la ZA de l'Orme, associé à l'évacuation des eaux pluviales de SNF ne nous a été signalé ou à été constaté lors des prospections de terrains. Les deux configurations de pompage sont régulièrement mises en œuvre sans nuisance particulière.

5 ans: 58 mm (intervalle confiance 70%: 51-65)

10 ans: 66 mm (intervalle confiance 70%: 57-76)

20 ans : 75 m (intervalle confiance 70% : 63-86)

50 ans ;: 85 mm (intervalle confiance 70% : 71-99)

100 ans : 93 mm (intervalle confiance 70% : 77-109)

¹⁵ Pluie journalière d'occurrence rare – Station Météofrance d'Andrezieux Bouthéon

L'impact sur le réseau « eaux usées » de la zone d'activités et sur la station d'épuration intercommunale apparaît comme bénéfique puisque la modification des modalités de rejet permet de «libérer » un flux hydraulique associé à une charge polluante de près de 2000 Equivalents-habitants¹⁶.

Les analyses réalisés dans le cadre de l'étude montrent que le rejet issus des TAR ne nécessite pas de traitement particulier et ne présente pas d'incompatibilité pour un rejet direct vers le milieu naturel (voir § ci-après).

• Sur le réseau hydrographique

Hors période pluvieuse, le déclenchement des pompes pour l'évacuation des écoulements issus des TAR apportera un volume d'eau supplémentaire au réseau hydrographique. Selon le cycle hydroclimatique, cet apport d'eau peut être significatif et permettre le maintien de conditions « humides » dans ces secteurs « séchants » (ruisseau Sans Nom notamment).

Le tableau ci-après précise les impacts à l'échelle journalière liés à l'évacuation des effluents des TAR.

Débits caractéristiques - Réseau hydrographique Impact du rejet (augmentation %) 180 m3/j 320 m3/j Régime moyen Etiage (moyenne journalière) (pointe journalière) Régime Régime 1/s 1/s m3/im3/jEtiage Etiage moyen moyen R. Sans Nom 24 2 074 346 8,7% 52,1% 15,4% 92,59% (aval rejet SNF) R. Sans Nom 3 456 8 26,0% 9,3% 46,30% (aval ZA l'orme) 6 048 Petit Volvon 17 280 70 1.0% 3.0% 1.9% 5,29% 31 968 11 232 0,6% 1,6% 1,0% 2,85% Volvon 130

Tableau 16 : Impact quantitatif sur le réseau hydrographique

A l'aval immédiat du site l'impact sur le régime hydrologique du ruisseau Sans Nom est fort notamment en conditions d'étiage. A l'échelle annuelle, l'impact est moins significatif puisqu'il reste inférieur à 10% du module.

31 104

0.1%

0,6%

0,2%

2 400

207 360

360

1,03%

Coise

 $^{^{16}}$ Règle usuelle : 1 Equivalent-habitants = $150 \, \mathrm{l/j}$

Plus en aval au niveau du Petit Volvon, l'impact est faible (augmentation de 1% à 2% du module et 3 à 5 % du Qmna5). A l'aval éloigné (Volvon et Coise), le rejet modifie le régime hydrologique des cours d'eau de façon insignifiante.

D'un point de vue quantitatif, le rejet issu des purges de déconcentration des TAR ne remet pas en cause le régime hydrologique des cours d'eau du Petit Volvon, du Volvon et de la Coise.

A l'échelle annuelle, le débit moyen des purges reste inférieur au 1/10 du débit moyen interannuel (= module) des cours d'eau situés en aval (ruisseau Sans Nom, Petit Volvon, Volvon et Coise) et respecte donc les prescriptions de l'article 37 de l'arrêté ministériel du 14 décembre 2013 concernant les critères de rejet au milieu naturel.

4.2. <u>IMPACT QUALITATIF</u>

Les effluents issus des purges de déconcentration des TAR respectent les critères qualitatifs concernant la qualité minimale requise pour un rejet vers le milieu naturel.

De nombreux paramètres physico-chimiques respectent notamment les critères du « bon état » des cours d'eau. C'est notamment le cas :

- du pH (< 9),
- de l'oxygène dissous (> 6 mg/l),
- des paramètres azotées ($NO_3 < 50 \text{ mg/l}$), $NO_2 < 0.3 \text{ mg/l}$) et phosphorés ($P_t < 0.2 \text{ mg/l}$).

Pour les paramètres quantifiés intervenant dans l'état écologique et chimique des cours d'eau, il est possible à partir de lois de dilution d'évaluer l'augmentation de concentration sur le réseau hydrographique (Petit Volvon, Volvon et Coise) pour différents situations hydrologiques. Cette évaluation peut également être faite pour les résidus de traitement liés à l'usage de péroxyde d'hydrogène.

Les calculs ci-après ont pour objectif de préciser l'impact des paramètres détectés en sortie de TAR en terme d'augmentation de concentration en plusieurs points du réseau hydrographique notamment si ceux-ci étaient absents des cours d'eau. Ils s'appuient sur la relation suivante (= loi de dilution) en considérant l'hypothèse la plus pessimiste pour le milieu (débit maximal de rejet journalier fixé à 320 m³/j) :

Augmentation potentielle de concentration = Flux du rejet / (débit cours d'eau + débit rejet)

L'incidence du rejet sur le réseau hydrographique apparaît très limitée <u>compte tenu des faibles</u> <u>flux associés</u> et des possibilité de dilution tout au long de l'année.

Le rejet n'est pas de nature à entrainer des augmentations significatives de concentrations provoquant un dépassement des critères de protection des milieux aquatiques.

Tableau 17 : Incidence du rejet sur la qualité des eaux superficielles

			Concentration effluents TAR													Au	gmentation conditions h	de la conc ydrologique	entration p	our différer cours d'ea	ntes			
					Concentration effluents TAR		Concentration effluents TAR		Concentration effluents TAR				s Nom (l'Orme)	Petit \	/olvon	Vol	von	Со	ise	Protect	tion des milieux			
						Débit moyen (l/s)	Qmna5 (l/s)	Débit moyen (l/s)	Qmna5 (l/s)	Débit moyen (l/s)	Qmna5 (l/s)	Débit moyen (l/s)	Qmna5 (l/s)		quatiques									
			TAR 1	TAR 2	Valeur moyenne retenue	Maximum autorisé VLE (AM 14/12/13)	Flux (kg/jour)	40	8	200	70	370	130	2400	360									
Charge organique	DBO (analyses complémentaires mai 2017)	mg/l	1,8	0,6	1,5	1	0,5	0,13	0,47	0,03	0,08	0,01	0,04	0,002	0,02	6	Limite « Bon état » écologique							
	Azote global (N)	mg/l	5,9	4,1	5	30	1,6	0,42	1,58	0,09	0,25	0,05	0,14	0,01	0,05	-								
Azote	Nitrates (NO3)	mg/l	26	18	25	1	8,0	2,12	7,91	0,45	1,26	0,25	0,69	0,04	0,25	50	Limite « Bon état » écologique							
	Nitrites (NO2)	mg/l	0,14	0,27	0,2		0,1	0,017	0,063	0,004	0,010	0,002	0,006	0,0003	0,002	0,3	Limite « Bon état » écologique							
Métaux	Cuivre (Cu)	μg/I	8	<5	8	500	0,0026	0,68	2,53	0,15	0,4	0,08	0,22	0,01	0,08	1,6	NQE-MA état écologique							
Métaux	Zinc (Zn) (analyses complémentaires mai 2017)	μg/l	15,8	2,69	10	2000	0,0032	0,85	3,16	0,18	0,5	0,1	0,28	0,02	0,1	7,8	NQE-MA état écologique							
Résidu traitement	Péroxyde d'hydrogène (H ₂ O ₂)	mg/l	1	1	1	•	0,3	0,085	0,316	0,018	0,050	0,010	0,028	0,002	0,010	1	NOEC : 0,1 PNEC : 0,01							

• Commentaires

→ Charge organique

La concentration en DBO, très faible en sortie d'installation, n'est pas de nature à entrainer une dégradation de la qualité des eaux superficielles.

→ Charge azotée

Le flux d'azote associé au rejet reste faible avec un flux journalier inférieur à 5 kg.

Concernant les nitrates, le rejet n'entraine pas de modification significative des concentrations sur le Petit

69

Volvon, le Volvon et la Coise quelles que soient les conditions d'écoulement. La concentration du rejet (≈ 25 mg/l) correspond à des concentrations parfois déjà mesurées dans les cours d'eau (voir illustration 16).

Concernant les nitrites, l'impact est également faible. L'augmentation de concentration entre l'amont et l'aval reste faible et n'est pas de nature à déclasser de façon marquée l'état des cours d'eau vis-à-vis de ce paramètre.

→ Micropolluants métalliques

Concernant **le cuivre**, dont des traces ont été détectées dans le rejet d'une des TAR, l'impact est peu marqué, avec une augmentation des concentrations qui n'est pas de nature à entrainer un dépassement de la NQE exprimée en moyenne annuelle sur les cours d'eau en aval du site.

Concernant **le zinc**, l'impact sur le réseau hydrographique reste faible sur la base des résultats des analyses complémentaires du mois de mai. A l'échelle annuelle, sous réserve d'absence de zinc dans les cours d'eau¹⁷, le risque de dépassement de la NQE exprimé en moyenne annuelle apparaît cependant peu probable au regard des résultats de ces calculs.

→ Résidus de traitement – Péroxyde d'hydrogène

Concernant le péroxyde d'hydrogène, les calculs de dilution mettent en évidence un respect de la PNEC sur les trois plus gros cours d'eau (Petit Volvon, Volvon et Coise) et un dépassements de la NOEC sur le Petit Volvon. Sur le ruisseau Sans Nom, un dépassement de la PNEC et de NOEC est possible.

Dans la réalité, l'impact sur le cours d'eau est très certainement surévalué. En effet la concentration mesurée au niveau du point de rejet vers le réseau hydrographique sera beaucoup plus faible que celle mesurée en sortie d'installation compte tenu du caractère instable du péroxyde d'hydrogène et de son élimination possible avant d'atteindre le Petit Volvon (élimination dans le réseau eaux pluviales interne, le bassin eaux pluviales interne et le réseaux eaux pluviales externe du site (réaction notamment avec les matières organiques déposées dans les réseaux).

→ Autres paramètres (Pesticides – Solvants – Polluants industriels)

Les analyses réalisées montrent que le rejet issu des purges de déconcentration des TAR ne contient pas de polluants de type pesticides, solvants ou polluants industriels. Dans ces conditions, le rejet n'est pas de nature à remettre en cause la qualité générale des cours d'eau notamment vis-à-vis de leur état chimique.

CESAME ÉTUDES & CONSEIL EN ENVIRONNEMENT

On notera que les suivis réalisés sur la Coise indiquent que le non respect de la NQE en moyenne annuelle pour ce paramètre compte tenu du caractère ubiquiste de cet élément lié à la fois au fond géochimique ainsi qu'à son l'utilisation courante en zone urbaine (éléments de toitures et de voie de communication (glissières de sécurité),...). Les données disponibles sur le site internet de l'Agence de l'eau (station 0409200 – suivi 2008, 2010, 2011 – base de données OSUWEB) indiquent une moyenne annuelle comprise entre 15 et 25 µg/l soit des valeurs déjà bien supérieures à la NQE réglementaire.

→ Température

D'un point du vue réglementaire, la température en sortie d'installation doit être inférieure à 30°C. Les mesures faites par SNF FLOERGER montre que cette valeur n'est jamais atteinte. En effet, les mesures ponctuelles réalisées en différentes saisons, notamment lors des prélèvements liés au suivi « légionelles » indiquent des températures généralement comprise entre 10 et 25° selon la saison. Les deux mesures réalisées dans le cadre de cette étude sont dans cette gamme de valeur avec une mesure à 21,3° pour TAR1 et 13,2° pour GF3.

Concernant les cours d'eau concernés par le rejet, le Petit Volvon ne fait l'objet d'aucun classement piscicole. Le Volvon est quand à classé lui « salmonicole » (catégorie 2) alors que la Coise aval est classé « cyprinicole » (catégorie 2).

Le rejet n'est pas de nature à entrainer des températures supérieures à 28°C sur ces cours d'eau compte tenu des capacité de dilution et de mélange. De plus l'augmentation de température des eaux superficielles notamment lorsque celles-ci présentent ses plus faibles températures devrait être également limitée compte tenu :

- du faible débit du rejet,
- du refroidissement potentiel du rejet dans le bassin eaux pluviales puis dans la traversée de la ZA de l'Orme et enfin le long du ruisseau Sans Nom.

→ Ecotoxicité

Le test « daphnies » réalisé lors des analyses complémentaires de mai 2017 montre une concentration inférieure au minimum quantifiable de 1 équitox/m³. Ainsi malgré la présence de certains composés sous forme de traces (péroxyde d'hydrogène par exemple), les eaux issues des purges de déconcentration ne présentent pas de caractère toxique susceptible d'altérer le développement et/ou l'activité aquatique.

La qualité générale du rejet issu des purges de déconcentration des tours aéroréfrigérantes ainsi que les phénomènes de dilution dans le réseau hydrographique montrent que les enjeux en terme d'impact du rejet industriel sur la qualité des eaux sont très faibles.

Le mode d'évacuation vers le réseau hydrographique (passant par un stockage temporaire dans un bassin puis un écoulement dans des fossés) devrait permettre d'éliminer les résidus de traitement liés à l'utilisation du péroxyde d'hydrogène compte tenu du caractère instable de ce composé chimique (dégradation entrainant le formation d'eau et un dégagement d'oxygène). Des analyses de contrôle en sortie de site et/ou au niveau du ruisseau Sans Nom pourront être réalisées afin de lever le doute sur les concentrations avant rejet au milieu naturel et leur compatibilité avec les valeurs toxicologiques de référence pour les eaux superficielles.

5. IMPACT DU REJET SUR LES EAUX SOUTERRAINES

Compte tenu du caractère argileux des formations superficielles à l'aval du site SNF, il est peu probable que des effluents issus des purges des TAR parviennent à s'infiltrer vers la ressource en eau souterraine.

Si c'est le cas, les débits en jeu ne sont de toute façon pas de nature a avoir une incidence sur la piézométrie locale de la nappe des sables du Tertiaire de la plaine du Forez. De plus d'un point de vue qualitatif, le rejet présente une bonne qualité générale liée à l'absence de traces de solvant, pesticide ou polluants industriels. Au regard de l'arrêté du 17 décembre 2008 modifié le 23 juin 2016 établissant les critères d'évaluation et les modalités de dégradation de l'état des eaux souterraines, aucun paramètre la dépasse les seuils fixés pour les eaux souterraines.

On notera également que la zone d'infiltration potentielle (réseau hydrographique jusqu'à la Loire) ne concerne aucun périmètre de protection de captage AEP.

Le rejet issu des purges de déconcentration des TAR sur le site SNF FLOERGER n'aura aucune incidence quantitative et qualitative sur la ressource en eau souterraine locale.

1917_V2 - SM/EIE//2017

les paramètres retenus pour les eaux souterraines sont : nitrates, ammonium, nitrites, orthophosphates, arsenic, cadmium, plomb, mercure, Trichloréthylène, Tetrachloréthylène.

6. IMPACT DU REJET SUR LE MILIEU NATUREL

Le rejet vers le milieu naturel des purges de déconcentration des TAR sur le site SNF FLOERGER peut se faire en utilisant des équipements existants. Cette évacuation peut donc se faire sans incidence sur les habitats et milieux référencés comme présentant un intérêt écologique ZNIEFF (absence de travaux de terrassement). La sensibilité ornithologique n'apparaît pas concernée et remise en cause par le projet.

De plus, le projet ne présente aucun lien fonctionnel direct avec les milieux concernés par le site Natura 2000 situés à proximité et ne remet donc pas en cause leur classement. En l'absence d'impact quantitatif et qualitatif sur la Coise, le rejet n'est pas de nature à remettre en cause les classements NATURA 2000 référencés le long de la Loire.

Le rejet issu des purges de déconcentration des TAR sur le site SNF FLOERGER ne présente pas d'incompatibilité avec les différents zonages réglementaires ou informatifs liés à la protection du milieu naturel.

7. COMPATIBILITÉ AVEC LES SCHÉMAS DE GESTION OU D'AMÉNAGEMENT DES EAUX ET PRISE EN COMPTE DE LA DCE

7.1. CONTEXTE GÉNÉRAL

Dans le cadre de la **Directive Cadre Européenne** (DCE 2000/60/CE, transposée en droit français par la loi n°2004-338 du 21 avril 2004), les objectifs pour les cours d'eau comportent plusieurs aspects :

- supprimer avant 2020 les rejets de substances dangereuses prioritaires,
- prévenir la détérioration de toutes les masses d'eau,
- atteindre, sauf dérogation, le bon état des cours d'eaux.

• SDAGE

L'application de ces objectifs a été intégrée dans le **SDAGE 2016-2021 Loire-Bretagne** (schéma directeur d'aménagement et de gestion des eaux) approuvé le 25 décembre 2015. Le tableau ci-dessous rappelle les objectifs fixés pour les masses d'eau concernées par le projet.

Tableau 18 : Masses d'eau associées au projet

N	lasses d'eau concernées	Objectifs SDAGE 206-2021
Eaux superficielles	« La Coise et ses affluents depuis Saint- Galmier jusqu'à la confluence avec la Loire » » FRGR0167b	Bon état écologique : 2021 Bon état chimique : Non défini Bon état général : 2021
Eaux souterraines	« sables et marnes du Tertiaires de la plaine du Forez » - FRGG091	Bon état général : 2015
Plans d'eau	Aucune masse d'eau concernée	

Le projet se situe dans le bassin versant de la Coise, masse d'eau FRGR0177, pour laquelle l'atteinte du bon état écologique est fixée à l'échéance 2021.

1917_V2 - SM/EIE//2017

• <u>SAGE</u>

Sur un territoire plus réduit, état des lieux et objectifs peuvent s'intégrer dans un SAGE (schéma d'aménagement et de gestion des eaux). La commune d'Andrézieux-Bouthéon s'inscrit dans le périmètre du SAGE Loire en Rhône-Alpes.

La zone d'étude se situe dans le périmètre du SAGE Loire en Rhône-Alpes.

7.2. PRISE EN COMPTE DES DIFFÉRENTS OBJECTIFS

• SDAGE

Le tableau ci-après reprend :

- l'ensemble des orientations fondamentales du SDAGE 2016-2021,
- leur prise en compte dans le projet qui nous intéresse.

Tableau 19 : Prise en compte des orientations du SDAGE

Orientations du SDAGE 2016-2021	Prise en compte pour le projet
1 – Repenser les aménagements de cours d'eau (y c. création de plans d'eau, espèces envahissantes,)	Le projet ne pas créé pas de nouveaux ouvrages sur le réseau hydrographique. Tous les équipements utilisés pour l'évacuation des purges issues des TAR sont déjà en place.
 2 – Réduire la pollution par les nitrates 3 – Réduire la pollution organique et bactériologique 4 – Maîtriser et réduire la pollution par les pesticides 5 – Maîtriser et réduire les pollutions 	Les analyses et calculs d'impacts réalisés dans le cadre de l'étude montrent que les purges issues des TAR ne son pas de nature à dégrader la qualité générale des écoulements superficiels. On notera également que la modification des conditions de rejets permet de « libérer » de la charge hydraulique sur le réseau d'assainissement et STEU intercommunale de près de 2000 EH, ce qui participera à l'amélioration de son bon fonctionnement
dues aux substances dangereuses 6 – Protéger la santé en protégeant la ressource en eau	Il n'y a pas d'usage « alimentation en eau potable » dans l'environnement proche du projet. Aucun produit chimique susceptible de nuire à la santé n'est rejeté.
7 – Maîtriser les prélèvements d'eau	Le projet n'entraîne pas de prélèvement d'eau.
8 – Préserver les zones humides	Le projet ne modifie aucune zone humide. Il parcicipe au maintien en eau de d'un cours d'eau naturellement séchant à l'aval immédiat des installations de SNF (ruisseau Sans Nom et Petit Volvon)
9 – Préserver la biodiversité aquatique	En l'absence d'impact qualitatif et quantitatif significatif, le projet ne remet pas en cause la biodiversité aquatique du Volvon et de la Coise.

Orientations du SDAGE 2016-2021	Prise en compte pour le projet
10 – Préserver le littoral	Non concerné.
11 – Préserver les têtes de bassin versant	Non concerné.
12 – Faciliter la gouvernance locale et renforcer la cohérence des territoire set des politiques publiques	Non concerné.
13 – Mettre en place des outils réglementaires et financiers	Non concerné.
14 – Informer, sensibiliser, favoriser les échanges	Non concerné.

SAGE

Le SAGE Loire en Rhône-Alpes a été adopté par la CLE du 24 octobre 2013. L'état des lieux du territoire ainsi que le scenario tendanciel confirment un état des eaux et des milieux aquatiques non conforme aux exigences du SDAGE Loire-Bretagne. Dans ce contexte, le SAGE s'engage dans une démarche ambitieuse pour atteindre le bon état des eaux et des milieux. La commission locale de l'eau (CLE) a retenu 6 enjeux associés à plusieurs objectifs généraux pour le SAGE :

- → Enjeu n°1 : Préservation et amélioration de la fonctionnalité (hydrologique, épuratoire, morphologique, écologique) des cours d'eau et des milieux aquatiques,
 - Objectif général 1.1 : Connaître, préserver voire restaurer les zones humides.
 - Objectif général 1.2 : Préserver et améliorer la continuité écologique.
 - Objectif général 1.3 : Améliorer l'hydromorphologie.
 - Objectif général 1.4 : Limiter les pressions hydrologiques sur la fonctionnalité des milieux
 - Objectif général 1.5 : Préserver les têtes de bassins versants
 - Objectif général 1.6 : Restaurer et améliorer les fonctionnalités naturelles du fleuve Loire
- → Enjeu n°2 : Réduction des émissions et des flux de polluants,
 - Objectif général 2.1 : Limiter les émissions et les flux de phosphore participant à l'eutrophisation des retenues.
 - Objectif général 2.2 : Améliorer le fonctionnement des systèmes d'assainissement (collectif, industriel).
 - Objectif général 2.3 : Poursuivre les efforts de maîtrise des pollutions d'origine agricole.
 - Objectif général 2.4 : Améliorer la connaissance, maîtriser et réduire les pollutions toxiques.
 - Objectif général 2.5 : Protéger les ressources locales pour l'Alimentation en Eau Potable, notamment la qualité

→ Enjeu n°3 : Economie et partage de la ressource,

- Objectif général 3.1 : Économiser la ressource en eau.
- Objectif général 3.2 : Partager la ressource en eau entre les milieux naturels et les usages.

→ Enjeu n°4 : Maitrise des écoulements et lutte contre le risque d'inondation,

- Objectif général 4.1 : Intégrer, maîtriser et valoriser les écoulements et rejets d'eau pluviale.
- Objectif général 4.2 : Gérer le risque d'inondation (mieux connaître, réduire la vulnérabilité aux inondations, préserver les zones d'expansion de crue, etc.

→ Enjeu n°5 : Prise en compte de l'eau et des milieux aquatiques dans le développement et l'aménagement du territoire,

- Objectif général 5.1 : Faire du fleuve Loire un patrimoine commun pour le territoire (patrimoine naturel, loisirs, cadre de vie, identité du territoire, entretien, etc.).
- Objectif général 5.2 : Prendre en compte les milieux aquatiques et les ressources en eau dans les politiques de développement et d'aménagement du territoire.

→ Enjeu n°6 : Gestion concertée, partagée et cohérente de la ressource en eau et des milieux aquatiques.

- Objectif général 6.1 : Mettre en œuvre la DCE et le SDAGE dans le cadre d'une concertation locale.
- Objectif général 6.2 : Veiller à la cohérence du SAGE Loire en Rhône Alpes avec l'échelle globale du bassin de la Loire.
- Objectif général 6.3 : Assister et coordonner les structures porteuses locales et les acteurs de la gestion de l'eau.
- Objectif général 6.4 : Suivre et évaluer les actions du SAGE et l'état des milieux aquatiques.
- Objectif général 6.5 : Communiquer et valoriser les actions du SAGE

Le Plan d'Aménagement et de Gestion Durable du SAGE (PAGD) définit les objectifs de gestion équilibrée de la ressource en eau ainsi que les priorités à retenir, les dispositions et les conditions de réalisation pour les atteindre.

Le projet, de par sa nature ne remet pas en cause les enjeux et les objectifs fixés par le SAGE (enjeux 1 et 2. Il n'est directement concerné par aucun règlement du SAGE.

Le projet d'aménagement est compatible avec le SDAGE Loire Bretagne et le SAGE Loire en Rhône-Alpes.

8. EVALUATION VIS-À-VIS DE LA RÉGLEMENTATION I.O.T.A

8.1. RAPPEL RÉGLEMENTAIRE

D'un point de vue réglementaire, les tours aéroréfrigérantes sont concernées par la **rubrique 2921** relative aux installations classées pour la protection de l'environnement (ICPE) relevant de la **procédure d'enregistrement**. Les prescriptions générales relatives à l'exploitation de ce type d'installation sont fixées par l'arrêté ministériel du 14 décembre 2013.

Dans le cadre de la modification du rejet des purges de déconcentration, l'inspection des installations classée (DREAL) a souhaité connaître le statut du rejet vis-à-vis de la réglementation associée au code de l'environnement notamment vis-à-vis de la nomenclature des installations, ouvrages, travaux ou activités (I.O.T.A) soumis à autorisation ou déclaration en application des articles L214-1 à L214-6 du code de l'environnement.

Compte tenu des modalités d'évacuation envisagées, deux rubriques sont potentiellement concernées (tableau de l'article R214-1) :

- <u>Rubrique 2.2.1.0</u>: Rejets dans les eaux douces superficielles susceptibles de modifier le régime des eaux à l'exclusion des rejets visés à la rubrique 2.1.5.0 ainsi que les ouvrages visés aux rubriques 2.1.1.0 et 2.1.2.0, la capacité totale de rejet étant :
 - -1° supérieure ou égale à 10 000 m³/j ou à 25% du débit moyen interannuel du cours d'eau (Autorisation),
 - -2° supérieure à 2000 m³/j ou à 5% du débit moyen interannuel du cours d'eau mais inférieure à 10000 m³/j et à 25% du débit moyen interannuel du cours d'eau (Déclaration).
- <u>Rubrique 2.2.3.0</u>: Rejet dans les eaux de surface, à l'exclusion des rejets visés aux rubriques 4.1.3.0, 2.1.1.0, 2.1.2.0 et 2.1.5.0,
- 1° le flux total de pollution brute étant :
 - a) supérieur ou égal au niveau de référence R2 pour l'un au moins des paramètres qui y figure (Autorisation)
 - b) compris entre les niveaux de références R1 et R2 pour l'un au moins des paramètres qui y figure (Déclaration)

- 2° le produit de la concentration maximale d'Escherichia coli par le débit moyen journalier du rejet situé à moins d'1 km d'une zone conchylicole ou de culture marine, d'une prise d'eau potable ou d'une zone de baignade au sens des articles D1332-1 et D1332-16 du code de la santé publique
 - supérieur ou égal à 10¹¹ coli/j (Autorisation)
 - compris entre 10¹⁰ et 10¹¹ coli/j (Déclaration)

Les seuils R1 et R2 étant défini par l'arrêté ministériel du 9 août 2006.

Tableau 20 : Seuils R1 et R2 - Arrêté ministériel du 9 août 2006

	10.7000000	13.14.91.01.01.01		
PARAMÈTRES	NIVEAU R1	NIVEAU R2		
MES (kg/j)	9	90		
DBO5 (kg/j) (*)	6	60		
DCO (kg/j) (*)	12	120		
Matières inhibitrices (équitox/j)	25	100		
Azote total (kg/j)	1,2	12		
Phosphore total (kg/j)	0,3	3		
Composés organohalogénés absorbables sur charbon actif (AOX) (g/j)	7,5	25		
Métaux et métalloïdes (Metox) (g/j)	30	125		
Hydrocarbures (kg/j)	0,1	0,5		
(*) Dans le cas de rejets salés présentant une teneur en chlorures s seuils sont	upérieure à 2 000 mg/l, les para	mètres DBO5 et DCO et leurs		
remplacés par le paramètre COT avec les seuils suivants :				
Concernant a : COT : 80 kg/j (A) ;				
Concernant b : COT : 8 à 80 kg/j (D).				

Remarque : « Métaux et métalloïdes exprimés en métox » correspond à la somme des concentrations de buit polluants affectés chacun d'un coefficient multiplicateur selon sa toxicité vis-à-vis de l'environnement aquatique. Les coefficients multiplicateurs et les paramètres concernés sont les suivants : arsenic (10), cadmium (50), chrome (1), cuivre (5), mercure (50), nickel (5), plomb (10), zinc (1)

8.2. <u>APPLICATION AU REJET DES PURGES DES TAR</u>

• Rubrique 2.2.1.0

Les calculs d'impacts quantitatifs présentés sur le tableau 16 page 67 montrent que la modification de débit associée au rejet dans le ruisseau Sans Nom, au niveau du point de déversement et plus en aval dans la partie caractérisée comme cours d'eau, concerne le <u>régime déclaratif</u> (impact entre 5% et 25% du débit interannuel).

• Rubrique 2.2.3.0

Dans le tableau ci-dessus, nous avons évalué la concentration du rejet provenant des purges de déconcentration entrainant un dépassement des seuils R1 et R2 pour différentes conditions de débits (débit moyen journalier et débit de pointe journalière). Cette concentration peut ensuite être comparée aux résultats des analyses réalisées le 28/03/17 et le 23/05/17.

		Seuil R1 (régime déclaration)	Seuil R2 (régime autorisation)
MES	kg/j	9	90
DBO	kg/j	6	60
DCO	kg/j	12	120
Matières inhibitrices	equitox/jour	25	100
Azote total	kg/j	1,2	12
Phosphore total	kg/j	0,3	3
AOX	g/j	7,5	25
Métaux et métalloides (indice Métox)	g/j	30	125
Hydrocarbures	kg/j	0,1	0,5

Tableau 21 : Evaluation des conditions de dépassement des seuils R1 et R2

Indice Métox = somme des concentrations de 8 paramètres métalliques associés à un facteur de toxicité (= 10 As + 50 Cd + 1 Cr + 5 Cu + 50 Hg + 5 Ni + 10 Pb + 1 Zn

		Evaluation de la concentraion du rejet pour que le seuil réglementaire soit dépassé						
		Dépasse	ment R1	Dépassement R2				
		Hypothèses dél	bit réjet (m3/j)	Hypothèses dé	bit réjet (m3/j)			
		Pointe	Moyenne	Pointe	Moyenne			
		320	180	320	180			
MES	mg/l	28	50	281	500			
DBO	mg/l	19	33	188	333			
DCO	mg/l	38	67	375	667			
Matières inhibitrices	equitox/m3	0,08	0,14	0,31	0,56			
Azote total	mg/l	3,8	6,7	38	67			
Phosphore total	mg/l	0,9	1,7	9	17			
AOX	μgЛ	23	42	78	139			
Métaux et métalloides (indice Métox)	μgЛ	94	167	391	694			
Hydrocarbures	mg/l	0,3	0,6	1,6	2,8			

Résultats analyses TAR1 et TAR2 (28/03/17 et 23/05/17)								
TAR1	TAR2	Risque dépassement Seuil R1	Risque dépassemen Seuil R2	Comentaires				
< 2	3,3	NON	NON					
1,8	0,6	NON	NON					
33	<30	NON	NON					
< 1	< 1	NON	NON	Limite de quantitfiaction non dépassée (absence de matières inhibitrices)				
5,9	4,1	OUI	NON	Risque de dépassement en pointe journalière				
< 0,16	<0,16	NON	NON					
220 (28/03/17) 200 (23/05/17)	60 (28/03/17) 110 (23/05/17)	OUI	Possible	Seuil R1 dépassé. Dépassement seuil R2 possible selon résultats d'analyses retenus				
55,8	2,69	NON	NON	Calcul indice métox réalisé uniquement à partir des substances détectées				
<0,1	<0,1	NON	NON					

Calcul indice métox (μg/l)							
Analyses du 28/03/17 et du 23/05/17pour le Zn							
		TAR1	TAR2				
As	$\mu g/l$	<4	<4				
Cd	$\mu g/l$	<2	<2				
Cr	$\mu g/l$	<5	<5				
Си	$\mu g/l$	8	< 5				
Hg	$\mu g/l$	< 0,5	< 0,5				
Ni	$\mu g/l$	<4	<4				
Pb	$\mu g/l$	<2	<2				
Zn	$\mu g/l$	15,8	2,69				
Indice métox calculé	μg/l	55,8	2,69				

Le seuil R1 (régime de déclaration) est dépassé pour les paramètres Azote total et AOX.

Le seuil R2 (régime autorisation) est **potentiellement** dépassé uniquement pour les flux associés au paramètre AOX qui peuvent, selon la valeur retenue (résultats mesures TAR1 ou TAR2), dépasser ce seuil R2.

Les composés organo-halogénés présents dans les rejets sont déjà présents dans le réseau d'alimentation en eau potable qui fait l'objet momentanément d'une sur-chloration (plan vigipirate).

Les concentrations mesurées sur les deux échantillons analysés restent toutefois faibles et ne présentent pas de caractère toxique pour le milieu aquatique (situation confirmée par les résultats de l'analyse « matières inhibitrices » (< 1 equitox/m³)).

De plus les concentrations mesurées en sortie de TAR et prises en compte dans le calcul du flux potentiellement déversé vers le milieu naturel surestime très certainement le calcul du flux rejeté. En effet, le mélange des différentes TAR, associé au stockage aérien temporaire dans un bassin d'eaux pluviales avant pompage et rejet vers le réseau hydrographique, permettra d'abattre les concentrations par rapport à ce qui est mesuré directement en sortie de tour (élimination et dégradation possible au contact de l'air ambiant et de l'ensoleillement).

Compte tenu de ces éléments nous proposons donc de ne pas retenir le dépassement du seuil R2 pour le paramètre AOX. A terme, un contrôle en sortie du bassin eaux pluviales, avant rejet vers le milieu naturel, permettrait de s'assurer que les concentrations en AOX sont toujours inférieures à 0.08 mg/l ($80 \mu\text{g/l}$), concentration maximale calculé sur le base du débit journalier maximal de rejet, permettant de rester sous le seuil R2 du régime d'autorisation.

9. CONCLUSIONS

33 tours aéroréfrigérantes (TAR) sont présentes sur le site industriel SNF FLOERGER situé sur la commune d'Andrézieux-Bouthéon Pour éviter les phénomènes de corrosion et de dépôts dans ces dispositifs, il convient d'assurer régulièrement des purges de déconcentration. Une surveillance et des actions de nettoyage et de désinfection doivent être également régulièrement entreprises car les conditions humides et chaudes sont favorables à la prolifération puis à la dissémination par les aérosols de légionelles dans l'atmosphère.

Pendant de nombreuses années les opérations de nettoyage (lutte corosion et anti-tartre) et de désinfection se sont faites par des ajouts de composés chimiques dans les eaux d'alimentation, notamment de biocides à base de produits bromés et des anti-tartres à base de phosphonates. Progressivement un nouveau procédé de traitement a été mis en place dans chacune des TAR permettant de se passer de l'utilisation de ces produits chimiques. Ce procédé qui s'appuie sur l'utilisation conjointe de lampes ultra-violet et de péroxyde hydrogène (eau oxygénée - H₂O₂) présente le grand intérêt de ne pas générer de sous-produits dans la mesure où le péroxyde d'hydrogène se décompose en eau et en oxygène au contact des impuretés présentes dans l'eau.

Actuellement les effluents correspondant aux purges des tours aéroréfrigérantes sont évacués vers le réseau d'assainissement communal (réseau « eaux usées »). Avec la mise en service de ce nouveau procédé SNF FLOERGER souhaiterait obtenir une nouvelle autorisation permettant leur rejet vers le milieu naturel (réseau « eaux pluviales » interne au site en lien avec le réseau hydrographique local).

En vue d'obtenir une nouvelle autorisation de rejet, l'industriel a demandé au bureau d'études CESAME d'étudier le contexte hydrologique et hydrogéologique en aval du site industriel de manière à évaluer l'impact du rejet sur la ressource en eau et le milieu aquatique.

Les analyses réalisées dans le cadre de l'étude montrent que tous les paramètres analysés sur les effluents présentent des <u>concentrations inférieures aux VLE fixées par l'arrêté ministériel du 14 décembre 2013</u> (arrêté fixant les prescriptions générales liées à la rubrique 2921 de la nomencalture ICPE) relative à un rejet vers le mileu naturel. La qualité des eaux issues des purges des tours aéroréfrigérantes sur le site SNF ne présente donc pas d'incompatibilité pour ce mode d'évacuation en remplacement d'un rejet vers le réseau d'assainissement communal.

Les reconnaissances de terrain et les calculs de dilution montrent que l'impact quantitatif et qualitatif du rejet sur les eaux superficielles (Petit Volvon, Volvon et Coise) et les eaux souterraines (nappe des sables du Tertaire de la plaine du Forez) est très limité et peu perceptible. Le site industriel se situant en tête de bassin versant topographique, à l'amont de secteurs urbains présente à son

aval immédiat des enjeux piscicoles, faunistiques et floristiques très faibles.

La qualité générale et le débit (≈ 320 m³/j au maximum) du rejet issu des purges de déconcentration des tours aéroréfrigérantes ainsi que les phénomènes de dilution associés dans le réseau hydrographique, notamment partir du moment où celui-ci présente un intérêt patrimonial (= Volvon et Coise), montrent que les enjeux en terme d'impact du rejet industriel sur la qualité des eaux sont très faibles.

Le mode d'évacuation vers le réseau hydrographique (évacuation par pompage après stockage temporaire dans un bassin « eaux pluviales » interne du site de plusieurs milliers de m³) devrait permettre d'éliminer les résidus de traitement liés à l'utilisation du péroxyde d'hydrogène compte tenu du caractère instable de ce composé chimique (dégradation entrainant le formation d'eau et un dégagement d'oxygène). Des analyses de contrôle en sortie de réseau EP pourront être réalisées afin de lever le doute sur les concentrations avant rejet au milieu naturel et leur compatibilité avec les valeurs toxicologiques de référence pour les eaux superficielles (PNEC) quelles que soient les conditions d'écoulement.

Le rejet industriel ne présente pas d'incompatibilités avec le SDAGE Loire Bretagne et le SAGE Loire en Rhône Alpes.

Les analyses et l'étude du contexte hydrologique et hydrogéologique menées dans le cadre de cette étude montrent que le rejet vers le milieu naturel des effluents issus des purges de déconcentration des TAR présentes sur le site SNF FLOERGER ne constitue pas une source de pollution remettant en cause la qualité générale de la ressource en eau superficielle et souterraine.

ANNEXES

Bordereaux d'analyses CARSO-LSEHL

Laboratoire Agréé pour les analyses d'eaux par le Ministère de la Santé

Rapport d'analyse Page 1 / 1

Edité le : 31/03/2017

CESAME

M. Stéphane MOREL

ZA DU PARC SECTEUR GAMPILLE 42490 FRAISSES

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 1 page.

La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification dossier: LSE17-39171 Réference contrat: LSEC16-3595

Identification échantillon : LSE1703-48529

Nature: Eau Origine: TAR 2

Dept et commune : 42 ANDREZIEUX BOUTHEON

Prélèvement : Prélevé le 28/03/2017 à 11h10 Réceptionné le 29/03/2017

Prélevé par le client CESAME / MOREL Stéphane

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse le 29/03/2017

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Analyses physicochimiques							
Paramètres de la désinfection							
Peroxyde d'hydrogène	1.00	mg/l H2O2	Spectrophotométrie à la DPD	Méthode interne			

Jerome CASTAREDE Ingénieur de Laboratoire

Société par action simplifiée au capital de 2 283 622,30 € - RCS Lyon B 410 545 313 - SIRET 410 545 313 00042 - APE 7120B — N° TVA: FR 82 410 545 313 Siège social et laborationie : 4, avenue Jean Moulin — 05 30228 - 66933 VPINSIELUX CEDEX - Tél : (33) 0 47 27 76 16 16 - Fax : (30) 0 47 87 2 35 03 Sièse vels : www.grouperaso.com o - enfail : suivi.client@grouperaso.com, ow. deviewiement@grouperaso.com over the size of the company of the size of the company of the com

CARSO - LABORATOIRE SANTÉ ENVIRONNEMENT HYGIÈNE DE LYON

Laboratoire Agréé pour les analyses d'eaux par le Ministère de la Santé

Rapport d'analyse

Page 1 / 1

Edité le : 31/03/2017

CESAME

M. Stéphane MOREL

ZA DU PARC

SECTEUR GAMPILLE 42490 FRAISSES

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 1 page.

La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation,

identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification dossier: LSE17-39171 Réference contrat: LSEC16-3595

Identification échantillon : LSE1703-48530

Nature: Eau Origine: TAR 1

Dept et commune : 42 ANDREZIEUX BOUTHEON

Prélèvement: Prélevé le 28/03/2017 à 10h30 Réceptionné le 29/03/2017

Prélevé par le client CESAME / MOREL Stéphane

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse le 29/03/2017

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Analyses physicochimiques							
Paramètres de la désinfection							
Peroxyde d'hydrogène	1.00	mg/l H2O2	Spectrophotométrie à la DPD	Méthode interne			

Jerome CASTAREDE Ingénieur de Laboratoire

Société par action simplifiée au capital de 2 283 622.30 € - RCS Lyon B 410 545 513 - SIRET 410 545 313 00042 - APE 7120B — N° TVA: FR 82 410 545 513 Silge social et laboratoire: 4, avenue Jean Moulin — CS 30228 - 69633 VENSSIEUX CEDEX - Tél: (33) 04 72 76 16 16 - Fax : (33) 04 78 72 35 03 Silte web: xwww.groupecarso.com - mail: suivi.clien@groupecarso.com, devis@groupecarso.com, avisdevirenen@groupecarso.com

Laboratoire Agréé pour les analyses d'eaux par le Ministère de la Santé

Rapport d'analyse Page 1 / 7

Edité le : 19/04/2017

CESAME

M. Stéphane MOREL

ZA DU PARC SECTEUR GAMPILLE 42490 FRAISSES

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 7 pages.

La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification dossier: LSE17-39171 Réference contrat : LSEC16-3595

Identification échantillon : LSE1703-48528-1

Nature: Eau usée industrielle

Origine: TAR 2

Dept et commune : 42 ANDREZIEUX BOUTHEON

Prélèvement : Prélevé le 28/03/2017 à 11h10 Réceptionné le 29/03/2017

Prélevé par le client CESAME / MOREL.S

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse le 29/03/2017

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Analyses physicochimiques							
Analyses physicochimiques de base							
Chlorures	46	mg/l CI-	Chromatographie ionique	NF EN ISO 10304-1			#
Bromures	< 1	mg/l Br-	Chromatographie ionique	NF EN ISO 10304-1			#
Indice phénol	< 0.02	mg/l	Flux continu (CFA)	NF EN ISO 14402			#
Demande chimique en oxygène (indice ST-DCO)	< 30	mg/l O2	Spectrophotométrie	ISO 15705			#
Indice hydrocarbures (C10-C40)	< 0.10	mg/l	GC/FID	NF EN ISO 9377-2			#
Matières en suspension totales	3.2	mg/l	Gravimétrie après filtration-filtre Whatman 934 AH	NF EN 872			#
Fluorures	< 0.5	mg/l F-	Potentiométrie	NF T90-004			#
Cyanures totaux (indice cyanure)	< 0.05	mg/I CN-	Flux continu (CFA)	NF EN ISO 14403-2			#
A.O.X dissous après filtration	0.06	mg/l CI	Coulométrie	NF EN ISO 9562			1
Formes de l'azote							
Ammonium	< 1	mg/l NH4	Flux continu (CFA)	NF EN ISO 11732			#
Azote Kjeldahl	< 3	mg/l N	Distillation	NF EN 25663			#
Azote global	4.1	mg/l N	Calcul	Méthode interne			
Nitrates	18	mg/l NO3-	Flux continu (CFA)	NF EN ISO 13395			#

: 313

CARSO-LSEHL

Rapport d'analyse Page 2 / 7

Edité le : 19/04/2017

Identification échantillon: LSE1703-48528-1

Destinataire : CESAME

Paramètres analytique	es	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	
Nitrites		0.272	mg/l NO2-	Flux continu (CFA)	NF EN ISO 13395			z
Formes du phosphore								
Phosphore total		<0.16	mg/l P	Minéralisation et spectrophotométrie (Ganimède)	NF EN ISO 6878			#
Métaux								
Digestion		-	-	Digestion acide	NF EN ISO 15587-2			#
Mercure total		< 0.5	μg/I Hg	SAA sans flamme après minéralisation	NF EN ISO 12846			#
Arsenic total		< 0.004	mg/l As	ICP/MS après digestion	ISO 17294-1 et NF EN			#
Cadmium total		< 0.002	mg/l Cd	ICP/MS après digestion	ISO 17294-2 ISO 17294-1 et NF EN			#
Chrome total		< 0.005	mg/l Cr	ICP/MS après digestion	ISO 17294-2 ISO 17294-1 et NF EN			#
			-		ISO 17294-2			_
Cuivre total		< 0.005	mg/l Cu	ICP/MS après digestion	ISO 17294-1 et NF EN ISO 17294-2			
Etain total		< 5	μg/I Sn	ICP/MS après digestion eau régale	ISO 17294-1 et NF EN ISO 17294-2			#
Fer total		0.066	mg/l Fe	ICP/MS après digestion	ISO 17294-1 et NF EN ISO 17294-2			
Manganèse total		0.008	mg/l Mn	ICP/MS après digestion	ISO 17294-1 et NF EN			#
Nickel total		0.004	mg/l Ni	ICP/MS après digestion	ISO 17294-2 ISO 17294-1 et NF EN			#
Plomb total		< 0.002	mg/l Pb	ICP/MS après digestion	ISO 17294-2 ISO 17294-1 et NF EN			#
Zinc total		0.071	mg/l Zn	ICP/MS après digestion	ISO 17294-2 ISO 17294-1 et NF EN ISO 17294-2			#
COV : composés organiques vola	atils				130 17284-2			
BTEX								
Benzène	48COV	< 0.5	μg/l	HS/GC/MS	NF EN ISO 11423-1			#
Toluène	48COV	< 0.5	μg/I	HS/GC/MS	NF EN ISO 11423-1			#
Ethylbenzène	48COV	< 0.5	μg/l	HS/GC/MS	NF EN ISO 11423-1			#
Xylènes (m + p)	48COV	< 1	μg/I	HS/GC/MS	NF EN ISO 11423-1			#
Xylène ortho	48COV	< 0.5	μg/I	HS/GC/MS	NF EN ISO 11423-1			#
Styrène	48COV	< 0.5	μg/I	HS/GC/MS	NF EN ISO 11423-1			#
1,2,3-triméthylbenzène	48COV	< 1	μg/l	HS/GC/MS	NF EN ISO 11423-1			#
1,2,4-triméthylbenzène (pseudocumène)	48COV	< 1	μg/I	HS/GC/MS	NF EN ISO 11423-1			#
1,3,5-triméthylbenzène (mésytilène)	48COV	< 1	μg/I	HS/GC/MS	NF EN ISO 11423-1			#
Isopropylbenzène (cumène)	48COV	< 0.5	μg/l	HS/GC/MS	NF EN ISO 11423-1			#
4-isopropyltoluène (p cymène)	48COV	< 0.5	μg/I	HS/GC/MS	NF EN ISO 11423-1			#
Tert butylbenzène	48COV	< 0.5	μg/I	HS/GC/MS	NF EN ISO 11423-1			
n-butyl benzène	48COV	< 0.5	μg/I	HS/GC/MS	NF EN ISO 11423-1			_
Methyl-tertiobutylether	48COV	< 0.5	μg/l	HS/GC/MS	NF EN ISO 10301			-
Solvants organohalogénés								
1,1,2,2-tétrachloroéthane	48COV	< 0.50	μg/I	HS/GC/MS	NF EN ISO 10301			
1,1,1-trichloroéthane	48COV	< 0.05	μg/I	HS/GC/MS	NF EN ISO 10301			#
1,1,2-trichloroéthane	48COV	< 0.50	μg/I	HS/GC/MS	NF EN ISO 10301			#
1,1,2-trichlorotrifluoroéthane (fréon 113)	48COV	< 0.50	μg/I	HS/GC/MS	NF EN ISO 10301			#
1,1-dichloroéthane	48COV	< 0.50	μg/I	HS/GC/MS HS/GC/MS	NF EN ISO 10301			=
1,1-dichloroéthylène	48COV	< 0.50	μg/I	HS/GC/MS HS/GC/MS	NF EN ISO 10301 NF EN ISO 10301			#
1,2-dibromoéthane	48COV	< 0.50	μg/I	HS/GC/MS HS/GC/MS	NF EN ISO 10301 NF EN ISO 10301			Ĩ
1,2-dichloroéthane	48COV	< 0.50	μg/I	Haracima	INF EIN IOU 10301			-

Société par action simplifiée au capital de 2 283 622,30 € - RCS Lyon B 410 545 313 - SIRET 410 545 313 00042 - APE 7120B — N° TVA: FR 82 410 545 313 Siège social et laboratoire : 4, avenue Jean Moulin — CS 30228 - 69532 VPINSSIEUX CEDEX - Tél : (33) 0 47 27 76 16 16 - Fax : (30) 04 78 72 350 3 Siè veb : www. groupecarso.com - e-mili : suivic ielne iigroupecarso.com com, avidediviennen liégroupecarso.com - denien legroupecarso.com - capital : suivic ielne iigroupecarso.com - capital : suivic

Laboratoire Agréé pour les analyses d'eaux par le Ministère de la Santé

Rapport d'analyse Page 1 / 2

Edité le : 07/06/2017

CESAME M. Stéphane MOREL

ZA DU PARC SECTEUR GAMPILLE 42490 FRAISSES

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 2 pages.

La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification dossier: LSE17-66799 Réference contrat: LSEC17-3392

Identification échantillon : LSE1705-45951-1

Nature: Eau propre Origine: TAR - 1

Prélèvement : Prélevé le 23/05/2017 à 15h20 Réceptionné le 24/05/2017

Prélevé et mesuré sur le terrain par le client CESAME / E.FLACHAT

Circonstances atmosphériques :Temps ensoleillé

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse le 24/05/2017

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Mesures sur le terrain							
Température de l'eau	25	°C					
pH sur le terrain	8.66	-					
Conductivité brute à 25°C sur le terrain	1020	μS/cm					
Oxygène dissous	5.31	mg/l O2					
Taux de saturation en oxygène sur le terrain	67.5	%					
Analyses physicochimiques							
Analyses physicochimiques de base							
Demande Biochimique en Oxygène (DBO5)	1.8	mg/l O2	Sans dilution	NF EN 1899-2			#
A.O.X dissous après filtration	0.20	mg/l Cl	Coulométrie	NF EN ISO 9562			#
Métaux							
Zinc dissous	15.80	μg/l Zn	ICP/MS après filtration	ISO 17294-1 et NF EN ISO 17294-2			#
Analyses écotoxicologiques							
Daphnie CE50 24h	> 90	%	Inhibition de la mobilité	NF EN ISO 6341			#
Teneur en Equitox (A.M. 21/12/2007)	< 1	/m ^a	Inhibition de la mobilité	NF EN ISO 6341			#

Société par action simplifiée au capital de 2 283 622,30 € - RCS Lyon B 410 545 313 - SIRET 410 545 313 00042 - APE 7120B — N° TVA: FR 82 410 545 313 Siège social et laboratoire : 4, avenue Jean Moulin — CS 30228 - 66935 XPINSSIEUX CEDEX - Tél : (33) 0 4 72 76 16 16 - Fax : (30) 0 4 78 72 35 03 Siè we b: xww. grouperaso.com - e-mili : suivic ielem@grouperaso.com com, avidediverenell@grouperaso.com - e-mili : suivic ielem@grouperaso.com - comité : suivic ielem@grouperaso.com - comi

.../...

CARSO-LSEHL

Rapport d'analyse Page 2 / 2

Edité le : 07/06/2017

Identification échantillon: LSE1705-45951-1

Destinataire : CESAME

Ce rapport comprend une annexe d'une page.

Jerome CASTAREDE Ingénieur de Laboratoire

Laboratoire Agréé pour les analyses d'eaux par le Ministère de la Santé

Rapport d'analyse Page 1 / 2

Edité le : 07/06/2017

CESAME M. Stéphane MOREL

ZA DU PARC SECTEUR GAMPILLE 42490 FRAISSES

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 2 pages.

La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification dossier: LSE17-66799 Réference contrat: LSEC17-3392

Identification échantillon : LSE1705-45952-1

Nature: Eau propre Origine: TAR - 2

Prélèvement : Prélevé le 23/05/2017 à 15h50 Réceptionné le 24/05/2017

Prélevé et mesuré sur le terrain par le client CESAME / E.FLACHAT

Circonstances atmosphériques :Temps ensoleillé

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Date de début d'analyse le 24/05/2017

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	Limites de qualité	Références de qualité	COFRAC
Mesures sur le terrain							
Température de l'eau	16.6	°C					
pH sur le terrain	8.22	-					
Conductivité brute à 25°C sur le terrain	955	μS/cm					
Oxygène dissous	6.95	mg/l O2					
Taux de saturation en oxygène sur le terrain	69.1	%					
Analyses physicochimiques							
Analyses physicochimiques de base							
Demande Biochimique en Oxygène (DBO5)	0.6	mg/l O2	Sans dilution	NF EN 1899-2			#
A.O.X dissous après filtration	0.11	mg/l CI	Coulométrie	NF EN ISO 9562			#
Métaux							
Zinc dissous	2.69	μg/l Zn	ICP/MS après filtration	ISO 17294-1 et NF EN ISO 17294-2			#
Analyses écotoxicologiques		1					
Daphnie CE50 24h	> 90	%	Inhibition de la mobilité	NF EN ISO 6341			#
Teneur en Equitox (A.M. 21/12/2007)	< 1	/m³	Inhibition de la mobilité	NF EN ISO 6341			#

Société par action simplifiée au capital de 2 283 622,30 € - RCS Lyon B 410 545 313 - SIRET 410 545 313 00042 - APE 7120B — N° TVA: FR 82 410 545 313 Siège social et laboratoire : 4, avenue Jean Moulin — CS 30228 - 66935 XPINSSIEUX CEDEX - Tél : (33) 0 4 72 76 16 16 - Fax : (30) 0 4 78 72 35 03 Siè we b: xww. grouperaso.com - e-mili : suivic ielem@grouperaso.com com, avidediverenell@grouperaso.com - e-mili : suivic ielem@grouperaso.com - comité : suivic ielem@grouperaso.com - comi

.../...

CARSO-LSEHL

Rapport d'analyse Page 2 / 2

Edité le : 07/06/2017

Identification échantillon: LSE1705-45952-1

Destinataire : CESAME

Ce rapport comprend une annexe d'une page.

Jerome CASTAREDE Ingénieur de Laboratoire

DETERMINATION DE L'INHIBITION DE LA MOBILITE DE Daphnia magna

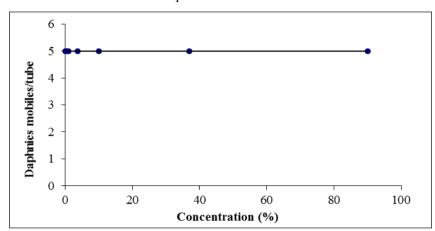
(norme NF EN ISO 6341)

Annexe au rapport d'essai : LSE1705-45951 Date : 31/05/2017

Nom du client : CESAME Echantillon : Références : TAR - 1 Date de réception : 24/05/2017

Traitement : Décanté 2h

pH initial: 7 O2 dissous initial: 7,6 mg/L


Date prélèvement : 23/05/2017

Remarques: Echantillon congelé à réception. Décongélation à température ambiante avant essai.

Résultats :

ESSAI I	PRELIMINAIRE					
Date:	29/05/2017					
[Conc.]	immobilisaθ %					
0,01%	-					
0,037%	-					
0,10%	-					
0,37%	-					
1%	0					
3,7%	0					
10%	0					
37%	0					
90%	0					

Courbe de toxicité Dose-Réponse :

CE(I) 50 - 24h > 90% Teneur en Equitox / $m^3 < 1$

Méthode de calcul : "LOG-NORMAL"

Données relatives aux organismes pour essais :

Organisme issus de l'élevage - Mères nées le : 05-12/05/2017

Critères de validité :	Limites	Valeurs observées	Conclusion
Immobilisation dans les récipients témoins	≤ 10 %	5%	Valide
Dichromate de potassium, CE(I)50 - 24h (mg/l)	[06 21]	1,02	Valide
réalisé le : 03/05/2017	[0,6 - 2,1]	IC à 95% : [0,92 – 1,09]	vallue

Responsable du laboratoire

F. Garrivier

Responsable de l'essai

Solin

B. Salinier

DETERMINATION DE L'INHIBITION DE LA MOBILITE DE Daphnia magna

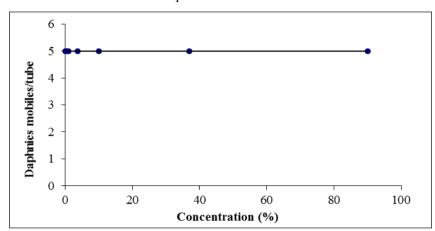
(norme NF EN ISO 6341)

Annexe au rapport d'essai : LSE1705-45952 Date : 31/05/2017

Nom du client : CESAME Echantillon : Références : TAR - 2 Date de réception : 24/05/2017

Traitement : Décanté 2h

pH initial: 7 O2 dissous initial: 8,8 mg/L


Date prélèvement : 23/05/2017

Remarques: Echantillon congelé à réception. Décongélation à température ambiante avant essai.

Résultats :

ESSAI PRELIMINAIRE					
Date:	29/05/2017				
[Conc.]	immobilisaθ %				
0,01%	-				
0,037%	-				
0,10%	-				
0,37%	-				
1%	0				
3,7%	0				
10%	0				
37%	0				
90%	0				

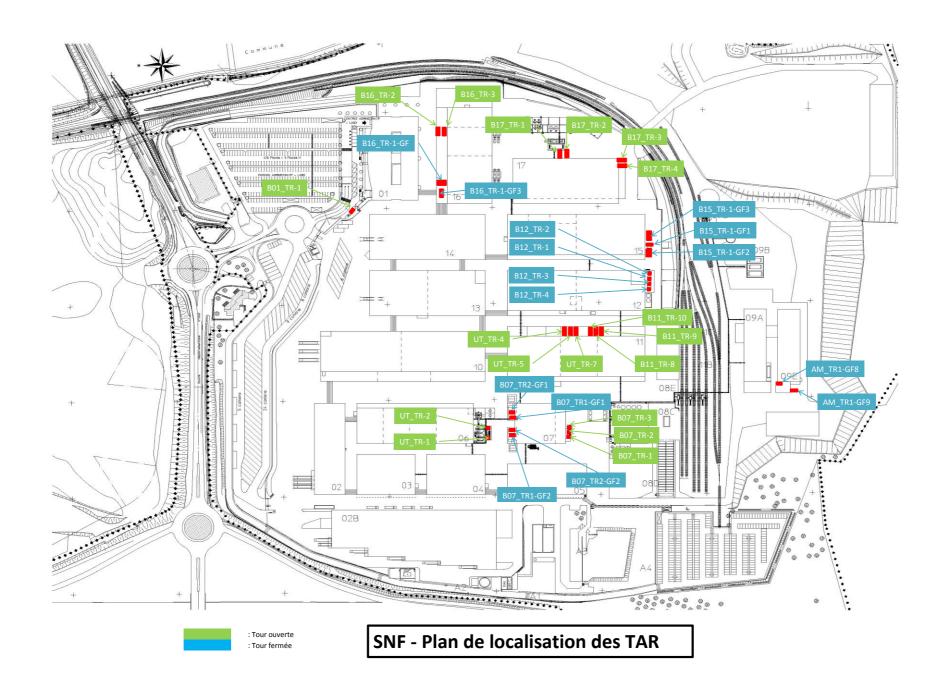
Courbe de toxicité Dose-Réponse :

CE(I) 50 - 24h > 90% Teneur en Equitox / $m^3 < 1$

Méthode de calcul : "LOG-NORMAL"

Données relatives aux organismes pour essais :

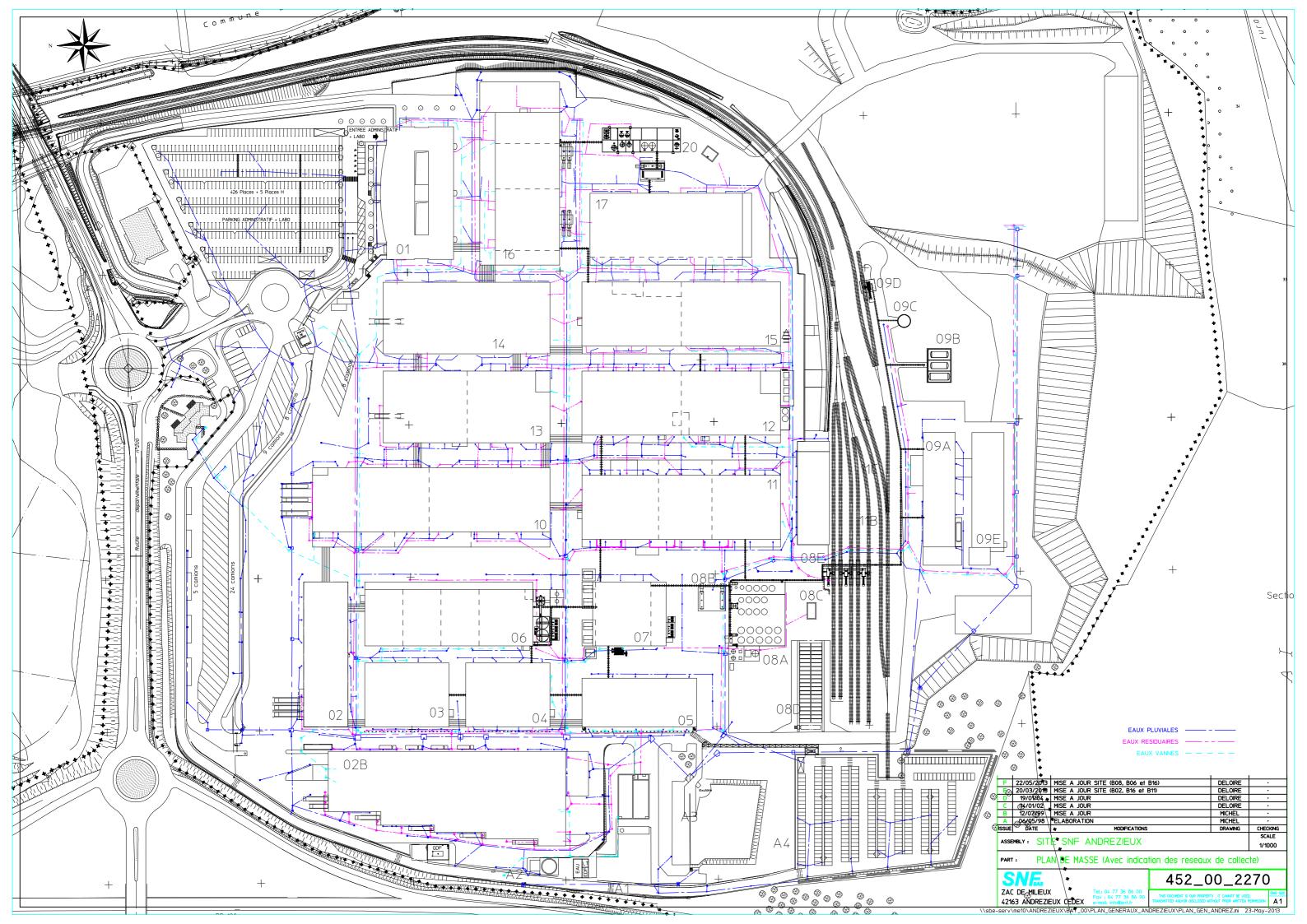
Organisme issus de l'élevage - Mères nées le : 05-12/05/2017


Critères de validité :	Limites	Valeurs observées	Conclusion
Immobilisation dans les récipients témoins	≤ 10 %	5%	Valide
Dichromate de potassium, CE(I)50 - 24h (mg/l)	[06 21]	1,02	Valide
réalisé le : 03/05/2017	[0,6 - 2,1]	IC à 95% : [0,92 – 1,09]	vande

Responsable du laboratoire

F. Garrivier

Responsable de l'essai


B. Salinier

SNF - Liste des TAR

Bât.	Nombre de tours	Date d'Autorisation	Date mise en service	Tag des tours	Puissance des tours	Modèle	Nombre de circuit	Circuit primaire fermé						
1	1	22/06/2005	juin-15	B01_TR-1	640 kW	ATM 2237	1	NON						
6	2	22/06/2005*	mars-13	B06_TR-1	2400 kW	TXV 310	1	NON						
O	_	22/00/2003	févr-17	B06_TR-2	7900 kW	S3E 1222 145/WH	1	14014						
		22/06/2005	avr-99	B07_TR-1	2400 kW	TXV 310								
	3	22/00/2003	avr-99	B07_TR-2	2400 kW	TXV 310	1	NON						
		21/01/2009	avr-99	B07_TR-3	2400 kW	TXV 310								
7	2	24/02/2015	déc-12	B07_TR1-GF1	700 kW	GVF C 544	1	OUI						
	_	2 17 027 2013	déc-12	B07_TR2-GF1	700 kW	GVF C 544	1	001						
	2	24/02/2015	mai-13	B07_TR1-GF2	700 kW	GVF C 544	1	OUI						
	_	24/02/2015	mai-13	B07_TR2-GF2	700 kW	GVF C 544	1	001						
9	2	21/01/2009	juin-07	AM_TR1-GF8	1070 kW	VXC-5288X	1	OUI						
	_	24/02/2015	mars-15	AM_TR1-GF9	1450 kW	VXI 180-2	1	001						
		22/06/2005	déc-00	UT_TR-4	2400 kW	TXV 310								
	3	3	3	3	3	3	3 21/01/3	21/01/2009	déc-00	UT_TR-5	2400 kW	TXV 310	1 1	NON
		21/01/2009	mai-04	UT_TR-7	3900 kW	TXV 500								
11		24/02/2015	juin-13	B11_TR-8	3943 kW	TXVH 500		NON						
	3	24/02/2013	juin-13	B11_TR-9	3943 kW	TXVH 500	1							
	3	30/06/2016	En projet	B11-TR-11	8000 kW	Remplacement 8 et 9	1	NON						
		30/06/2016	sept-16	B11_TR-10	7943 kW	S3D-1056L								
			déc-00	B12_TR-1	1050 kW	HXI 642 0								
12	4	22/06/2005	déc-00	B12_TR-2	1050 kW	HXI 642 0	1	OUI						
12	-	22/00/2003	sept-02	B12_TR-3	1050 kW	HXI 641 0 C	1	001						
			sept-02	B12_TR-4	1050 kW	HXI 641 0 C								
		24/08/2012	janv-11	B15_TR1-GF1	1070 kW	VXC-S288X	1							
15	3	24/00/2012	juil-13	B15_TR1-GF2	1450 kW	VXI-180-2-R	1	OUI						
		24/02/2015	sept-14	B15_TR1-GF3	1450 kW	VXI 180-2	1							
	2	22/06/2005	nov-03	B16_TR1-GF	1085 kW	HXI 542 O D	1	OUI						
16	۷	24/02/2015	juin-14	B16_TR1-GF3	1450 kW	VXI 180-2	1	001						
10	2	24/02/2015	janv-13	B16_TR-2	7900 kW	S3E 1222 14S/WH	1	NON						
	2	24/02/2015	janv-13	B16_TR-3	7900 kW	S3E 1222 14S/WH	1	NON						
			avr-14	B17_TR-1	3500 kW	VXT 470 R	1	NON						
17	4	24/02/2015	avr-14	B17_TR-2	3500 kW	VXT 470 R		INOIN						
1/	1		En projet	B17_TR-3	3500 kW	VT1 1018-03M	1	NON						
			En projet	B17_TR-4	3500 kW		1	INOIN						
22	2		En projet	B22_TR-1	8000 kW									
۵۵	۷		En projet	B22_TR-2	8000 kW									
23	2		En projet	B23_TR-1	1450 kW									
23	4		En projet	B23_TR-1	1450 kW		Ī							

Nbre tours Substituting Nbre circuits Substituting 20

