PIÈCE C.10 : ANNEXES

Sommaire des annexes

Annexe 1 : Rapport d'analyses macroinvertébrés

Annexe 2 : Etude hydraulique

Annexe 3 : Fiche de terrains des prélèvements piscicoles

Annexe 4 : Résultats bruts des prélèvements piscicoles sur les linéaires du Janon et du Ricolin

Annexe 5 : Diagnostic zones humides Annexe 6 : Étude d'assainissement

Annexe 7 : Simulation acoustique d'écrans provisoires

Annexe 8 : Bilan GES

Annexe 9 : Avis de l'Autorité environnementale de novembre 2020 et mémoire en réponse de la première étude d'impact

ANNEXE 1: RAPPORT D'ANALYSES MACROINVERTEBRES

Rapport d'analyse Macro-invertébrés en petit cours d'eau (MPCE)

Numero de rapport : MPCE.07-2021

DREAL AURA

Date d'édition : 2/11/21

A l'attention de M. Pierre VACHER 5 place Jules Ferry

Objet soumis à l'analyse : macro-invertébres benthiques
Dossier : RN88 - Complément du demi-échangeur
de la Varizelle à Saint-Chamond (42)

69453 LYON Cedex 06

Points de prélèvement

JANON - code JAN RICOLIN - code RIC

Prélèvements ♦

Méthode: NF T 90-333 (sept. 2016)

Effectués par ARALEP (Anne Morgillo et Paul Gauthier)

Date (s): 14/09/2021

Type de conservation : Alcool 95" (prioritairement) et formol 4%

Type d'échantillons réalisés : 3 échantillons de phase A, B et C.

Analyses laboratoire ❖

Méthode: NF T 90-388 (déc. 2020) (correspond à l'évolution de la norme expérimentale XP T 90-388)

Effectuées par ARALEP (Anne Morgillo) à l'adresse ci-dessous. Dates de réalisation des analyses : du 4 au 11 octobre 2021

Grossissement utilisé pour le tri des petites fractions (< 5 mm) : X 2 minimum.

Grossissement maximum utilisé pour la détermination : X 90.

Individus non déterminés au niveau requis par la norme (genre) : jeune stade, nymphe ou individu abimé.

Résultats ♦

Pour chaque point de prélèvement, le présent rapport comporte les éléments suivants :

- fiche station avec localisation du point de prélèvement (extrait IGN) et conditions environnementales,
- fiche terrain avec éléments descriptifs et tableau d'échantillonnage,
- listes faunistiques.

Indices

- note IBGN recalculée (Norme NF T90-350) et note EQR (arrêté du 27/07/15) hors champ d'accréditation.
- note I2M2 calculée sur le site SEEE eau france (si demandée) hors champ d'accréditation.

♦ Elément couvert par l'accréditation - Le rapport établi ne concerne que les échantilions soumis à l'essal. La reproduction de ce rapport d'analyse n'est autorisée que sous sa forme intégrale.

Les analyses ci-dessus ont été réalisées par l'ARALEP, laboratoire agréé pour le paramètre MPCE par le Ministère en charge de l'Environnement dans les conditions de l'arrêté du 27 octobre 2011.

Signataire des rapports d'analyse MPCE Anne Morgillo

Morgelle

Comput LyonTech-La Douz - Böt - CET 2 - 56, Bd Niels Behr - CS 12/12 - 69603 Villeurbenne Cedex fell + 33 (0)4 78 93 96 33 - email - fraget@erdep.com - H1tp://www.anslep.com SAS ou capital de 12 144 eures - 8CS Lyon 438 377 947 00017 - Code NAF - 72/19 Z

ENR.45 - version 6 - Date d'application : 23/04/2021 - Page 2/1

e Macro-invertibres Petits Cours d'Eau : RMSB - Demi-échangeur de la Variaelle à Saint-Chamond (42) - DREAL AuRA

1/8

100	-	station		prilibonion		-	onforespoke	taboratoire	taxcoonig
	MONK	1000	TP3	14/09/2021	AMO	PGA	No 4 ot 7/10/21	OWY	30
	RCGUN	MC	183	1A/09/2021	AMD	PGA	No. 8 et 11/10/21	WAD	35

Rapport d'analyses MPCE,07-2021

Fiche station MPCE - Norme NF T90-333

Commune : Saint-Chamond dépt: 42 Code station : Cours d'eau : Janon Date de prélévement : 14/09/2021 Réseau : sans objet Heure : 09:55 Type: TP3 Code agence :

LOCALISATION DU SITE DE PRELEVEMENT

Coordonnées Lambert 93 (m) : Avail X: 816303 X: 816355 Y 6485766 Y: 6485823

Alt (m): 383

Localisation / Description

Amont : Tête de radier environ 50 m avail seuil

Aval: Environ 127 m aval seuil

Point représentatif du secteur:

Site déplacé : Si oui, justifier :

CONDITIONS DE PRELEVEMENT

Météo : 3-Temps humide

Situation hydrologique 3-Basses eaux apparente :

Situation hydrologique 2 - Stable

antérieure :

Limpidité : 1-Limpide

Visibilité du fond : 1 - Bonne visibilité

Environnement RD: Urbain

Environnement RG: Urbain

PHOTOS

Rapport d'analyses MPCE.07-2021

Rapport d'analyses MPCE.07-2021

MPCE - Norme NF T90-333 - Liste faunistique

CODE STATION: COURS D'EAU :

ARALEP COMPANY CAN

JAN Janon Date de prélèvement :

14/09/2021

5/8

		Code Sandre	Α	В	C
TRICHOPTERA	DANGE I PLAN IN LINE THE TA	181			
Hydropsychidae	Hydropsyche	212	1	1	2
Hydroptilidae	Hydroptila	200	14	3	2
Leptoceridae	Mystacides	312	2		1
Rhyacophilidae	Rhyacophila	183	4	12	7
EPHEMEROPTERA	T	348	2000	0-0.060	Second
Baetidae	Baetis	364	88	244	392
Ephemerellidae	Seratella	5152			1
COLEOPTERA	100000000000000000000000000000000000000	511			
	Elmis	618	8	13	1
Elmidae	Limnius	623		2	2
Elmidae	Oulimnius	622	8	1	3
DIPTERA	Name of the last o	746		(fit	
	Ceratopogonidae	819	2	1	2
	Chironomidae	807	1184	392	84
	Empididae	831	0.00000	14-000000	2
	Muscidae (Coenosiinae)	32534	1		
	Psychodidae	783		2	317
	Simuliidae	801	208	1408	800
	Stratiomyidae	824	2	1,1000	000
	Tipulidae	753	10	6	
ODONATA	- gallaga	648	10		
	Calopteryx	650	37	1	9
CRUSTACEA	Calopieryx	859	- 31		
	Asellidae	880	140		3
	Gammaridae sp	887	112	132	124
	Gammarus	892	68	64	96
AUTRES CRUSTACES	Gammarus	092	00	04	90
	Copépoda	3206	1		
	Ostracoda	3170	i		
HYDRACARINA	Ostracoda	906	- i	1	1
BIVALVIA		5125		194	
	Sphaeriidae sp	1042	96		5
	Pisidium	1043	76		3
GASTROPODA	FISIUIUIII	5123	70		
	Potamopyrgus	978	720	57	142
		995	2	5/	142
	Physidae sp	1028	2	3	1
Planorbidae HIRUDINEA	Ancylus	907	4	3	
			440	191	
	Erpobdellidae	928 933	41	1	1 12
OLIGOCHAETA			880	33	12
TURBELLARIA		3326	0.80	0.20	94
	Dendrocoelidae	1071	21	2	1
	Dugesiidae	1055	12		4
Planariidae NEMATHELMINTHA	Planariidae	1061	16		
		3111		1	

3/8

Fiche prélèvement MPCE - Norme NF T90-333

CODE STATION: JAN COURS D'EAU: Janon Date de prélèvement: 14/09/2021

Profondeur moy (m): 0,125
Largeur débit plein bord (m): 6,7
Surface mouillée (m²): 284,9
Prospectable à pied (%): 100

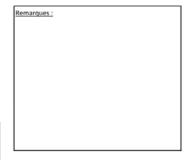
Largeur au miroir Lm (m): 3,7 Surface mouillée 5 % (m²): 14,245 Facies d'écoulement*: Radier/plat courant faciès lotique: 0,05
Longueur totale Lt (m): 77 (limite sup. substrat marginal) Successions (si oui, nb): 3 faciès lentique: 0,2

(attention, Lt = au moins 1/2 Lth)

				Classes	de vitesse	
Description du point de	e prélèvement		N1	N3	N5	N6
Nature du Substrat	Superficie % estimé	D/M/P		Recouvreme	nt estimé***	
S1 - Bryophytes						
S2 - Spermaphytes immergés (hydrophytes)						
S3 - Débris organiques grossiers (litières)	1	М	1			
S28 - Chevelus racinaires /branchages	1	М	1			
S24 - Pierres, galets (2,5 cm à 25 cm)	80	D	1	3	2	
S30 - Bloc facilement déplaçables (> 25 cm)	1	М		1		
S9 - Granulats grossiers (2,5 mm à 25 mm)	13	D	1	2		
S10 - Spermaphytes émergents (hélophytes)						
S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins						
S25 - Sables (< 2 mm) et limons	3	М	1			
S18 - Algues, bactéries, champignons	P	Р	1	2		
S29 - Roches, dalles, blocs non déplaçables, marnes et argiles compactes, surfaces artif.	1	М	1			
Totaux	100	The state of the s				

[Plar	n d'échantillonnag	ge - Description des	prélèvements élé	mentaires			
	Substrat : code	Substrats	Classe Vitesse	Profondeur (cm)	Colmatage****	Nature du	Surber ou	N° de	Conse	rvation
	obligatoire	associés (code)	Clusse Vicesse	Troionacai (ciny	Comutage	colmatage	Haveneau	Phase	Al. 95°	For.4%
1	S3		N1	25	++	limons	S	A	Х	Х
2	S28		N1	20	***	limons	S			
3	S30		N3	10	0		s	nb boîtes		
4	S25		N1	15	++	limons	S	2		
5	S24		N3	8	0		S	В	Х	
6	S9		N3	8	0		S			
7	S24		N5	4	0		S	nb boîtes		
8[S24		N1	5	0		S	1		
9[S24		N3	8	0		S	С	Х	
10	S24		N5	4	0		s			
11	S24		N1	3	0		S	nb boîtes		
12	S24		N3	12	0		S	1		

Répartition** des écoulements (cm/s)


 sur le point de prélèv.

 N1 <5</td>
 2

 N3 5-25
 5

 N5 25-75
 4

 N6 >75

^{*} Faciès d'écoulement : mouille, plat courant, plat lentique, radier, rapide, escalier, chenal lentique, chenal courant

^{** 1: 1-5%; 2: 5-10%; 3: 10-25%; 4: 25-50%; 5: 50-75%; 6: &}gt;75%

^{***} à renseigner comme suit : 4, 3, 2, 1 (commencer avec 3 si seulement 3 classes de vîtesses, etc...)

^{**** 0 :} pas de colmatage ; + : colmatage léger ; ++ : colmatage moyen ; +++ : colmatage important

Fiche station MPCE - Norme NF T90-333

Commune : Saint-Chamond dépt: 42 Code station : Cours d'eau : Ricolin Date de prélévement : 14/09/2021 Réseau : sans objet Heure : 11:05 Type: TP3 Code agence :

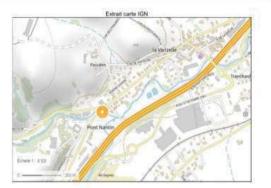
LOCALISATION DU SITE DE PRELEVEMENT

Coordonnées Lambert 93 (m) : X: 816165 X: 816234

Y 6485748 Y: 6485725

Alt (m): 388

Localisation / Description


Amont : Aval immédiat pont de la route de la Varizelle

Aval: Environ 10 m confluence avec le

Janon

Point représentatif du secteur:

Site déplacé : Si oui, justifier :

CONDITIONS DE PRELEVEMENT

Météo : 3-Temps humide

Situation hydrologique 3-Basses eaux

apparente :

Situation hydrologique antérieure :

2 - Stable

Limpidité : 1-Limpide

Visibilité du fond : 1 - Bonne visibilité

Environnement RD: Urbain Environnement RG: Urbain

PHOTOS

Rapport d'analyses MPCE.07-2021

Date de prélèvement :

14/09/2021

MPCE - Norme NF T90-333 - Liste faunistique

CODE STATION: RIC COURS D'EAU : Ricolin

ARALEP COMPANY CAN

PLECOPTERA Leuctridae Leuctra Nemouridae Nemoura TRICHOPTERA Hydropsychidae Hydropsyche	1 69 26	,	10.0	1040
Nemouridae Nemoura TRICHOPTERA				
TRICHOPTERA	26			1
Hydropsychidae Hydropsyche	181			
		1	6	5
Hydroptilidae Hydroptila	200	75	123	66
Leptoceridae Mystacides	312	6		4
Rhyacophilidae Rhyacophila	183	4	17	14
EPHEMEROPTERA	348	110	100	10010
Baetidae Baetis	364	256	800	448
Baetidae Centroptilum	383	12	16	8
Baetidae Procloeon	390		16	
Caenidae Caenis	457	1	1	1
Ephemerellidae Seratella	5152	2	3	1
Leptophlebiidae Habroleptoid	es 485	1		
COLEOPTERA	511			
Elmidae Dupophilus	620		8	
Elmidae Elmis	618	148	272	164
Elmidae Limnius	623		8	4
Elmidae Oulimnius	622	24	32	20
Haliplidae Haliplus	518	1	0.50	
Hydraenidae Hydraena	608	(5)	31	
DIPTERA	746			
Ceratopogonidae Ceratopogon		4	4	5
Chironomidae Chironomida		1632	368	244
Dixidae Dixidae	793	1002	1	5015
Empididae Empididae	831	1	,:4.	
Muscidae (Coenosiinae Muscidae (C		2	9	3
Psychodidae Psychodidae	783	15	6	4
Simuliidae Simuliidae	801	10	784	184
Stratiomyidae Stratiomyidae		9	7.04	104
Tipulidae Tipulidae	753	5	16	8
ODONATA	648	3	10	
Calopterygidae Calopteryx	650	2		7
Cordulegasteridae Cordulegaste		2		1
CRUSTACEA COIDLINGS	859			
Asellidae Asellidae	880	13	23	15
		256	172	
Gammaridae Gammaridae Gammarus	sp 887 892	208	72	52 30
AUTRES CRUSTACES	892	206	12	30
	3206	1	141	1
Copépoda Copépoda	3206	(2)	1	
Ostracoda Ostracoda	906			
HYDRACARINA		1	1	11
BIVALVIA	5125	140	20	
Sphaeriidae Sphaeriidae		5	4	12
Sphaeriidae Pisidium	1043	3	1	4
GASTROPODA	5123			20
Hydrobiidae Bythinella	992	2	272	2
Hydrobiidae Potamopyrgu		328	448	352
Physidae sp	995	15	5	9
Physidae Physella	19280	6	1	5
Planorbidae Ancylus	1028	29	62	66
OLIGOCHAETA	933	61	31	12
TURBELLARIA	3326			
Dugesiidae Dugesiidae	1055	3	2	
NEMERTEA	1052			
Prostomatidae = Tetras Prostoma	3110		1	
NEMATHELMINTHA	3111		1	1

Rapport d'analyses MPCE.07-2021 6/8 8/8

Fiche prélèvement MPCE - Norme NF T90-333

CODE STATION: RIC COURS D'EAU: Ricolin Date de prélèvement : 14/09/2021

Largeur débit plein bord (m) : Largeur au miroir Lm (m) : 4,1 Surface mouillée (m²) : 133,2 Prospectable à pied (%): 100

2 - plat lentique 1,8 Surface mouillée 5 %(m²) : (limite sup. substrat marginal) 6,66 Faciès d'écoulement* : Longueur totale Lt (m): 74 Successions (si oui, nb): 0

(attention, Lt = au moins 1/2 Lth)

				Classes de	vitesse	
Description du point de	e prélèvement		N1	N3	N5	N6
Nature du Substrat	Superficie % estimé	D/M/P		Recouvrement	t estimé***	
S1 - Bryophytes	Р	Р				
S2 - Spermaphytes immergés (hydrophytes)						
S3 - Débris organiques grossiers (litières)	1	М	1			
S28 - Chevelus racinaires /branchages						
S24 - Pierres, galets (2,5 cm à 25 cm)	83	D	1	2		
S30 - Bloc facilement déplaçables (> 25 cm)	2	М	1	2		
S9 - Granulats grossiers (2,5 mm à 25 mm)	10	D	1	2		
S10 - Spermaphytes émergents (hélophytes)						
S11 - Vases : Sédiments fins (< 0,1 mm) avec débris organiques fins						
S25 - Sables (< 2 mm) et limons	1	M	1			
S18 - Algues, bactéries, champignons						
S29 - Roches, dalles, blocs non déplaçables, marnes et argiles compactes, surfaces artif.	3	М	1	2		
Totaux	100			-		

[Plar	n d'échantillonnag	ge - Description des	prélèvements élé	mentaires			
	Substrat : code	Substrats	Classe Vitesse	Profondeur (cm)	Colmatage****	Nature du	Surber ou	N° de	Conse	rvation
	obligatoire	associés (code)	Clusse Vicesse	Troionacar (cin)	Comutage	colmatage	Haveneau	Phase	Al. 95°	For.4%
1	S3		N1	3	0		s	A	Х	Х
2	\$30		N3	10	0		s]		
3	S25		N1	7	0		s	nb boîtes		
4	S29		N3	5	0		S	2		
5	S24		N3	5	0		S	В	Х	Х
6	\$9		N3	5	0		s]		
7	S24		N1	3	0		S	nb boîtes		
8	S24		N3	3	0		s	1		
9[S24		N1	8	0		S	С	Х	
10	S24		N3	5	0		s			
11	\$24		N1	8	0		s	nb boîtes		
12	S24		N3	3	0		S] 1		

faciès lentique : 0,1

0,065

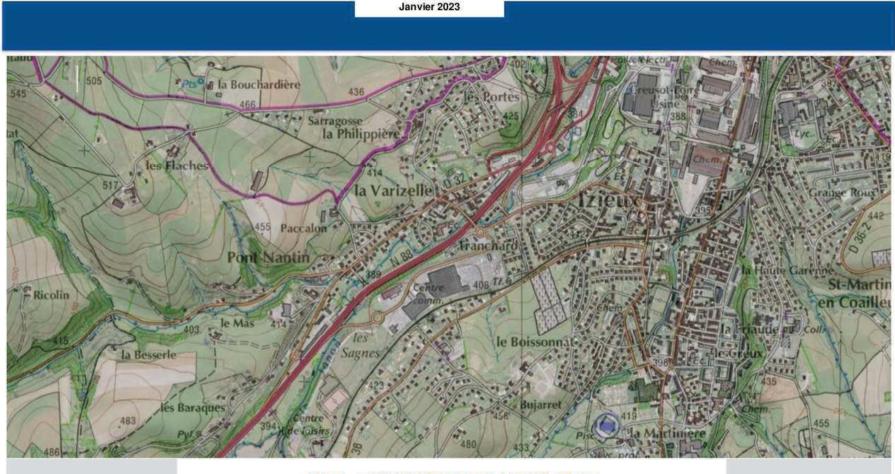
0,03

Profondeur moy (m):

faciès lotique :

Répartit	tion** des	
écoulen	nents (cm/s)	
sur le p	oint de prélèv.	
N1	<5	3
N3	5-25	6
N5	25-75	
N6	>75	

Remarques : Etiage marqué.


^{*} Faciès d'écoulement : mouille, plat courant, plat lentique, radier, rapide, escalier, chenal lentique, chenal courant

^{** 1: 1-5%; 2: 5-10%; 3: 10-25%; 4: 25-50%; 5: 50-75%; 6:}

^{***} à renseigner comme suit : 4, 3, 2, 1 (commencer avec 3 si seulement 3 classes de vitesses, etc...)

^{**** 0 :} pas de colmatage ; + : colmatage léger ; ++ : colmatage moyen; +++: colmatage important

ANNEXE 2 : ETUDE HYDRAULIQUE

RN88 - ECHANGEUR DE LA VARIZELLE

Dossier PROJET

II.6 ASSAINISSEMENT ET HYDRAULIQUE

II.6.2 Rapport hydraulique et renaturation

Suivi des révisions du document

O	18/01/2023	Modifications suite aux remarques de la DDT	A. KOHN	G. PIVOT	D. ROUVEURE
8	14/10/2022	Modifications suite aux remarques du CEREMA, de la DDT et du SEM	A. KOHN	G. PIVOT	D. ROUVEURE
A	13/05/2022	1ère émission	A. KOHN	G. PIVOT	D. ROUVEURE
Indice	Date	Modifications	Établi	Vérifié	Approuvé

Codification du document

PRO_PRD_NOT_00534_C

SOMMAIRE

1.2 Synthese Des Precobertes. 1.2.1. Synthese del '[etude SOGREAH (2010)] 1.2.2. Synthese del '[etude ARTELIA (2012)] 1.2.2. Synthese del '[etude ARTELIA (2012)] 1.2.3. Synthese del '[etude HTV (2014)] 1.3. APPROCHE RELEMENTAIRE DE LA COMPENSATION HYDRAULOUE. 1.5. DESCRIPTION DE L'ETAT DE REFERENCE 1.5.1. Galage du modèle 1.5.1. Modelisation de l'etat existant du Janon. 1.5.2. Modelisation de l'etat existant. 1.5.1. Modelisation de l'etat existant. 1.5. Modelisation de l'etat existant. 1.5. Mappes d'innodation à l'état existant. 1.5. Majore des profils en long actiant des bours d'eau. 1.6. Lairsement du seuil existant, en avai du pont de l'Impasse de la Magie. 1.6. Analyse des profils en long grafants des cours d'eau. 1.6. Analyse des profils en long grafants des borges. 1.6. Analyse des profils en long activation des tomperation. 1.6. Analyse des profils en long activation des tomperations. 1.6. Boscription des aménagements projetés. 1.8. Description des aménagements des tomperations. 1.7. Description de l'etat projeté sur	
122. 123. 124. 125. 125. 157. 157. 158. 158. 158. 158. 158. 158. 158. 158	
A P P 2.3 DEFINITION D DESCRIPTION 1.5.1. 1.5.2. 1.5.3. 1.5.4. 1.5.4. 1.6.3. 1.6.4. 1.6.5. 1.	
A PPROCHE RI DESCRIPTION DI 15.1. 15.2. 15.2. 15.3. 15.4. 16.2. 16.5. 16.5. 16.6. 16.6. 16.1. 16	
DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION 15.5.1 15.5.1 15.5.1 15.5.2 15.5.2 15.5.3 15.5.4 15.	
DESCRIPTION 15.5.1. 15.5.2. 15.5.3. 15.5.4. 16.5.3. 16.5.4. 16.5.6. 16.5.6. 16.5.6. 16.5.6. 16.5.6. 16.5.6. 16.5.6. 16.5.6. 17.3.2. 17.3.2. DESCRIPTION 17.3.2. 17.3.2. 17.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	
15.1. 15.2. 15.2. 15.3. 15.4. 16.2. 16.2. 16.5. 16.6. 16.6. 16.6. 16.1. Description 1.7.2. 1.7.2. 1.7.2. 1.7.2. 1.8.3. 1.8.3.	F
15.2. 15.4. DESCRIPTION 15.4. 16.2. 16.2. 16.3. 16.5. 16.5. 16.7. 16.7. 16.7. 17.1. DESCRIPTION 17.1. 17.3. DESCRIPTION 18.3. 18.3.	
15.3. Description 1.6.1. 1.6.3. 1.6.3. 1.6.4. 1.6.6. 1.6.7. 1.6.8. 1.6.7. 1.6.8. 1.6.10. 1.6.1	
15.54 DESCRIPTION 1.6.2. 1.6.5. 1.6.5. 1.6.5. 1.6.8. 1.6.1. 1.6.1. 1.6.1. 1.6.1. 1.7.1. 1.7.2. 1.7.2. 1.7.2. 1.7.3. 1.3.3.3. 1.3.3. 1.3.3. 1.3.3. 1.3.3. 1.3.3. 1.3.3. 1.3.3. 1.3.3. 1.3	
DESCRIPTION 1.63.3. 1.65.3. 1.65.6. 1.65.7. 1.65.7. 1.65.7. 1.6.11. DESCRIPTION 1.7.1. 1.7.3. DESCRIPTION 1.8.3. 1.8.3. 1.8.4.4. 1.8.3. 1.8.4.4.4.4. 1.8.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	[
1.6.1. 1.6.2. 1.6.2. 1.6.3. 1.6.5. 1.6.7. 1.6.7. 1.6.7. 1.7.1. 1.7.1. 1.7.2. 1.7.3. Description 1.8.3. 1.8.3.	
1.6.2. 1.6.3. 1.6.3. 1.6.5. 1.6.5. 1.6.6. 1.6.8. 1.6.8. 1.6.8. 1.7.1. 1.7.3. Description 1.8.3. 1.8.3.	1
1.6.3. 1.6.6. 1.6.6. 1.6.7. 1.6.7. 1.6.11. 1.6.11. 1.7.1. 1.7.1. 1.7.2. 1.7.3. 1.7.3. 1.7.3. 1.7.3. 1.8.3. 1.8.3.	-
1.6.4. 1.6.5. 1.6.7. 1.6.7. 1.6.10. 1.5.11. 1.7.1. 1.7.1. 1.7.2. 1.7.3. Description	Impasse de la Magie1
1.6.5. 1.6.7. 1.6.8. 1.6.10. 1.6.11. 1.6.11. 1.7.1. 1.7.3. 1.7.3. 1.8.3. 1.8.3.	+ ·····
1.6.6. 1.6.7. 1.6.10. 1.6.10. 1.6.11. 1.7.1. 1.7.2. 1.7.3. Description of 1.8.1. 1.8.1. 1.8.3.	2
1.6.7. 1.6.8. 1.6.11. Description 1.7.1. 1.7.1. 1.7.3. Description 1.8.1. 1.8.3. 1.8.3.	2
1.6.8. 1.6.10. 1.6.11. Description 1.7.1. 1.7.3. Description 1.7.3. 1.7.3. 1.7.3. 1.7.3. 1.7.3. 1.7.3. 1.7.3. 1.7.3. 1.7.3. 1.7.3. 1.7.3. 1.8.2. 1.8.2. 1.8.2.	2
1.6.10. 1.6.11. Description 1.7.2. 1.7.3. Description 1.8.1. 1.8.2. 1.8.3.	2
16.11. Description 1.7.1. 1.7.2. 1.7.2. 1.7.2. 1.7.2. 1.8.3. 1.8.3. 1.8.4.	
DESCRIPTION 1,7.1. 1,7.2. 1,7.3. DESCRIPTION 1,8.1. 1,8.2. 1,8.4.	s témoins du Janon et du Ricolin 3
1.7.1. 1.7.2. 1.7.3. DESCRIPTION 1.8.1. 1.8.2. 1.8.3.	3
1.7.2. 1.7.3. DESCRIPTION 1.8.1. 1.8.2. 1.8.3.	0
1.7.3. Description 1.8.1. 1.8.2. 1.8.3. 1.8.3.	le Ricolin35
	37
1.8.1. Modélisation de l'état projeté sur le Janon. 1.8.2. Modélisation de l'état projeté sur le Ricolin. 1.8.3. Nappes inondations à l'état projeté 1.8.4. Analyse de l'impact des aménagements sur les ouvra	38
	39
200	4
	Ф
ē	vrages hydrauliques (OH)41
Lo.5. Etude de la franchissabilité piscicole	*
DOSSIER DE PLANS	7

Liste des figures

553 : 555 : 556 : 5			Figure 71: Figure 72: Figure 73: Figure 74:		- N E	23 Figure 84: 23 Figure 85: 24 Figure 86:
Figure 1: Débits de crues aux principaux points de calculs Figure 2: Synthèse des singularités identifiées sur le Janon Figure 2: Synthèse des singularités identifiées sur le Janon Figure 3: Evolution des côtes attimétraçues du it mineur entre l'état existant et projeté sur le Janon Figure 4: Evolution des côtes attimétrajues du it mineur entre l'état existant et projeté sur le Nicolin Figure 5: Secteurs en zones inondables sur le trongon A Figure 6: Secteurs en zones inondables sur le trongon B Figure 7: Schéma de la compensation hydrauling. Figure 8: Vue en plan des profils en travers réalisés pour la modelisation hydraulique de l'état existant	Figure 9 : Calage du modèle hydraulique sur le Janon Figure 10 : Calage du modèle hydraulique sur le Ricclin Figure 11 : Résultais de la modèlisation actuelle sur le Janon pour une crue centennale Figure 12 : Profil en long de l'étal existant du Janon pour une crue centennale	Figure 12: Resultairs de la modelisation actuelle sur le Moolin pour une crue centennate	Figure 20: Illustration du ili du Janor en aval de la zone d'étude Figure 21: Exemple de calage Q2 pour les banquettes des sur le lil des cours d'eau Figure 22: Sorième de principe des amienagements projetés sur le lil des cours d'eau Figure 22: Sorième illustrant l'alternance radiers/mouilles	Figure 25 : Synthèse des forces d'arrachement pour une crue décennate, cinquantemate et centennate sur le Janon Figure 25 : Synthèse des forces d'arrachement pour une crue décennate, cinquantemate et centennate sur le Aicofn Figure 26 : Synthèse des forces d'arrachement pour une crue décennate, cinquantemate et centennate sur le Aicofn ?	Figure 27 : Évolution des vitesses d'écquement en fonction des profits modélisés sur le Ritolin. Figure 28 : Evolution des vitesses d'écquement en fonction des profits modélisés sur le Janon. Figure 29 : Diagramme de Hiulsfröm.	Figure 30 : Synthèse des forces d'arrachement sur le Janon et le Ricolin Figure 31 : Récistante des terbiniques de renformement de berges Figure 32 : Viue en plan de la colonisation de la Renouée du Japon sur le site

Constant 27 Constitution and Constant Assessment Constant Assessment Constant Consta	CO
Figure 27: Evolution des vitesses d'écollement en fonction des	tion des profils modelises sur le Ricolin
Figure 28 : Evolution des vitesses d'écoulement en fanction des profils modélisés sur le Janon	fon des profils modélisés sur le Janon
29	22
30	non et le Ricolin
31	de hargas
Figure 32 : Vue en plan de la colonisation de la Renouée du Japon sur le site	e du Japon sur le site24
Figure 33 : Colonisation de la Renouée du Japon sur le site	site
Figure 34 : Procédure de criblage · concassage	55
Figure 35 : Coupe des aménagements projetés entre l'OH 4621	NH 4621 et l'OH 4636
36	NH 4636 et l'OH 4781
Figure 37: Coupe des aménagements projetés entre l'OH 4781 et la zone de compensation	OH 4781 et la zone de compensation
38:	lanon au droif du bassin DIRCE
39	anon à l'aval du bassin DIRCE
Figure 40 : Synthèse des volumes bour la compensation hydraulique par secteur	hydraulique par secteur
17	as pour la compensation hydraulique
٠.	
199	
	de 1953 el 2019.
2.0	32
Figure 46. Vue en plan du canal provisoire en phase chaniter	diller
47:	et filtre34
Figure 48: Vue en plan du déroulement de la deuxième phase chantier	phase chantier 35
Figure 49 : Vue en plan de la nappe d'inondation cinquantennale et de l'implantation de la base vie	ntennale et de l'implantation de la base vie36
Figure 50 : Schéma bilan des mouvements de matériaux lors de la phase	x lors de la phase 137
Figure 51 : Schéma bilan des mouvements de terre lors de la phase 2	de la phase 237
52:	ur la modélisation projetée

HYDRAULIQUE ET RENATURATION

PREAMBULE

1.1

	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
	ı	
0	ı	
2	١	
į	ı	
į	ı	
í	ı	
5	1	
3	ı	
2	ı	
1	ı	
,	ı	
,	ı	
	ı	
1	ı	
3	ı	
3	ı	
5	ı	
3	ı	
÷	ı	
	ı	
	l	
100		
100		
dans, some		
מיווסה יווים מיווים מיווי		
ממי וכי מתיוביווי מביווי		
THE PROPERTY OF THE PARTY OF TH		
THE PROPERTY OF THE PARTY OF TH		
יייים יייים או הייים הייים וייים		
The first of the continue of t		

	Point kilometrique	
Le travail confié au groupement à INGEROP se situe à un niveau Avant-Projet et vise à concevoir le projet du demi-	200	Inondation en rive gauche de
échangeur de la Varizelle ainsi que les mesures qui doivent l'accompagner pour garantir son acceptabilité par toutes	PR-4/30	
les partis concernés ;		Inondations fréquentes du lo

- Confirmation de l'impact positif sur l'aléa d'inondation et sur l'abaissement de la ligne d'eau pour des périodes de retours comprises entre 10 et 100 ans.

SYNTHESE DES ETUDES PRECEDENTES Synthèse de l'étude SOGREAH (2010)

L'étude hydraulique effectuée en 2010 par SOGREAH a permis l'estimation des débits du Janon et du Ricolin ainsi que la délimitation des zones inondables.

1.2.1.1. Estimation des débits de crues de la zone d'études

Le tableau suivant synthétise les débits de crues estimés aux différents points de calculs.

The state of	land of the color	S	07	95	010	020	030	050	00100
como nean	roun de Lateur	km²	m3/s	m3/s	s/Ew	m3/s	m3/s	m3/s	m3/s
	Amont Ricolin	23.7	7	14	24	34	33	46	55
	Aval Ricolin	30.6	6	17	52	41	48	95	29
uouer	Amont Langonand	31.5	6	17	æ	42	49	25	69
	Aval Langonand	49	12	24	42	58	88	80	96
Ricolin	Amont confluence Janon	6.9	2.8	5.6	9.6	13	16	18	22
Langonand	Amont confluence Janon	16.5	5.5	10.7	18.4	52	30	35	42

Figure 1 : Débits de crues aux principaux points de calculs

Nota: L'hydrologie présentée dans le tableau d'dessous a servi de référence pour l'élaboration du PPRI du Gier, et ont été repris dans les modélisations de la présente étude.

Point kilometrique	Description de la singularite
PK-4750	Inondation en rive gauche de deux habitations à la confluence Janon-Ricolin (à partir d'une crus décennate)
PK -5225	Inondations fréquentes du lotissement de la rue des Glycines en rive gauche à partir de la crue décennale. Inondations de neuf habitations au cours de la crue centennale
PK -5403	Identification d'une surverse sur l'autoroute en rive droite à environ 30 mètres en amont de ce point pour la crue centennale. En rive gauche, inondation du lit majeur. Ecoulements identifiés vers l'aval pour une crue centennale au niveau de l'intersection entre les rues Jean Rivaud et la Roche (point bas). Une école située rue jean Rivaud est concernée par ces débordements.
PK -5425	A partir d'une crue décennale, identification de débordements en rive gauche dus au sous- dimensionnement de l'ouvrage sous l'autoroute. L'autoroute est inondée à partir de crues trentennales.
PK -5621	Réhausse de la lame d'eau en amont du pont à proximité, submergé à partir d'une crue trentennale. Aussi, trois habitations sont inondées en rive gauche.
PK -6169 et -6245	Débordements en rive droite pour une crue centennale
PK-6162	Débordements sur la voirie en amont de la couverture de Saint-Chamond à partir d'une crue trentennale. L'entrée de la couverture de Saint-Chamond est identifiée comme un point noir hydraulique.
	Figure 2 : Synthèse des singularités identifiées sur le Janon

1.2.1.3. Écoulement et débordements sur le Ricolin

Sur environ 300 m à l'amont de sa confluence avec le Janon, des débordements ont été identifiés sur la route de la Varizelle en rive gauche à partir d'une crue tricennale (à proximité du garage Opel). Ces demiers s'expliquent par un sous-dimensionnement du lit du Ricolin.

Synthèse de l'étude ARTELIA (2012) 1.2.2.

II s'agit d'un complément d'études réalisé par ARTELIA (ex SOGREAH) afin d'identifier et caractèriser les débordements sur le Gier et le Janon au sein du secteur d'études.

Une modélisation hydraulique a été effectuée sous le logiciel CARIMA a permis de faire ressortir les résultats suivants ;

- dans la rue en aval et 14 m³/s débordent vers la rue du président Wilson. Au total, 35 m³/s se retrouvent en Sur les 96 m³/s du débit de pointe du Janon en amont de la couverture sous Saint Chamond, 21 m³/s s'écoulent dehors du Janon.
 - Un débit de crue de 45 m³/s constitue le seuil critique pour lequel sont visibles les premiers débordements.

Cette étude a mis en évidence les débits centennaux du Janon à des points spécifiques :

- En amont de la couverture : 96 m³/s.
 A l'intérieur de la couverture : 61 m³/s.
 Débit débordant : 35 m³/s.

5/51

6/51

1.23.

1.2.3.1. Aménagements sur le tronçon A sur le Janon

Les aménagements projetés dans ce secteur devaient permettre de supprimer le risque inondation en rive gauche du lit majeur du Janon ainsi qu'en lit majeur du Ricolin au lieu-dit Pont Nantin.

Plusieurs aménagements sont alors proposés :

- Arasement du seuil.
- Création d'un passage submersible au niveau de la rue de la magie de dimensions :
 - Longueur : 6 m. Section hydraulique : L = 8 m, H = 1 m.

 - Côte sous poutre : 383,74 m.
- Reprofilage du lit et élargissement de la section d'écoulement du Janon sur 170 mètres. Reprofilage de la voirie sur 60 mètres.

Un abaissement du lit mineur du Janon sera par conséquent réalisé. Le tableau ci-dessous synthétise l'évolution des côtes altimétriques du lit mineur du Janon entre l'état existant et projeté :

Numéro de profil	Évolution de l'altimétrie du lit mineur
Pont de la Magie	- 1,52 m
Profil 4750	- 0,75 m
Profil 4640	- 0,91 m
Profil 4635	- 0,55 m
Profil 4630	- 0,47 m

Figure 3 : Évolution des côtes altimétriques du lit mineur entre l'état existant et projeté sur le Janon

Aménagements sur le tronçon A sur le Ricolin 1.23.2.

L'objedif des aménagements projetés dans ce secteur consistait à supprimer le risque inondation sur les habitations en rive gauche du lieu-dit la Varizelle. Un reprofilage du lit du Ricolin est alors prévu sur 90 m.

Un abaissement du lit mineur du Ricolin sera également effectué. De la même façon que précédemment, le tableau ci-dessous présente l'évolution des côtes altimétriques du lit mineur du Ricolin entre l'état existant et projeté :

Numéro de profil	Évolution de l'altimétrie du lit mineur
Pont de la Magie	- 1,52 m
Profil 4750	- 0,75 m
Profil 4640	- 0,91 m
Profil 4635	- 0,55 m
Profil 4630	- 0.47 m

Figure 4 : Evolution des côtes altimétriques du lit mineur entre l'état existant et projeté sur le Ricolin

La figure ci-dessous extraite du PPRi du Gier et de ses affluents illustre les secteurs présentant un risque d'inondation pour une crue centennale.

Figure 5 : Secteurs en zones inondables sur le tronçon A

1.2.3.3. Aménagements sur le tronçon B sur le Janon

Dans ce secteur, l'objectif consistait à supprimer le risque inondation sur les habitations en rive gauche au lieu-dit la Vanzelle.

Un élargissement de la section d'écoulement était alors prévu sur un linéaire de 30 mètres environ. De plus, le merlon de protection en rive gauche à l'amont de la RD 32 ((H = 0.5 m, L = 70 m) devait être prolongé.

La figure ci-dessous extraite du PPRi du Gier et de ses affluents synthétise le risque d'inondation pour une crue centennale dans ce secteur.

Figure 6 : Secteurs en zones inondables sur le tronçon B

Sur ce tronçon, Saint Etienne Métropole a effectué une étude de faisabilité d'aménagement au cours des années 2014-2015. Les prestataires de cette étude ont travaillé en étroite collaboration avec le prestataire en charge de l'étude de faisabilité de création des ouvrages de ralentissement dynamique (ORD).

Ainsi, plusieurs scenarios d'aménagements ont été déterminés sur ce tronçon avec les conclusions suivantes

- Scénario 1 : creation de deux ouvrages de ralentissement dynamique à l'amont seul pour une protection
 - Scénario 2 : aménagement du lit et des berges seul pour une protection jusqu'à la Q100 jusqu'à la Q30.
- Scénario 3 : combinaison d'aménagement de deux ouvrages de ralentissement dynamique avec l'aménagement du lit et des berges pour une protection jusqu'à la Q100.

A noter dans ce scénario 3, que la création des deux ORD permet d'effectuer une réduction des débits qui a pour conséquence de minimiser l'aménagement du lit et des berges d'où l'économie effectuée par rapport au scénario 2.

Au regard des conclusions ci-dessus, le scénario 3 avait été retenu :

- A l'amont : création de deux ouvrages de ralentissement dynamique des crues (hauteurs de 14 et 11m; pour des stockages respectifs de 260 000 et 100 000 m3, ouvrages de classe C).
 - Sous-tronçon A: élargissement du Janon et reprofilage du lit, reprofilage du lit du Ricolin aval, reprofilage de la voirie et création d'un passage submersible, arasement d'un seuil
 - Sous-tronçon B : élargissement du Janon et création d'un merlon de protection.

Conformément à ce qui nous a été demandé suite à nos échanges avec la DDT et le SEM, notre modélisation hydraulique ne tient pas compte des futurs aménagements (notamment la création des ouvrages de hydraulique ne tient pas compte des futurs aménagements (notamment la création des ouvrages de ralentissement dynamique).

En résume, dans le cadre de l'opération, il avait été prévu dans l'Avant-Projet initial (APS) réalisé par le bureau d'études INGEROP :

- La création de deux ouvrages hydrauliques (un sur le Janon et un sur le Ricolin). L'élargissement d'un ouvrage hydraulique existant sur le Ricolin.
- Le rescindement du Ricolin au droit du nouveau giratoire.
- Le resondement du Janon en amont de l'ouvrage hydraulique existant sous la RN88 et au droit de la future breteile de sortie (en venant de Lyon).
- La réalisation d'un passage à gué submersible au droit de celui existant. La suppression du seuil existant, et rééquilibrage du profif en long des deux cours d'eau (éventuellement réalisation de seuils de stabilisation, si la pente d'équilibre n'est pas atteinte).
 - Assurer la franchissabilité piscicole et faunes des ouvrages hydrauliques futurs.
- Assurer la transparence hydraulique des ouvrages (OH) projetés (période de dimensionnements préconisées dans le PPRNI, 30 ans mini et viser 100 ans dès que possible)
- Compensation des volumes de remblais en zone inondable (volume pour volume et si possible cote pour cote)

Dans le cadre de notre étude nous avons retenu le dimensionnement centennal pour les ouvrages hydrauliques.

APPROCHE REGLEMENTAIRE DE LA COMPENSATION HYDRAULIQUE

D'après la rubrique 3.2.2.0 du Code de l'Environnement, l'arrêté du 27/10/2006 rappelle les différents objectifs liès à la prise en compte des liens entre le cours d'eau et les milieux terrestres adjacents concernant l'installation d'un ouvrage ou d'un remblai

- Tenir compte des chemins préférentiels d'écoulement des eaux et les préserver
- Réduire la perte de capacité de stockage des eaux de crue ainsi que l'élévation de la ligne d'eau.
 - La conception doit également être réalisée dans la plus grande transparence hydraulique.

La règlementation impose au minima une compensation volume pour volume. La figure ci-dessous schématise la compensation entre les remblais et déblais.

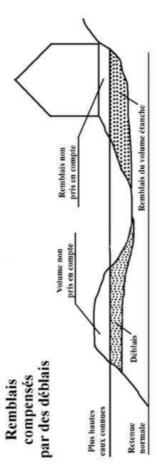
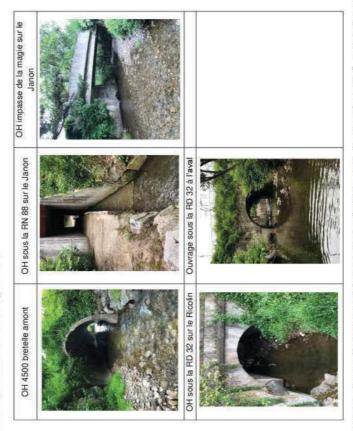
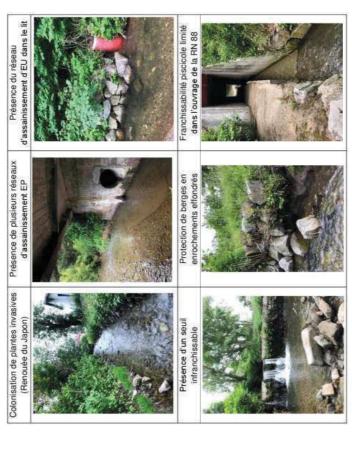


Figure 7 : Schéma de la compensation hydraulique déblais/remblais


7/51

DEFINITION DE L'ETAT DE REFERENCE


Les objectifs du projet de restauration consistent à déraser le seuil existant en aval du pont de l'impasse de la magie, de reprendre les profils en long des deux cours d'eau (le Janon et le Ricolin), et de compenser les volumes du projet routier implanté en partie dans le lit majeur des cours d'eau.

Le chapitre suivant dresse un état des lieux du secteur d'études.

Trois ouvrages ont èté identifiés sur le Janon et le Ricolin. Il est important de noter que les ouvrages sous la RN88 et sous la bretelle constituent des ouvrages limitants.

Les figures ci-contre, illustrent les principaux problèmes identifiés sur le linéaire d'étude. Ainsi, la franchissabilité piscicole se trouve fortement impactée au niveau du seuil existant et dans l'ouvrage sous la RN88 (OH 4621).

Deux bassins de rétention appartenant à la DIRCE ont également été identifiés sur le site.

Dans le cadre de cet avant-projet, et conformément aux échanges précédents, nous avons étudié la possibilité de regrouper ces 2 bassins, afin d'optimiser la gestion des eaux pluviales dans le secteur, et notamment pour ne pas créer un bassin supplémentaire implanté en zone inondable.

Bassin de rétention 2 de la DIRCE	
Bassin de rétention 1 de la DIRCE	

O

Le Ricolin est également fortement encaisse en amont et en avail de l'ouvrage sous la RD 32.

O

DESCRIPTION DE LA MODELISATION DE L'ETAT EXISTANT

1.5.1. Calage du modèle

Les modelisations de l'état existant effectuées sur le Ricolin et le Janon ont été structurées sur la base de celles réalisées par HTV avec 37 profils en travers répartis sur 2163 mêtres environ (une partie du modèle HTV) pour le Janon et 13 profils en travers répartis sur 3848 mètres (linéaire global initial) pour le Ricolin.

Les modélisations réalisées repartent donc d'un modéle 10 réalisé par HTV en 2014. La zone de confluence a été gérée en intégrant la contrainte aval des cours d'eau au niveau de la jondtion, afin de rester cohérent avec les niveaux d'eaux du modèle HTV et les informations recueilles auprès des riverains lors de la phase ferrain.

Pour la realisation des nappes d'inondation, et l'estimation des volumes de compensation hydraulique, une modélisation 2D Mensura, sur la base d'un modéle numérique de terrain (MNT), a été réalisée.

Nota: le modèle d'HTV sur le Janon a été coupé au niveau du profil aval n°5600, qui se trouve suffisamment à l'aval de notre zone d'études pour se trouver hors influence au niveau de l'impasse des lilas.

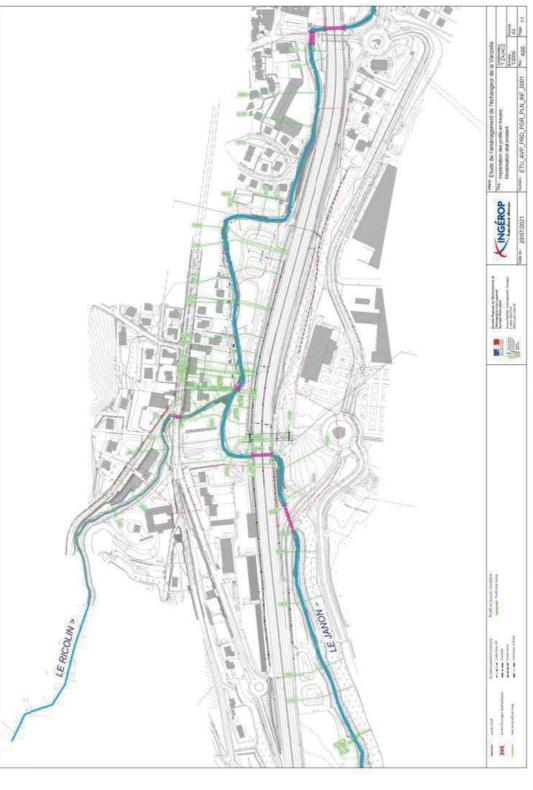


Figure 8 : Vue en plan des profils en travers réalisés pour la modélisation hydraufique de l'état existant

Les modélisations réalisées par HTV se basent quant à elles sur celles effectuées pour la réalisation du PPRi. Ces dernières ont alors été enrichies par un complément topographique afin d'améliorer la description hydraulique du secteur d'étude par la modélisation numérique.

De la même façon, les débits de crues utilisées se basent sur la modélisation réalisée par HTV. Pour rappels, le tableau en partie 1.2.1.1 synthétise ces informations.

Le paramètre de calage a été le coefficient de rugosité qui en pratique est assez difficile à estimer. En nivière, il peut varier assez facilement en fonction du type de substrats et de la granulométrie moyenne. Habituellement, des valeurs limites sont cependant considérées : K peut varier de 5 à 40 en lit mineur et de 7 à 35 en fit majeur.

Dans la présente étude, le paramètre de calage varie selon 4 types de surfaces : 50 dans les ouvrages, 30 en lit majeur, 25 en lit mineur et 10 en zones urbanisées. Le tableau ci-dessous présente les résultats de ce calage sur le Janon. Les résultats de niveaux d'eau et d'altitude du niveau de fond pour une crue centennale sont comparées entre les modélisations INGEROP et HTV. L'écart de l'altitude de la ligne d'eau est également comparé entre les modélisations INGEROP et PPRI.

						The same of	Total Co.	The same of the	
		Memili	All forst	Nivenu	Attitions	Harronco.	100	mer inner	Commentains
	3300	400.00	AND BELL	ANEGO	AV. US	200		- Indicate and a second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
t c	2000	100 000	000000	10000	000,000	200			
-	-3310	408,40	400 34	408.40	40h. 14	00			
	-3200	404.00	402.44	404,00	407.44	00		***	
	-3620	399.80	392.73	300.04	307.73	-0.1			
	-3925	16.668	17:748	1999,948	397.73	0.0			
	-3626								
	2004	100 00	922.74	39868	807.79	90			
		200	100		100				
	-4138	335.08	355.07	25/75	515.73	7			Difference of medantation du seuil
	4340	395.34	393.11	393,69	392.64	1.6			
	-4142.5	393.88	392.37	394.73	393.03	-0.4			
The same	1	200000	200.00	200.0 4.1	200 30	100	260.30	0.00	THE RESERVE AND PARTY OF THE PA
1	П	376.76	200/000	202042	307.70	ca.	305.19	0.45	PETER RESIDENCE FOR ACET, ELIGIE MODELLE IN VINNESSEE DOSE INCIDENTAL SE
DOCUMENT OF THE PARTY OF THE PA	-1501							120000000	CHANGE IN THE PROPERTY OF THE PROPERTY A SECURITY OF
Ī	-4525	391.50	388,03	391.12	387,44	9.0	39154	0.04	
	-4585	391.63	386.66	391.13	386.30	50	391.28	0.35	
-	4588	391 58	385.30						
and land	L		-						Other state of the state of
10130	П								PER PER MALION OF SECTION OF COUNTY OF PERSON
OH4521	-4621	389.47	386.00	389.24	385.74	0.5		310	THE RESIDENCE OF THE PROPERTY
	-4622	3386.01	336.06	387.59	385.14	0.4			Remau hydraulique à la sortie de l'ouvage - Rehactur de la ligne d'eau
-	-0630	198.43	385.05	388.99	345.47	-127	Î		STATE OF THE PROPERTY OF THE PARTY OF THE PA
	2000	000000	V/ 300	00000	100 000				The same of the sa
		300.70	200 000	202,000	20000	V.V.			Modele cald a la modelisation HTV
	-9640	388.93	385.52	388.99	385.11	100			
	-4750	388.93	365.25	388.98	184.75	-0.1	388.24	0,00	
Pont de la magie	-4780	388.90	365.07	368.92	384,84	0.0	387.97	0.93	The state of the s
UN42281	4781								Linux age on ta Magne est sous Perfuence du veulla Taval - Medudion de sa
		300 70	264.00	305.55	304 73	200			capacoe hydraulique « Rehaurse de la ligré d'oau en amont
Total Contract of the Contract	DO A	300.73	200 200	7007	20%, 73	200	THE PARTY	100.00	State of the State of the County and County
The sound	000	302.00	200.70	30027	304.30		202.00	0.00	where the property and registers and the property of the party of the
Avai seuti	4810	385.60	382.36	385,68	382.73	-0.1			
	4825	385.28	382.55	385.63	387.60	0.4			
	-4875	384.97	382.27	385.25	382.05	-0.3		276	
	-4925	384.90	381,77	384.63	381.97	0.3			
	.4675	386.45	287.53	38.0.03	381.48	00			
		-	100		200				
	3011	388,24	281.52	354.35	281.73	100	384.80	0.26	
	-5050	383.98	380,96	383.93	380.98	0.1			
	9605	383.40	380.36	383,59	380.45	-0.5			
	25120	187.85	THE UNIT	261.41	00,000	200	161.04	1.00	is a reduction the is like of any a continue cay of preparation of the resort des
15		1	00000	20000	04.000		1	1	
	-5165	382.71	380.49	56 5 7 7	880.08	50	383.41	40.70	sections an travers, to nouvelle topographie, pun attendue et plus process
	-5225	182.51	379,60	BK3.22	879.60	-0.7		1	
	5275	382.45	379.16	382.31	379.21	10			
	3689	391 48	576.67	383.16	378-51	2.0			
1				100000	1000				
	-35/3	381 /5	3/8.01	352.07	377.36	6.0			
	-5395	381.74	378.05	382,10	378.35	-0.4			
	-5396		200000000000000000000000000000000000000	THE PERSON IN	The second second	1000000			
	-5403	381,74	377.90	381.98	377.90	.0.2			
	240.4								
	2000	100	200	100000					
	- 5453	382.07	377.38	36093	377.30	-0.7			
	-5425.5	ALC: CONTRACT			10000	The same			
	- 8296-	300.00	376,807	300,01	376.87	0.1			
	-5430	Santa Control		100000000000000000000000000000000000000	20000	200000			
	-5460	390.32	326.67	380.37	326.67	:0:1			
	SABOR	30,70	176.41	380.06	126.43				
	0000	200.40	200.00	20000	200 311	0.0			
-	-2200	380.03	375.21	19004	578.21	00			
-	-5541	379.99	376.45	380,00	376.45	0.0			
	E 6.4 %	20,000	976.10	SAMAGE	875.48	99			
	2000	30000	373.00	20000	100000	2000		-	

Figure 9: Catage du modèle hydraulique sur le Janon

En amont de l'OH 4500 de la bretelle, il est possible de constater une différence de 2,2 mètres entre les résultats soblenus des modélisations NGEROP et HTV. Celle-ci s'explique par l'implantation du seuil qui est différente entre les deux modélisations. En effet, cette implantation différente, s'explique par l'ajout de compléments topographiques à la modélisation INGEROP par rapport à celle realisée par HTV (sans aucune incidence sur la zone d'étude).

Entre l'OH 4500 de la Bretelle et l'OH 4621 de la RN88, la comparaison entre les deux modélisations, paramètrage présente également quelques différences. Tout d'abord, sur l'OH 4500 la modélisation INGEROP est plus proche du résultat obtenu pour la réalisation du PPRI 2017 du fait de la correction du paramétrage de l'ouvrage (passage d'une buse à un pont). En amont de l'OH 4621, les pentes des deux modélisations sont différentes avec une différence de section.

Entre l'OH 4621 de la RN88 et l'OH 4781 de l'impasse de la magie, l'apparition d'un remous hydraulique à la sortie de l'OH 4621 provoque la rehausse de la ligne d'eau de 40 cm (au PK -4622). La modélisation INGEROP est toutefois correctement calée sur celle d'HTV pour le reste de ce tronçon. L'OH 4781 sous l'impasse de la magie est directement sous l'imfluence du seuil à l'aval. La réduction de sa capacité hydraulique induit une rehausse de la ligne d'eau en amont.

permettant ainsi de se caler plus finement sur les résultats obtenus sur la modélisation du PPRI. A l'aval du site, au PK – 5120 et – 5165, la ligne d'eau de la modélisation INGEROP se trouve être respectivement à -1,05 et -0,70. Cela s'explique par des sections en travers différentes induites par une topographie plus étendue et plus

Au droit du seuil au PK – 4808, la modélisation INGEROP ajoute une loi de seuil par rapport à celle réalisée par HTV

Le tableau ci-dessous présente les résultats de ce calage sur le Ricolin. De la même façon que précédemment, la modélisation INGEROP pour une crue centennale est comparé à celles réalisée par HTV et pour l'élaboration du PPRI.

	2000						
	Niv eau INGEROP	Alti fond INGEROP	Niv eau HTV	Alti fond HTV	Ecart Q100 ING/HTV	2017	Ecart Q100 ING/PPRI
3512	482,64	481,18	482,64	481,18	00'0		
3502	482,65	480,28	482,65	480,28	00'0		
3470							
3430	478,10	477,32	478,10	477,32	00'0		60
2460	446,18	444,85	446,26	444,85	80'0-		
2390	439,99	439,21	440,32	439,21	-0,33		
297	392,23	389,95	391,68	389,50	0,55		
757	391,07	389,27	391,165	389,34	60'0-		
168	389,68	387,51	389,59	387,62	70,0		
150	389,58	387,19	389,24	387,19	0,34		
125	389,49	386,68	389,12	386,68	0,37		
113	389,48	386,29	389,20	385,68	0,28		
100							
98	388,91	386,44	389,02	385,68	-0,11		
95	388,89	386,43	389,02	386,23	-0,13	389,01	0,12
20	388,96	385,85	389,04	385,85	80'0-		
28	388,91	385,75	388,98	385,73	-0,07		
18	388,88	385,24	388,97	385,40	60'0-		
0	388,89	385,13				389,01	0,12
-4780	388.91	385.07	389.01	384.84	-0.10		

Figure 10 : Calage du modèle hydraulique sur le Ricolin

Les écarts INGEROP / HTV sont principalement dus à la reprise de berge du gabarit du cours d'eau en rive droite. Le gabarit de l'ouvrage hydraulique existant sous la RD32, est différent de la modélisation HTV, et la penie est plus faible. L'engravement de cet ouvrage pourrait expliquer ces différences. Sur la partie avai les variations sont dues à la différence du riveau d'eau sur le Janon.

1.5.2. Modélisation de l'état existant du Janon

La modélisation de l'état existant amène les résultats. Sur ce tableau sont indiquées les altitudes des niveaux de fond ainsi que des niveaux d'eau pour une crue centennale pour chaque profil.

	OHOL DO DESAIL	Niveau d eau Cino
PROFIL	Initial	Initial
	(m NGF)	(m NGF)
4361	389.15	393.09
4458	388.67	393.05
-4500	388,03	392.92
-4501	OH4500 - Sous Br	Sous Bretelle de sortie RNSB
-4525	388.03	391.50
-4532	387.95	391.55
4568	387.30	391.59
-4585	386.66	391.63
-4588	386.39	391.58
-4588.2	386.17	391.60
-4588.5	OH4621	- Sous RN88
4621	386.00	389.47
-4622	386.06	388.01
4626	386.05	388.84
-4630	385.95	388.93
-4631	385.87	388.92
-4636	-9E94HO	DH4636 - Sous Barreau
4640	385.52	388.93
-4750	385.75	388.48
-4780	385.07	388.90
-4782	384.79	388.93
-4785	OH4781 - Sous I	Sous Impasse de la Magie
-4786	384.80	386.75
-4800	384.64	380.35
4808	384.94	385,86
-4810	382.36	388.80
4825	382.55	388.28
-4845	382.39	385.12
-4875	382.27	384.97
-4925	381.77	384.90
4928	381.84	384.67
4675	32157	CR 900

Figure 11 : Résultats de la modélisation actuelle sur le Janon pour une crue centennale

La figure suivante présente le profil en long existant de la modélisation existante pour une crue centennale. Les cinq ouvrages existants y sont également représentés.

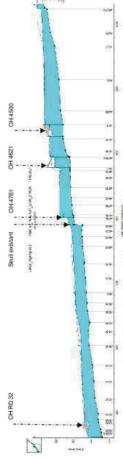


Figure 12 : Profil en long de l'état existant du Janon pour une crue centennale

Aussi, les losanges blancs notés « OWS Q100 » symbolisent les niveaux de lignes d'eau obtenues lors de la modélisation utilisée pour l'élaboration du PPRI. L'atitude de la figne d'eau d'une crue centennale pour la modélisation INGEROP est représentée par la surface bleue. Il est possible de voir apparaître en amont de chaque ouvrage une augmentation de la ligne d'eau due à la réduction de la section d'écoulement à l'intérieur de l'ouvrage. Par conséquent, en amont de l'OH 4781, la mise en charge de l'ouvrage est actuellement très importante. La ligne verte en pointillés symbolise la ligne d'energie du cours d'eau, c'est-à-drife le potentiel d'élévation de son niveau d'eau.

1.5.3. Modelisation de l'état existant du Ricolin

Les résultats de la modélisation de l'état existant du Ricolin sont répertoriés dans le tableau ci-dessous. De la même façon que précédemment, les niveaux de fond et de la ligne d'eau pour une crue centennale sont indiquées pour chaque profil modélisé.

	Niveau du fond	Niveau d'eau Q100
PROFIL	Initial (m NGF)	Initial (m NGF)
3512	481.18	482.64
3502	480.28	482.65
3470	Ouvrage hyd	Ouvrage hydraulique Amont
3430	477.32	478.10
2460	444.85	446.18
2360	439.21	439.88
257	389.27	391.07
165	Ouvrages	Ouvrage sous Giratoire
125.0	386.68	389.49
113	386.29	389.48
100	Ouvrage	Ouvrage sous RD32
86	386.44	388.91
56	386.43	388.89
50	385.85	388.96
28	385.75	388.91
18	385.24	388.88
0	385.13	388.89
-4780	285.07	388 91

Figure 13 : Résultats de la modélisation actuelle sur le Ricolin pour une crue centennale

La figure suivante présente le profil en long existant de la modélisation existante. Les atitudes des lignes d'eau de la modélisation iNGEROP pour une crue centennale, celles du PPRI, ainsi que la ligne d'énergie sont également représentées. De la mêmé façon que sur la Janon, une mise en charge est visible en amont de l'ouvrage due à la réduction de la section d'écoulement en entrée d'ouvrage. A noter que comme dans la modélisation HTV, le niveau d'eau dans l'ouvrage est fortement influencé par le niveau d'eau dans le Janon (contrainte avai au niveau de la confluence – Seuil et ouvrage de la Magie).

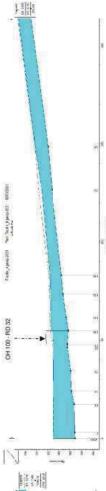


Figure 14: Profil en long de l'état existant du Ricolin pour une crue centennale

0

1.5.4. Nappes d'inondation à l'état existant

La nappe d'inondation centennale, pour l'état existant est symbolisée sur les figures suivantes (voir plan 11.6.8). Secteur amont de l'impasse de la Magie

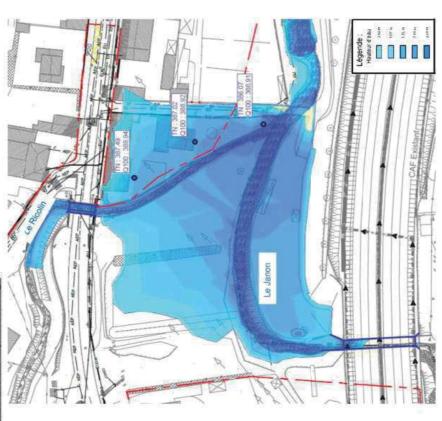
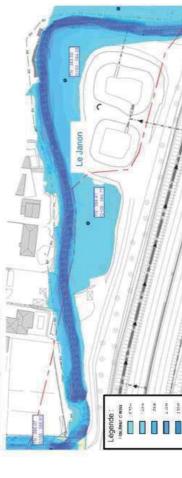



Figure 15: Nappes d'inondation pour une crue centennale à l'état existant

Ainsi, le secteur du Pont Nantin présenté ici, se trouve fortement inondé pour une période de crue d'occurrence 100 ans (en cohérence avec les modélisations HTV), allant jusqu'à des hauteurs de 2,5 mètres à 3 mètres. Les propriétés en rive gauche du Ricolin sont par exemple inondées avec des hauteurs d'eau allant de 1,45 mètre à 2,84 mètres.

On constate tout de même une légère différence de la zone inondable par rapport à HTV, en rive gauche après l'impasse de la magie, qui reste plus ou moins préservé par la présence d'un mur de clôture.

La que centennale est contenue en aval de l'OH 4781 impasse de la magie à l'état existant. De plus, d'importantes zones inondables sont identifiées en rive droite du Janon avec actuellement une lame d'eau relativement faible de 36 cm environ. La zone inondable plus en aval au nord des bassins DIRCE présente quant à elle une lame d'eau de d'environ 78 cm.

Les aménagements projetés doivent permettre de rétablir la franchissabilité pisoicole sur l'entièreté du linéaire restauré, ainsi que compenser les remblais du projet routièr en lit majeur, afin de ne pas aggraver l'aléa d'inondation dans le secteur (crue centennale).

Analyse des profils en long existants des cours d'eau 1.6.1.

Le profil en long suivant permet d'apprécier l'évolution des pentes sur le Janon. En amont de l'OH 4500, la pente varie de 1,1 % à l'amont direct de l'ouvrage à 2 % plus en amont. En avail l'OH 4781, la pente varie dans ce secteur entre 0,7 % à 1 %. La pente d'équilibre au droit de notre tronçon d'études est estimée à 1 % environ.

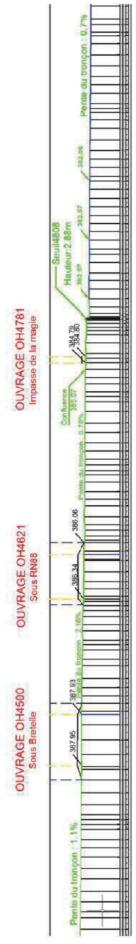


Figure 16 : Profil en long de l'état existant du Janon

La figure ci-dessous quant à elle, représente le profil en long du Ricolin.

En amont de l'OH 100 sous la RD 32, la pente varie de 1,9 % à l'amont direct de l'ouvrage à 1,3 % plus en amont.

A l'aval de cet ouvrage, la pente est proche de 1,6 %. La pente d'équilibre est estimée aux alentours de 1,6 %.

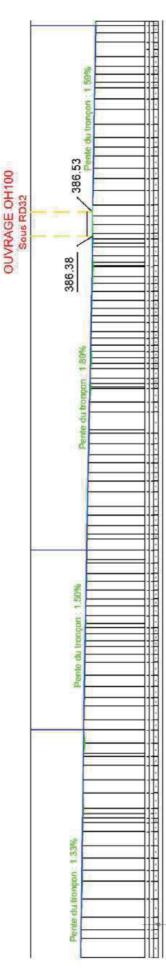


Figure 17 : Profil en long de l'état existant du Ricolin

Nota: Cette pente d'équilibre est essentielle, pour le calage des futurs aménagements. En effet, une pente supérieure à cette pente d'équilibre, imposera une stabilisation du profil en long, à l'aide des seuils de fond.

15/51

16/91

Analyse des profils en long projetés 1.6.2

en rouge). De la même façon, les profils modélisés sont présentés en vert pour les profils conservés de l'état existant, et en rouge pour les profils ajoutés en projet. En avai de l'OH 4621. Les seuils de fond projetés sont également symbolisés sur ces profils, avec quatre seuils sur le Janon, dont trois en sortie d'ouvrage en raison des contraintes hydrauliques fortes qui pourraient s'accompagner d'une érosion régressive et/ou d'une incision du it, qui risquerait la déstabilisation des ouvrages, et rendre impossible la franchissabilité piscociole dans le secteur. La pente moyenne projetée du fond de lit est d'environ 1,8%, pour une pente d'équilibre comprise entre 1 et 2%. Les profils en long suivants présentent les différents ouvrages identifiés sur le linéaire étudié (existants en noir, projetés

La conservation du pont de l'Impasse de la Magie est justifiée par le fait que cet ouvrage sera utilisé pour l'accès aux bassins de rétention projetés, ainsi qu'à la rive droite du Janon, il aura donc, après les travaux, encore une utilité.

Suite aux discussions avec le SEM, il nous disait que dans le cadre du PAPI du Gier, il avait fait l'étude d'un Barrage Ralentissement Dynamique sur le Janon amont, cette étude prévoyait dans notre secteur le reprofilage du cours d'eau et le remplacement de l'ouvrage de la Magie par un passage à qué, composé de plusieurs buses Ø 600 mm, ainsi que la suppression du seule aixistant, protet jugé non acceptable en raison des problématiques hydralliques, de franchissabilite piscocole et de l'entretien. C'est pourquoi l'adaptation du pont de l'impasse de la Magie constitue la solution la moins impactante pour le Janon. Notre choix, c'est donc porté sur cette solution, permettant le maintien du franchissement par les équipes d'entretien (bassin de traitement) et assurer la transparence hydraulique et faune.

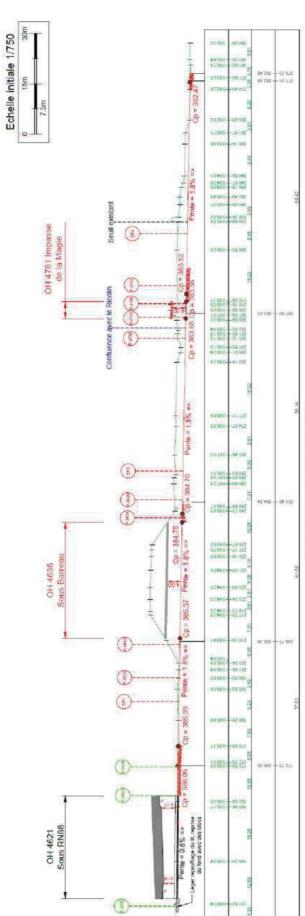


Figure 18 : Profil en long projeté du Janon

17/51

Sur le Ricolin, la pente moyenne est d'environ 2,3 % dans l'OH 165 projeté, avec une pente d'équilibre comprise entre 1,3 et 1,9 % comme présenté sur la figure d'dessous. Quatre seuils de fond, dont deux en sortie d'ouvrage, seront réalisés sur le Ricolin.

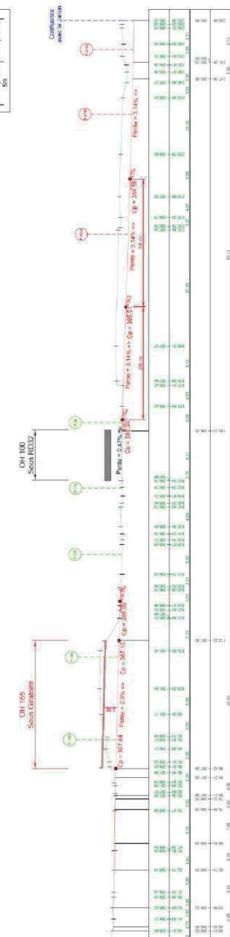


Figure 19 : Profil en long projeté sur le Ricolin

L'opération envisagée consiste à déraser le seuil existant jusqu'à la cote 383,19 m NGF, ce qui implique un réajustement du profil en long. De plus, l'aménagement doit proposer un confortement des berges adaptés afin d'éviter la destabilisation voire l'effondrement des ouvrages de souténement existants (unurs et enrochements). L'ajustement du profil en long a été envisagé selon une penhe de 1,8 % (penhe comprise dans la gamme de la « pente naturelle », à savoir entre 1 et 2 %) ce qui induit un reprofilage du cours d'eau sur l'intégralité de la zone d'étude.

Les matériaux graveleux (20 – 400 mm) actuellement retenus dans la fosse en amont du seuit sont estimés à 800 m³. Un contrôle des sédiments sera cependant nécessaire en phase chantier, afin de vérifier la qualité des matériaux avant leur remise en œuvre sur l'ensemble du lit des deux cours d'eau reprofilés.

A terme, il était prévu que le Janon retrouve un profil altérant des faclès d'écoulement de type radier (pente et vitesse importante) et plats lotiques (pente et vitesse modérées) tels qu'observable sur les tronçons « naturels » en amont de la zone d'étude (Of figure Oi-dessous). C'est vers une succession de tels faciès qu'il est prévu d'orienter l'accompagnement du projet de dérasement du seuil.

Figure 20 : Illustration du lit du Janon en aval de la zone d'étude

Principe d'aménagement du lit mineur et lit vif

Afin de permettre une bonne diversité des faciès d'écoulement au sein du lit vif, un certain nombre de petits

comprise entre 5 et 10 fois la largeur en plein bord. Cette largeur correspond globalement à l'amplitude moyenne observée sur les cours d'eau français (hors rivière en tresse) [Cf. MALAVOI et al. 1998]. La technique de lits emboités sera employée dans les secteurs contraints. Ainsi, la largeur minimale du lit majeur sera

Cette largeur de lit majeur est optimisée dans certains secteurs particuliers ou les emprises foncières permettent une inondation latérale, conformément au fonctionnement existant. Les pentes de talus seront adaptées afin de permettre le respect des largeurs de lits majeurs précédemment déterminées, en recherchant des pentes homogènes plutôt modérées et voisines de 2/1. En profil en travers, le lit majeur présentera une pente nulle. Toutefois, aux abords du lit mineur (1 mêtre de part et d'autre environ), le lit majeur présentera un léger dévers compris entre 1 et 3% pour concentrer les écoulements en période de montée des eaux).

Le profil en long du lit majeur suivra globalement la pente du cours d'eau, et la largeur du fond de lit sera d'environ 4 m pour le Janon, avec un lit d'étage d'environ 2 m (largeur estimée sur la base du QMNAS), et 3 m pour le Ricolin, avec un lit d'étage d'environ 1,5 m (largeur estimée sur la base du QMNAS).

Ce dispositif permettra de redonner au cours d'eau une certaine liberté « divagation latérale contrôlée » et facilitera la conservation (ou la réduction des impacts) sur les volumes d'inondation actuellement identifiés. La largeur du lit de la rivière sera également diminuée grâce à la mise en place de banquettes graveleuses et de blocs de diversification. Cela permettra d'augmenter la ligne d'eau en période d'étiage et d'augmenter la sinuosité du cours d'eau en lit mineur. Le cintrage du lit (20 cm de profondeur) permettra de créer un lit d'étiage, qui sera repris naturellement, par la dynamique des cours d'eau. Le renforcement des berges se fera par des enrochements ou des empierrements en pied de berge qui seront complétés par un lit de plants et plançons ou par la réalisation de fascines de saules ou d'hélophytes.

permettra également la création de caches piscicoles intéressantes pour l'ichtyofaune. Au total, environ 300 blocs de diversification seront répartis sur les 400 m de cours d'eau (Janon et Ricolin), avec un ratio de 76 blocs pour 100 mètres Les écoulements en lit mineur seront également diversifiés par l'installation de blocs à l'intérieur du lit mineur. Cela Inéaires. Le seuil de remobilisation sera analysé tronçon par tronçon dans la partie « 1.6.5.2 Forces d'arrachement ». Les fonds de lit des ouvrages hydrauliques existants (OH 4500 sur le Janon et OH 100 sur le Ricolin) non repris par le projet ne feront pas l'objet d'une recharge sédimentaire, du fait de la présence de matériaux alluvionnaires actuellement présents. La franchissabilité existantes de ces ouvrages sera étudiée dans la suite de cette présente note.

La figure suivante illustre une banquette faune dimensionnée pour une occurrence biennale.

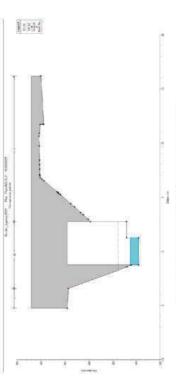


Figure 21: Exemple de calage Q2 pour les banquettes faunes

La figure suivante présente un schéma de principe synthétique des aménagements projetés sur le Janon et le Ricolin.

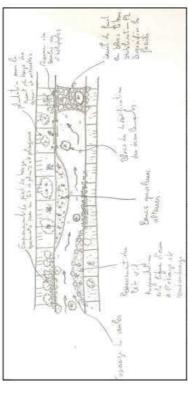
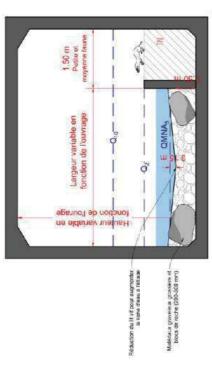



Figure 22 : Schéma de principe des aménagements projetés sur le lit des cours d'eau

rechargement alluvionnaire sur essentiellement issu de matériaux prélevés sur site et réutilisés dans la réalisation des futurs lits). Ce substrat (naturel) doit d'une part, être suffisamment imperméable afin d'éviter toute infiltration, qui conduirait à réduire le débit voire assècher le tronçon de cours d'eau ainsi reconstitué; et d'autre part présenter des Les lits des futurs cours d'eau rescindés seront reconstitués, sur le radier des ouvrages hydrauliques et présenteront une hauteur minimale, de rechargement de 50 cm. Afin de maintenir la circulation des poissons et la capacité biogène du ruisseau, il convient d'être très vigitant sur la composition granulométrique du substrat utilisé (C'est pourquoi ce caractéristiques similaires au substrat naturel préexistant. Une étude préatable de la distribution en taille des matériaux naturellement présents dans le cours d'eau au droit du franchissement sera effectuée en phase travaux. Le substrat mis en place doit présenter une gamme de taille variée, composée à la fois de blocs de roche (prélevés sur site ou d'apport), de matériaux grossiers et fins, complétés le cas échéant, par des argiles ou des limons.

Les coupes et schémas ci-dessous présentent, les aménagements prévus dans les fonds d'ouvrages

0

Ol-dessous, quelques illustrations d'aménagement d'un ilt d'un cours d'eau suite à un dérasement de seuil, effectué sur la Turdine, à l'Arbresle, qui présentait une largeur de lit similaire :

Nota : cette forme cintrée du lit sera réalisée sur l'ensemble du linéaire des cours d'eau.

Le profil en long du fond de forme sera diversifié afin de permettre la création d'une alternance "radier" mouille". Le terrassement du nouveau lit anticipera la recharge sédimentaire sur une épaisseur de 50 cm en moyenne.

En synthèse les caractéristiques des radiers sont les suivantes (Ct. Bramard et Boutet-Berry, 2017) :

Les différences altimétriques entre radiers et mouilles ne seront pas modelées uniquement dans l'apport de matériaux mais sera réglé au moment du terrassement du « fond de forme » du lit. Cela permettra le maintien de fosses en eau indispensables dans le fonctionnement de ce type de cours d'eau intermittent (AFB, 2017). La figure suivante schématise l'alternance radiers / mouilles le long d'une rivière.

Figure 23: Schéma illustrant l'alternance radiers/mouilles

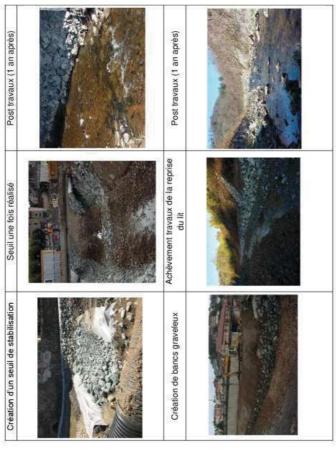


Figure 24 : Photos et suivi de travaux de deux dérasements de seuils réalisés par l'équipe INGEROP

21 / 51

Principes d'aménagements des berges

Le tableau suivant présente les résultats pour le Janon. Pour chaque profil est attribué une force d'arrachement pour des berges concaves et droites pour 3 occurrences différentes (10 ans, 50 ans et 100 ans).

1.6.5.1. Principe de dimensionnement et calage des empierrements

L'arasement du seuil va faire l'objet d'un rééquilibrage, principalement en déblai, du profit en long des deux cours d'eau, s'accompagnant d'une augmentainn de la pente sur le Janon et le Ricolin. Afin de pallier tout risque d'érosion et d'incision, dans les nouveaux lits, des seuils de fonds seront implantés, avec une reprise des protections de berges qui ne seront plus adaptées à l'approfondissement projeté.

Le secteur étudié se trouve en pleine zone urbaine, avec les contraintes qui en découlent (importance de proposer des techniques adaptées aux contraintes du site. Pour cela, dans les zones avec contraintes hydrauliques importantes, une technique mixte constituée par un empierrement de pied de berge, surmontée de lits de plants et plançons sera réalisée, dont le niveau d'implantation serait calé à Q2 pour la partie minérale et Q10 pour la partie végétale.

Cet empierrement sera constitué comme suit :

- Réalisation d'une bêche de stabilisation de l'ouvrage implantée à 50 cm en dessous du futur lit du cours d'eau
- (profil en long avec une pente de 0.8%).
- Constitution d'un empierrement de pied de berge avec sabot parafouille (+géotextile synthétique pour garantir l'étanchéité de l'ouvrage), dont la hauteur a été fixée pour une crue d'occurrence proche de 2 ans. La solution optimale, gestion de l'érosion et biologie des milieux devrait situer la hauteur des blocs (diamètre 40-60 cm) de +50 à +100 cm au-dessus du niveau du futur fond.

1.6.5.2. Forces d'arrachement

Le calcul porte sur la force tractrice exercée par l'écoulement du Janon et du Ricolin et de son potentiel érosif. Il est donc nécessaire d'estimer cette tension de frottement, appelée aussi force d'arrachement, afin de déterminer les techniques végétales capables de résister à cette force. Pour les cours d'eau de largeur importante, nous admettons que le rayon hydraulique est à peu près égal à la hauteur d'eau, donc :

$\tau = \rho RI \sim \rho hl$

T: force tractrice (Nm^p) , p: poids unitaire de l'eau (9810 $kg/m^p)$, p: hauteur d'eau (m), J: pente d'énergie

L'utilisation de la hauteur d'eau dans la formule donne des valeurs de contrainte légèrement supérieures, ce qui amène à la prise en compte d'un facteur de sécurité en surestimant les contraintes d'arrachement. L'effet de sinuosité doit aussi être pris en compte, en effet, la force d'arrachement est plus élevée dans la courbe externe d'un méandre, un facteur multiplicatif de 1.1 permet de palier à la sous-estimation de la contrainte dans les méandres pour un cours d'eau légèrement sinueux. De plus, un facteur multiplicatif de 0,77 permet d'obtenir les contraintes sur la berge à partir des contraintes exercées sur le fond.

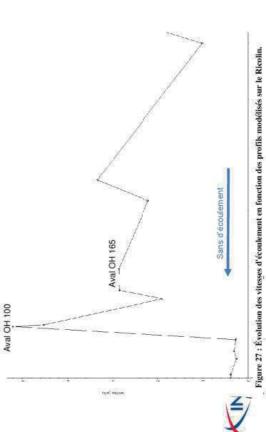
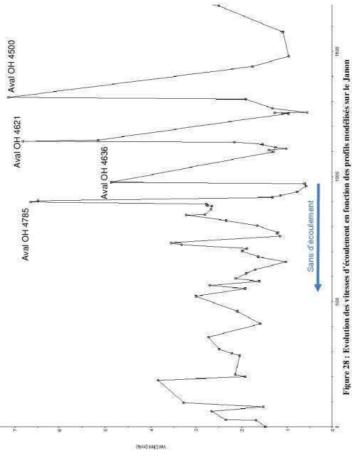
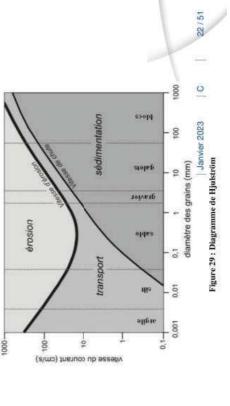

Q100 PROFIL	-4361	-4458	-4500	-4501	-4532	-4568	-4585	-4588	-4588	-4589	-4622		-4626	-4626	-4626 -4628 -4630	-4626 -4628 -4630 -4631	-4628 -4630 -4631 -4631	-4628 -4628 -4630 -4631 -4631 -4633	4626 4628 4630 4631 4632 4633 4636	4626 4628 4630 4631 4632 4633 4636 4640	4628 -4628 -4630 -4631 -4632 -4632 -4633 -4636 -4640 -4750	4626 -4628 -4630 -4631 -4633 -4633 -4640 -4750 -4750	4628 -4630 -4631 -4631 -4633 -4636 -4636 -4780 -4780	4628 -4630 -4631 -4631 -4633 -4636 -4780 -4782 -4782 -4782	4626 -4628 -4630 -4631 -4632 -4633 -4636 -4640 -4750 -4780 -	4626 -4630 -4631 -4631 -4632 -4633 -4636 -4750 -4750 -4780 -	4626 -4628 -4631 -4631 -4631 -4633 -4636 -4750 -4750 -4750 -4780 -	4626 -4630 -4631 -4631 -4633 -4633 -4636 -4750 -4750 -4780 -4780 -4800 -4800 -4810 -4810 -4810 -4810	4626 -4628 -4630 -4631 -4632 -4636 -4640 -4750 -4780 -4780 -4782 -4808 -4808 -4815	4626 -4628 -4630 -4631 -4631 -4632 -4636 -4640 -4750 -4780 -4780 -4780 -4780 -4808 -4808 -4808 -4810 -4815	4626 -4623 -4631 -4631 -4633 -4633 -4636 -4750 -4750 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4800 -4810 -4815 -4815	4628 -4630 -4631 -4631 -4633 -4633 -4633 -4750 -4750 -4780 -4780 -4780 -4800 -4805 -4815 -4815 -4815 -4815 -4815	4626 -4630 -4631 -4632 -4633 -4635 -4640 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4806 -4806 -4810 -4810 -4815 -4825 -48	4626 -4630 -4631 -4631 -4632 -4633 -4636 -4640 -4780 -4780 -4780 -4780 -4780 -4780 -4780 -4806 -4806 -4806 -4807 -4806 -4807 -4806 -4807 -4806 -4807 -4806 -4807 -4806 -4807 -4807 -4807 -4807 -4807 -4807 -4807 -4807 -4807 -4807 -4807 -4807 -4807 -4807 -4807	4626 4630 4631 4631 4632 4633 4636 4640 4750 4750 4780 4780 4780 4780 4780 4806 4810
Berge concave Q100	16	12	4	200	10	4	1	2	2		369		13	13 26	13 26 27	13 26 27 18	13 26 27 18 8	13 26 27 18 8 8	13 26 27 18 8	13 26 27 27 18 8 8	13 26 27 27 18 8 8 8 8 11	13 26 27 27 18 8 8 8 8 11 11 11 55	13 26 27 27 27 18 8 8 8 8 11 11 11 21 33 33	13 26 27 27 18 8 8 8 8 8 11 11 11 11 25 55 55	13 26 27 27 18 8 8 8 8 11 11 11 25 25 33	13 26 27 27 18 8 8 8 8 8 11 11 11 11 25 33 33	13 26 27 27 18 8 8 8 8 8 8 11 11 11 11 25 55 33 329 300	13 26 27 27 18 8 8 8 8 8 8 11 11 11 25 25 33 329 300 288	13 26 27 28 8 8 8 8 8 8 11 11 11 11 15 25 33 33 329 300 288 288 328	13 26 27 28 8 8 8 8 8 11 11 11 11 11 12 329 300 328 328 328 328 328 328 328 328	13 26 27 28 8 8 8 8 8 11 11 11 11 11 12 33 300 288 329 328 328 328 328 328 388 388 388	13 26 27 27 18 8 8 8 8 8 11 11 11 11 11 13 23 30 28 329 300 288 328 328 328 328 328 328 328 328 328	13 26 27 27 18 8 8 8 8 8 11 11 11 11 11	13 26 27 28 8 8 8 8 8 111 111 111 117 117	13 26 27 27 18 8 8 8 8 8 11 11 11 11 11
Berge Q100	14	11	4	1000	6	4	1	2	2		335	-	12	12 24	24 24	12 24 24 16	12 24 24 16	12 24 24 16 17 7	12 24 24 16 7 7	12 24 24 16 16 7 7 10	12 24 24 16 7 7 7 8 8	12 24 24 16 7 7 7 7 10 10 50	12 24 24 24 16 16 10 10 10 50 30	12 24 24 24 16 16 10 10 10 50 50	12 24 24 24 16 7 7 7 8 8 10 50 50 30	112 24 24 24 16 16 10 10 10 50 50 50 30 179 299	12 24 24 24 16 16 7 7 8 8 8 8 8 10 10 50 50 50 30 30 179 272	12 24 24 24 16 16 7 7 8 8 8 10 10 10 50 30 30 299 272 262	12 24 24 24 16 16 17 10 10 50 30 30 179 299 272 262 298	12 24 24 24 16 16 10 10 10 50 50 50 30 299 272 262 262 262 262 262 270	112 24 24 24 16 16 17 10 10 10 10 50 50 50 50 50 20 272 272 282 298 272 272 272 272 272 272 272 272 272 27	112 24 24 24 16 16 7 7 8 8 8 10 10 10 50 50 50 30 30 272 272 262 272 272 272 272 273 273 30 30 30 30 30 30 30 30 30 30 30 30 30	112 24 24 24 16 16 17 10 10 10 10 10 10 29 29 27 26 29 27 26 29 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	112 24 24 24 16 16 17 10 10 10 10 50 50 50 20 29 272 262 262 298 208 272 262 262 262 298 278 45 38 38 38 38 38 38 48 48 48 48 48 48 48 48 48 48 48 48 48	112 24 24 24 24 16 16 17 10 10 10 10 10 10 10 20 20 20 20 20 272 28 28 28 28 272 282 282 283 30 45 272 282 283 30 40 40 40 40 40 40 40 40 40 40 40 40 40
Berge concave Q50	17	17	2	OH4500 - Sous Bretelle de sortie RN88	15	4	1		2	- Sous RN88	337		18	18	27 28	27.	18 27 28 19 8	18 27 28 19 8 8	18 27 28 19 8 8 10 Sous Barreau	18 27 28 19 8 8 10 Sous Barreau	18 27 28 28 19 8 8 8 10 5ous Barreau	27 28 28 19 8 8 8 10 Sous Barreau 13 65	27 28 28 19 8 8 8 8 8 10 10 13 12 65 65	25 27 27 28 28 28 8 8 9 9 10 OH4636 - Sous Barreau 12 11 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18 27 28 28 19 8 8 8 8 10 10 12 65 65 31 mpassed le la Magie	27 28 28 19 8 8 8 10 5ous Barreau 13 12 65 65 65 31 mpasse de la Magie	27 28 28 19 8 8 8 0 10 13 12 65 65 65 31 npasse de la Magie	27 28 28 19 8 8 10 10 Sous Barreau 13 12 65 65 31 31 186 186 284 284	18 27 28 28 8 8 8 8 10 10 65 65 31 12 65 31 12 284 284 264	27 28 28 19 8 8 8 8 10 10 12 65 65 31 315 315 284 264 279 193	27 28 28 8 8 8 19 10 10 20us Barreau 11 12 65 65 31 12 284 284 264 279 193 85	27 28 28 8 8 8 19 10 10 12 65 65 31 31 mpasse de la Magie 1286 264 264 264 265 315 315 315 315 315 315 315 315 315 31	27 28 28 28 30 10 10 20us Barreau 13 12 12 65 31 186 215 284 264 264 264 269 279 47	27 28 28 8 8 19 8 10 10 20us Barreau 13 12 65 65 31 31 315 284 264 264 264 279 193 85 85 40	27 28 28 8 8 8 19 10 10 12 65 31 315 315 284 264 264 279 47 40 40
Berge Q50 Be	15	15	4	14500 - Sous Bretell	14	4	1	2	2	OH4621 - Sous RN88	307		16	16	16 25 25	16 25 25 17	16 25 25 17 17	16 25 25 17 17 9	25 27 27 27 28 28 28 8 8 8 9 9 10 OH4636 - Sous Barreau	16 25 25 17 8 8 9 0H4636 - Sour	25 25 25 17 8 9 9 0H4636 - Sour	16 25 25 25 17 17 9 9 0H4636 - Sour 12 11	16 25 25 25 17 17 0044636 - Sour 12 11 59	25 25 25 25 17 8 8 9 9 0044636 - Sour 12 29 29 29	25 25 25 25 17 8 8 9 9 9 11 12 11 59 29 29 29 163 163 17 17 17 18 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	16 25 25 25 25 8 8 9 9 9 0044636 - Souri 11 11 29 29 29 29 140781 - Sous Impa	25 25 25 25 8 8 9 0044636 - Souri 12 11 11 11 59 59 59 59 169 169 169 286	25 25 25 17 8 8 9 9 0044636 - Sour 12 29 29 29 29 169 169 286 286 236 240	25 25 25 25 3 8 8 9 9 044636 - Sour 11 25 29 29 29 286 286 286 286 286 286 286 286 286 286	16 25 25 25 25 8 8 8 9 9 0044636 - Sour 12 11 12 29 29 29 29 286 286 286 286 286 286 286 286 286 286	25 25 25 25 26 8 8 8 9 9 0044636 - Sourings 11 11 11 59 29 29 286 286 286 286 286 286 286 286 286 286	25 25 25 25 3 8 8 9 0044636 - Sour 11 29 29 29 29 29 286 286 286 286 286 286 276 77	25 25 25 25 3 8 8 8 9 044636 - Sour 11 29 29 29 29 29 29 286 286 286 286 286 286 27 77	16 25 25 25 28 8 9 9 9 0044636 - Sour 11 11 12 13 29 29 29 28 286 286 286 286 286 286 286 286 286	16 25 25 25 25 8 8 8 9 9 9 9 11 12 11 12 29 29 29 29 28 286 286 286 286 277 35 43 36 36 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38
Berge concave Q10	43	40	2	0	395	3	3	2	2	8	242		222	31	272 31 32	272 31 32 21	272 31 32 21 10	272 31 32 21 10	272 31 32 21 21 10	272 31 32 21 10 10 13	272 31 32 21 10 10 13	272 31 32 21 10 10 13 12 14	272 31 32 21 21 10 13 12 14 61												
Berge Q10 B	39	37	2	100 months	359	60	2	2	2		220		747	29	29	29 29 19	29 29 19 9	29 29 19 9	29 29 29 19 9	29 29 9 9 11	29 29 29 19 9 11 11	29 29 29 19 9 11 11 13	29 29 29 19 9 12 11 13 56	29 29 29 19 9 11 11 11 13	29 29 19 10 11 11 13 21 13	29 29 29 19 9 9 9 9 11 11 11 13 56 56 26 21 21 21	29 29 29 19 9 9 9 9 9 11 11 11 11 13 21 21 21 21 21 21 21 21 21 21 21 21 21	29 29 29 19 11 11 11 11 13 21 21 21 21 21 21 21 21 21 21 21 21 21	29 29 29 19 11 11 11 13 56 21 21 21 133 133 133 134 178 178	29 29 29 19 11 11 11 13 21 21 21 21 21 21 21 21 21 21 21 21 21	247 29 29 19 9 9 9 11 11 11 11 13 21 21 21 21 21 21 21 21 21 21 21 21 21	29 29 29 19 10 11 11 11 11 11 11 11 11 11 11 11 11	29 29 29 19 11 11 11 11 13 13 13 13 13 13 13 13 13	29 29 29 29 19 11 11 11 11 13 21 21 21 21 13 13 13 13 13 13 13 14 15 16 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	29 29 29 19 11 11 11 11 11 13 21 21 21 21 21 21 21 21 21 21 21 21 21

Figure 25 : Synthèse des forces d'arrachement pour une crue décennale, cinquantennale et centennale sur le Janon


Le tableau suivant synthétise les résultats de force d'arrachement sur le Ricolin. De la même façon que précédemment, les forces d'arrachement ont été calculées en chaque point pour des trois occurrences ; 10 ans, 50 ans et 100 ans.

			Force	Forces d'arrachement		
PROFIL	Berge Q10 (N / m²)	Berge Q10 Berge concave Q10 (N / m²) (N / m²)	Berge Q50 (N/m²)	Berge concave Q50 (N / m²)	Berge Q100 (N / m²)	Berge concave Q50 Berge Q100 Berge concave Q100 (N/m^2) (N/m^2)
3512	143	158	14	15	18	20
3502	6	10	1	2	2	
3470			Ouvrage	Ouvrage hydraulique amont		
3430	205	225	179	196	193	212
2460	208	229	307	338	337	37.1
2390	1096	1205	1130	1243	1215	1337
257	246	271	315	346	344	378
175	153	168	28	31	29	32
165			Ouvra	Ouvrage sous giratoire		
125	283	311	318	350	284	312
113	15	16	19	21	21	23
100			Ouv	Ouvrage sous RD32		
86	75	82	104	114	117	128
95	386	425	554	610	633	969
20	66	109	9	9	2	
28	1	1	П	1	1	
18	2	3	2	2	2	0.00
0	7	7	1	7	9	26
-4780	9	7	9	7	5	


Figure 26: Synthèse des forces d'arrachement pour une crue décennale, cinquantennale et centennale sur le Ricolin La figure suivante présente l'évolution de la vitesse du courant pour une crue centennale, sur le linéaire étudié du Ricolin :

La figure suivante présente l'évolution de la vitesse du courant pour une crue centennale, sur le linéaire étudié du Janon :

Les résultats de ces deux graphiques seront analysés secteur par secteur dans la partie ci-dessous. La figure suivante présente le diagramme de Hjultröm, permettant de définir l'activité des sédiments présents dans le fond du lit en fonction de la vitesse d'écoulement.

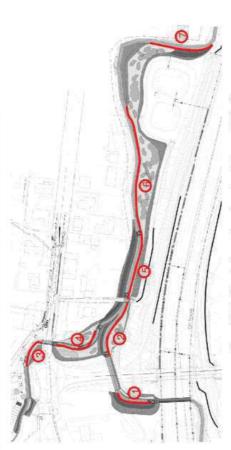


Figure 30 : Synthèse des forces d'arrachement sur le Janon et le Ricolin

plançon sera réalisé. Pour une crue centennale, les blocs de diversification mis en œuvre dans ce secteur, de diamètre compris entre 400 et 600 mm (idem sur les autres tronçons), sont soumis à des vitesses de courant entre 5,15 et 6,82 m/s à la sortie de l'OH 4500 (bretelle). D'après le diagramme de Hjulström présenté précédemment, la valeur Le secteur 1, entre l'ouvrage sous la RNSS et celui du barreau nouvellement créé, présente des forces d'arrachements cale sur le niveau d'eau biennal, surmonte par quatre lits de plants et plançons, qui au total permet une protection jusqu'à une période de retour décennale. En rive droite, en pied de banquette un empierrement complété par un lit de maximale de 6,82 m/s s'approche du seuil limite permettant la remobilisation des blocs, à savoir environ 7 m/s environ. Cette vilesse est cependant théorique et reste ponctuelle, limitant le risque de remobilisation de ces blocs. théoriques centennales allant de 70 N/m² à 350 N/m². Le renforcement en rive gauche sera assuré par un enrochement

Sur le secteur 2, le Janon en amont de la confluence avec le Ricolin, les forces d'arrachement sont comprises entre 11 et 55 Nm². Un enrochement surmonté de deux étages de Ilis de plants et plançons assurera la protection de la berge rive gauche. En rive droité, le renforcement sera réalisé par la réalisation d'une fascine d'hélophytes ou de saules. La vitesse du courant maximale étant de 4,87 m/s sur ce tronçon, en sortie directe de l'OH 4621 (RN88), les blocs mis en œuvre ne seront pas remobilisés pour une crue centennale, comme illustré sur le diagramme de Hjulstrôm.

d'arrachements théoriques allant de 23 à 312 N/m². Le renforcement en rives gauche et droite sera assuré par la réalisation d'un enrochement jusqu'au niveau biennal surmonté de deux étages de lits de plants et plaçons afin de Entre l'ouvrage sous le giratoire nouvellement créé et l'ouvrage sous la RD32, le secteur 3 présente des forces garantir une protection des berges jusqu'à un niveau de crue décennale. Ce tronçon présente des vitesses de courant allant de 1.89 à 2.87 m/s en sortie de l'OH 165, pour une crue centennale, loin du seuil de remobilisation des blocs mis en œuvre.

stabilisation ainsi que des enrochements en nve gauche et droite seront réalisés, tandis qu'en avai dés fascines de saules ou d'hélophytes assureront le renforcement de la berge. Pour une crue centennale, les vitesses de courant sont comprises entre 4,52 et 5,21 m/s en sortie de l'OH 100. Comme pour le tronçon précédent, ces vitesses sont inférieures Le secteur 4, sur le Ricolin entre l'ouvrage sous la RD32 et la confluence avec le Janon, les forces d'arrachement varient de 130 à 630 N/m² en aval direct de l'ouvrage, et sont inférieures à 10 N/m². En aval de l'ouvrage, un seuil de au seuil de remobilisation.

Sur le secteur 5, en avai de la confluence, les forces d'arrachement théoriques varient de 90 à 330 Nvm². Le renforcement des berges en rive gauche et droite sera assuré par un enrochement, surmonté de deux étages de lits de plants et plaçons et rive gauche. En sortie de IOH 4785 (Impasse de la Magie), les vitesses de courant sont compnises entre 6,50 et 6,66 m/s, proche du seuil de remobilisation mais tout de même inférieures

d'une fascine de hélophytes ou de saules, surmontés par l'implantation de boutures, permettra le renforcement de la Les forces d'arrachement théoriques sur le secteur 6, en avai du seuil existant, varient 40 à 50 N/m². La mise en place berge en rive droite, Les vitesses de courant pour une crue centennale sur ce tronçon sont, comme pour les tronçons précédents, également inférieures au seuit de remobilisation des blocs, avec des valeurs allant de 1,03 à 3,57 m/s.

Le secteur 7, sur le Janon avai, les forces d'arrachement théoriques sont comprises entre 300 et 450 N/m². Aussi, un enrochement en rive droite sera réalisé jusqu'au niveau d'une crue biennale, surmonté par quatre étages de lits de plants et plançons jusqu'au niveau atteint par une crue d'occurrence décennale. Nous retiendrons pour la définition des aménagements de berges, la période de retour décennale. Avec une vitesse de courant maximale de 2,69 m/s sur ce tronçon, les blocs mis en œuvre ne seront pas remobilisés pour une crue centennale Nota : globalement, on remarque que les vitesses les plus fortes sont constatées en sortie d'ouvrage hydraulique, c'est pourquoi nous avons prévu des seuils de stabilisation en aval. Sur le reste du linaire, l'ouverture du gabarit du secteur a permis la réduction des vitesses, en favorisant l'inondation du lit intermédiaire. Les résultats de ces évolutions de forces d'arrachement peuvent ensuite être comparés à des valeurs limites ou « forces tractrices critiques » de résistance des végétaux. A ce titre, on mentionne fréquemment les résistances limites survantes:

- Herbacées: 30-50 N/m².
- Herbacées bien adaptées, graminées : 50-80 N/m².
 - Jeunes saules: 50-100 N/m²
- Fascine de saules et couche de branches à rejets et lit de plants et plancons : 250-300 N/m².

Le tableau suivant nous donne de manière plus précise la résistance des techniques envisagées sur la berge.

		Contra	Contraintes tractrice [N/m*]	N/m"
		A la réalisation	1 à 2 ans après	3 ou 4 ans après
Enherbement	(Cer	4-20	25 - 30	30 - 100
Saules			50 - 70	100 - 140
Plantation d'arbres	es	20		120
Lit de plants et plançons	suodi	20	120	140
	Végétalisés	100 - 200	100 - 300	300 - 350
enrocnements	Nus	250	250	250

Figure 31: Résistance des techniques de renforcement de berges

Le renforcement des berges entre les OH 4636 et 4781 ne nécessitent pas forcément, au vu des résultats obtenus d'enrochements spécifiques. Un simple enherbement pourrait être pertinent dans ce secteur.

En revanche, en aval de l'ouvrage sous l'impasse de la magie, ainsi qu'en aval direct de celui sous la RN 88, les forces tractrices apparaissent comme très importantes. Dans ces secteurs, la mise en place d'enrochements sera obligatoire, avec un complément végétal sur les parties supérieures.

Végétalisation des berges 1.6.5.3.

Une ripisyive sera recrée de manière systématique le long des cours d'eau afin de garantir un ombrage pour limiter rélévation de la température de l'eau (fortement sensible compte tenu des faibles débits). Les essences implantées seront conformes à ce qui est observé sur le terrain : Alnus glutinosa, Salix aurita, Salix atrocinerea.

Un retrait de 1,5 m depuis la crête de berge sera appliqué pour l'implantation de la ripisylve afin de permettre les ajustements des cours d'eau et de limiter la concentration des écoulements qui pourraient favoriser l'incision La végétalisation des talus s'insèrera en cohérence avec la végétation adjacente en place : dans les secteurs prairiaux, les talus seront ensemencés avec une végétation herbacée et dans les secteurs boisés les talus seront plantés avec une végétation arborescente ou arbustive. De plus, la densité de plantation sera de 1 plant/m²

0

Autant que possible les graines présenteront le label végétal local et seront obligatoirement originaire de France. Les vanétés hybrides et cultivars seront prohibés. Le mélange grainier pourra être composé de la manière suivante : L'origine des semences et la composition du mélange grainier feront l'objet d'une validation par le Maître d'œuvre.

- Graminées
- Agrostide capillaire (Agrostis capillaris).
- Vulpin des prés (Alopoeunus pratensis)
- Flouve odorante (Anthoxanthum odoratum).
 - Fromental (Arrhenatherum eliatius).
- Crételle des prés (Cynosurus cristatus).
- Fétuque faux-roseau (Festuca arundinacea) Dactyle aggloméré (Dactulis glomerata)
 - Fétuque des prés (Festuca pratensis)
- Fétuque rouge gazonnante (Festuca rubra subsp. Cummutata).
- Fétuque rouge traçante (Festuca rubra subsp. Rubra).
 - Houlque laineuse (Holcus lanatus). 000
 - Ray-grass anglais (Lolium perenne).
 - Fléole des prés (Phieum pratense)
 - Paturin des prés (Poa pratensis). Pâturin commun (Poa trivialis).
- Légumineuses
- Lotier comiculé (Lotus comiculatus). 0
 - Minette (Medicago lupulina)

 - Trèfle des prés (Trifolium pratense). Trèfle blanc (Trifolium repens).
- Autres
- Achillée millefeuille (Achillea millefollum)
- Plantain lancéolé (Plantago lanceolata). Pâquerette (Bellis perennis).

Dans les secteurs boisés, les talus seront plantés avec des essences ligneuses autochtones. Les espèces à implanter dans les secteurs boisés pourront être les suivantes

- Chêne pédonculé (Quercus robur).
- Hêtre (Fagus sylvatica)
- Charme (Carpinus betulus).
- Erable sycomore (Acer pseudoplatanus).

Noisetier (Corylus avellana).

- Les lits de plants et plançons seront caractérisés selon les espèces suivantes :
- Pour les plants
- Cornouiller sanguin (Cornus sanguinea)
 - Noisetier (Corylus avellana)
- Fusain (Evonymus europaeus).
- Troène commun (Ligustrum vulgare). Sureau noir (Sambucus nigra).
 - Viorne lantane (Vibumum lantana).
 - Viorne obier (Vibumum opulus).
- Pour les plançons
- Saule cendré (Salix cinerea). Saule pourpre (Salix purpurea). 0
- Saule à trois étamines (Salix triandra).
- Saule des vaniiers (Salix viminalis). 0

RN88 – Échangeur de la Varizelle

Traitement de la Renouée du Japon 1.6.6.

Le contrat de rivière du Gier et de ses affluents exige, de traiter la problématique des espèces invasives (Renouée du Japon).

Le traitement de la Renouée du Japon s'effectue par arrachage et évacuation, par dégrappage des rhizomes et évacuation des matériaux impropres sur une profondeur moyenne de 1 mètre.

Afin d'optimiser le chiffrage pour le traitement de cette espèce invasive, nous avons fait faire un relevé des zones infectées par la plante. Pour information, la surface totale de Renouée à extraire est estimée à 1165 m².

La vue en plan suivante présente le résultat de ces relevés.

Figure 32 : Vue en plan de la colonisation de la Renouée du Japon sur le site

Le traitement de la renouée du Japon ne sera réalisé que dans l'emprise des travaux, entre l'aval de l'OH RN88 et l'aval du bassin DIRCE (symbolisé en vert sur la vue en plan ci-dessus). La Renouée non traitée est quant à elle représentée en rouge. Le procédé suivant pourrait être une solution intéressante, pour le traitement des déblais contaminés par la partie souterraine de la plante

Les secteurs symbolisés en rouge ne seront pas traités dans les travaux.

que cela occasionnerait, la dépose de ces étéments engendrerait un risque non négligeable sur la stabilité de la section. En rive droite, le traitement de la Renouée induirait des terrassements trop importants, et par conséquents des coûts Le traitement de la Renouée du Japon le long de la RN88, au sud, nécessiterait la dépose complète des enrochements et du mur de soutènement en rive gauche stabilisant actuellement l'infrastructure routière. Mise à part le coût important conséquents, et la suppression de la ripisylve. Le secteur à l'est de la zone d'étude, à proximité des bassins DIRCE, est situé quant à lui en dehors de limite DUP, sur des parcelles privées. Le traitement de la Renouée du Japon dans ce secteur ne sera donc réalisé qu'en rive droite, dans la zone concernée par les travaux

Figure 33 : Colonisation de la Renouée du Japon sur le site

G-dessous une procédure envisageable et ayant fait ses preuves sur d'autres projets envahis par cette espèce (bassin versant de l'Yseron, de la Brèvenne et de la Turdine dans le Rhône) ;

Il faut faire sécher la plante, la transporter dans un bac ou un camion ayant une bâche, et la brûler.

Le devenir des déblais se décline sous deux modes d'évacuation en fonction de leurs natures :

Figure 34 : Procédure de criblage - concassage

 Les matériaux de berge non-contaminés par des espèces invasives, seront évacués à la décharge de l'entreprise.

Le développement d'espèces végétales invasives est favorisé par les travaux via les engins qui véhiculent de nombreuses graines ou rhizomes dans leurs pneus ou chenilles. L'impact du développement de ces espèces peut être significatif sur la flore et les habitats locaux. Sur la tronçon considéré, les berges des cours d'eau du secteur sont particulièrement concernées par la prolifération de ces espèces invasives et envahissantes (Renouée principalement). Dans le cadre des travaux, les berges feront 'objet de remaniement.

Afin de limiter au maximum le risque de propagation de la renouée du Japon, les matériaux manipulés feront l'objet de

Cette méthode déjà éprouvée en Rhône-Alpes consiste à faire subir aux matériaux contaminés un protocole précis afin d'éradiquer le pouvoir de reprise des rhizomes.

- Les foyers de renouée sont précisément localisés lors du piquetage préalable aux interventions en prenant soin de délimiter une zone tampon autour de ces derniers.
- Les parties aériennes des renouées du japon sont préalablement coupées, stockées sur bâche pendant 10 Les volumes terrassés sont criblés avec une maille de 0/20mm. La fraction criblée est alors exempte de jours puis broyées.

rhizomes et peut être utilement réemployée en nappage sur les talus terrassés, afin d'être ensemencée.

- Le refus de criblage (> à 20mm) est concassé à l'aide d'un concasseur à percussion en circuit fermé avec
- Atelier n"2 Concasseur Ateller n"3 Cribleur Atelier n°1 une maille de 20mm.

Illustrations des opérations de criblage : concassage des terres contaminées par la Renouée du japon avant leur réemploi -SYRIBT 2017

L'ensemble des matériaux ainsi criblés/concassés et n'étant pas destinés à une réutilisation sur site seront évacués vers des centres de stockages de matériaux inertes.

Ces sites seront laissés à l'appréciation de l'entreprise titulaire du marché.

En tout etat de cause, les déblais courants évacués seront soumis a l'agrément du Maitre d'Œuvre.

L'entreprise doit impérativement chercher à optimiser les volumes d'évacuation des matériaux contaminés par la Renouée du Japon. Une fois les terrassements terminés et le traitement des matériaux contaminés évacués, une remise en œuvre de terre végétale propre, exempt de toute trace de cette plante, sera renappée sur l'ensemble des surfaces traitées, et ensemencées, dans l'attente des plantations ligneuses qui seront plantées afin de concurrencer d'éventuelle repousse.

0

Description des aménagements projetés 1.6.7.

Avant toute chose, il est important de rappeler que le dérasement du seuit à l'aval de l'ouvrage existant sous l'impasse de la Magie, modifie de façon significative les pentes des deux profils en long, sur le Janon et le Ricolin. L'augmentation de cette pente permet un regain de capacité hydraulique des deux cours d'eau (en supprimant la contrainte aval). La solution proposée par HTV en 2014 consistait à réaliser un gué submersible de buses ¢ 600. Cela permettait de réduire significativement l'aléa d'inondation en amont de l'ouvrage mais présentait certaines limites :

- Franchissabilité piscicole non résolue (notamment en raison des vitesses d'écoulement)
- Modification significative de l'altimétrie de la voirie d'accès (notamment dans des emprises privées en dehors
- Ajout de contraintes hydrauliques : la surverse provoquerait d'importantes contraintes aval qui renforceraient le caractère infranchissable (création d'une fosse et difficulté à maintenir le profil en lond) de la DUP)
 - Ajout d'une grosse problématique d'obstruction par des embâcles (entretien très important).

Dans le scénario retenu en phase AVP, les deux ouvrages projetés sous l'infrastructure routière, présente les caractéristiques suivantes : 4 mètres de largeur pour le lit vif plus 1,5 mètres de banquette faune, pour une hauteur de

La modification de l'ouvrage sous l'impasse de la Magie permet un abaissement conséquent de la ligne d'eau obtenue,

1.6.7.1. Secteur entre l'OH 4621 sous la RN88 et l'OH 4636 sous le barreau routier

limitant ainsi le risque d'inondation

Coupe des aménagements projetés sur le secteur

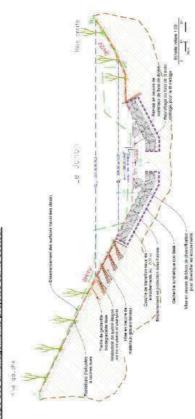


Figure 35: Coupe des aménagements projetés entre l'OH 4621 et l'OH 4636

L'aménagement de la berge rive gauche se compose de la façon suivante :

cadre du chantier

- Démontage des enrochements existants, tri et récupération des blocs de petit gabarit pour réutilisation dans le
- Constitution d'un empierrement de pied de berge avec sabot parafouille (+géotextile synthétique non tissé pour garantir l'étanchéité de l'ouvrage), dont la hauteur a été fixé pour une crue d'occurrence proche de 2 ans. La solution optimale, gestion de l'érosion et biologie des milieux, devrait situer la hauteur des blocs (diamètre
 - 40 · 60 cm) à 100 cm au-dessus du niveau du futur fond. Mise en œuvre de terre végétale sur 20 cm.
- Terrassement des berges selon des pentes adoucies (de l'ordre de 2H/1V). Mise en œuvre de quatre étages de lits de plants et plançons entre Ω_2 et Ω_{10} .

RN88 - Échangeur de la Varizelle

- Fourniture et mise en œuvre de matériaux gravelo-terreux d'apport, et pose d'un géotextile biodégradable
- Replantation d'arbustes d'espèces adaptées au milieu au-dessus des ilts de plants et plançons
 - Ensemencement des surfaces travaillées au moyen d'un mélange grainier adapté

L'aménagement de la berge rive droite se compose de la façon suivante :

- Constitution d'un empierrement avec cabot parafouille (+géotextile synthétique pour garantir l'étanchétié de
- Mise en œuvre de terre végétale sur 20 cm.
- Terrassement des berges selon des pentes adoucies (de l'ordre de 2H/1V puis 3H/2V).
- Replantation d'arbustes d'espèces adaptées au milieu au-dessus des lits de plants et plançons. Ensemencement des surfaces travaillées au moyen d'un mélange grainier adapté.

Secteur entre l'OH 4636 sous le barreau routier et l'OH 4781 impasse de la magie 1.6.7.2

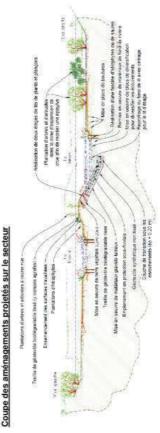


Figure 36 : Coupe des aménagements projetés entre l'OH 4636 et l'OH 4781

L'aménagement du Janon se compose de la façon suivante :

Démontage des enrochements existants, tri et récupération des blocs de petit gabarit pour réutilisation dans le cadre du chantier.

Constitution d'un empierrement de pied de berge avec sabot parafouille (+géotextile synthétique non tissé pour garantir l'étanchèité de l'ouvrage), dont la hauteur a été fixé pour une crue d'occurrence proche de 2 ans. La solution optimale, gestion de l'érosion et biologie des milieux, devrait situer la hauteur des blocs (diamètre

40 - 60 cm) à 100 cm au-dessus du niveau du futur fond.

Terrassement des berges selon des pentes adoucies (de l'ordre de 2H/1V). Création d'une fascine d'hélophyte ou de saules en rive droite.

Mise en œuvre de lits de plants et plançons aux environs entre Q2 et Q10.

Fourniture et mise en œuvre de matériaux gravelo-terreux d'apport, et pose d'un géotextile biodégradable

Replantation d'arbustes d'espèces adaptées au milieu au-dessus des lits de plants et plançons

Ensemencement des surfaces travaillées au moyen d'un mélange grainier adapté

L'aménagement du Ricolin se compose de la façon suivante :

- Réalisation de fascines de saules ou d'hélophytes sur le pied des deux berges.
- Plantation d'arbres et d'arbustes à racine nue en rive droite ; rive commune avec la Janon, et en rive gauche.
 - Création de deux banquettes à fleur d'eau, sur les deux rives du cours d'eau.
- Création de seuils de fond pour la stabilisation du profil en long, permettant aussi une diversification des faciès d'écoulement (sur le plan des vitesses, des profondeurs, de la granulométrie, de la pente du lit).
 - Terrassement des berges selon des pentes adoucies (de l'ordre de 2H/1V).
- Ensemencement des surfaces travaillées au moyen d'un mélange grainier adapté

1.6.7.3. Secteur entre l'OH 4781 impasse de la magie et la zone de compensation

Coupe des aménagements projetés sur le secteur

Figure 37: Coupe des aménagements projetés entre l'OH 4781 et la zone de compensation

L'aménagement de la berge rive gauche se compose de la façon suivante :

- Démontage des enrochements existants, tri et récupération des blocs de petit gabarit pour réutilisation dans le
 - cadre du chantier.
- Constitution d'un empierrement de pied de berge avec sabot parafouille (+géotextile synthétique non tissé pour garantir l'étanchété de l'ouvrage), dont la hauteur a été fixé pour une crue d'occurrence proche de 2 ans. La solution optimale, gestion de l'érosion et biologie des milieux, devrait situer la hauteur des blocs (diamètre 40 · 60 cm) à 100 cm au-dessus du niveau du futur fond.

 Terrassement des berges selon des pentes adoucies (de l'ordre de 2H/1V).
- Mise en œuvre de lits de plants et plançons aux environs entre Ω_2 et Q_{10} . Fourniture et mise en œuvre de matériaux gravelo-terreux d'apport, et pose d'un géotextile biodégradable
- Replantation d'arbustes d'espèces adaptées au milieu au-dessus des lits de plants et plançons.
 - Ensemencement des surfaces travaillées au moyen d'un mélange grainier adapté.

L'aménagement de la berge rive droite se compose de la façon suivante :

- Constitution d'un empierrement avec sabot parafouille (+géotextile synthétique pour garantir l'étanchétié de l'ouvrage), dont la hauteur a été fixée au même niveau que précédemment.
 - Mise en œuvre de terre végétale sur 20 cm.
- Terrassement des berges selon des pentes adoucies (de l'ordre de 2H/1V puis 3H/2V).
 - Recréation d'une ripisylve en haut de berge avec la plantation d'arbres adaptés.
- Ensemencement des surfaces travaillées au moyen d'un mélange grainier adapté.

Dans ce secteur, le seuil identifié sur le Janon fera l'objet d'un dérasement total. Actuellement, ce dernier constitue une contrainte majeure au regard de la continuité écologique du fait notamment de sa hauteur de chute trop importante.

1.6.7.4. Secteur en aval de la zone de compensation

L'aménagement de la berge rive droite se compose de la façon suivante :

- Une banquette sera réalisée afin de favoriser les débordements en dehors du lit vif et ainsi stocker les eaux en période de crues dans la zone d'expansion.
 - Terrassement des berges selon des pentes adoucies (de l'ordre de 2H/1V). Réalisation d'une fascine d'hélophytes ou de saules.

 - Mise en œuvre de terre végétale sur 20 cm.
- Recréation d'une ripisylve dans la zone d'expansion avec la plantation d'arbres adaptés Ensemencement des surfaces travaillées au moyen d'un mélange grainier adapté.

Coupes des aménagements projetés sur le secteur.

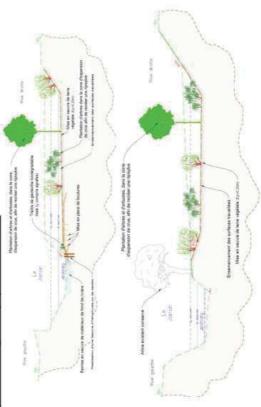


Figure 38: Coupes des aménagements projetés sur le Janon au droit du bassin DIRCE

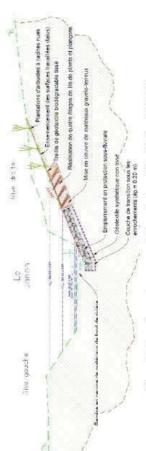


Figure 39: Coupe des aménagements projetés sur le Janon à l'aval du bassin DIRCE

O

Description de la compensation hydraulique

Comme expliqué précédemment, une compensation volume pour volume est indispensable. Ainsi, les aménagements projetés prévoient un volume à compenser équivalent à 9004 m³.

Le tableau ci-dessous synthétise les volumes de déblais et remblais pour chacun des secteurs :

Secteur	Volume à compenser	Volume compensé
Secteur 1	6012 m ³	3800 m ³
Secteur 2	2992 m ³	4540 m ³
Secteur 3	0 m ³	2495 m³
TOTAL	9004 m ³	10835 m ³

Figure 40: Synthèse des volumes pour la compensation hydraulique par secteur

La vue en plan ci-dessous présente les trois zones inondables créés, afin d'assurer la compensation hydraulique.

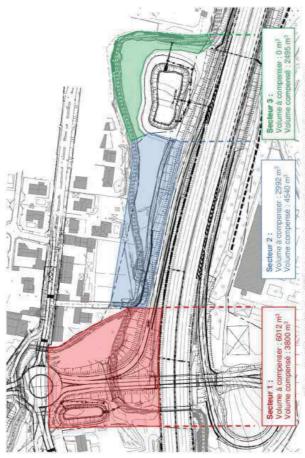


Figure 41: Présentation des différentes zones inondables pour la compensation hydraulique

O

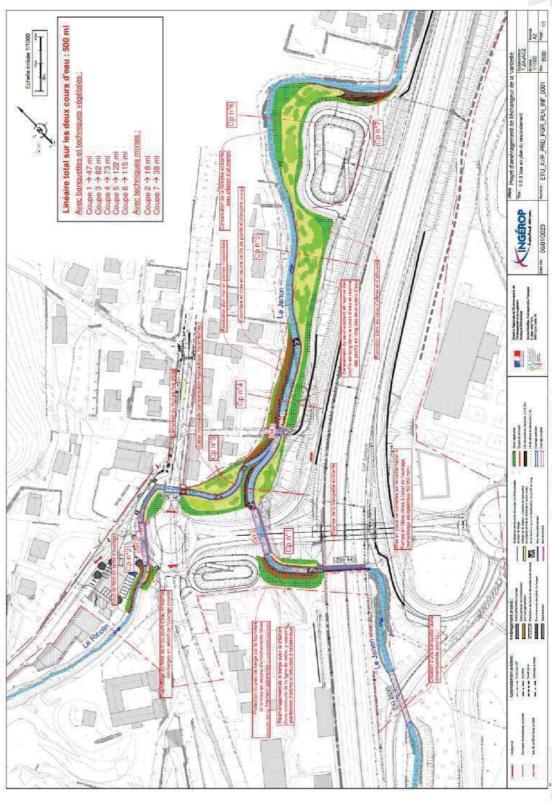


Figure 42 : Vue en plan détaillée des aménagements projetés

O

Janvier 2023

1.6.11. Analyse diachronique et comparative des tronçons témoins du Janon et du Ricolin

Les figures ci-dessous présentent l'analyse diachronique du Janon et du Ricolin entre la Carte d'Etat-Major (19º siècle) et le plan IGN actuel ou entre les orthophotos de 1953, avant la construction de la RN88 et 2019.

Sur la carte d'Etat-Major ci-dessous, deux secteurs sont similaires aux tracés du Janon et du Ricolin actuels (en bleu sur la figure ci-dessous). Ainsi, le Janon et le Ricolin en amont de la confluence présentent des tronçons témoins pouvant être utilisés pour valider la pertinence du projet proposé.

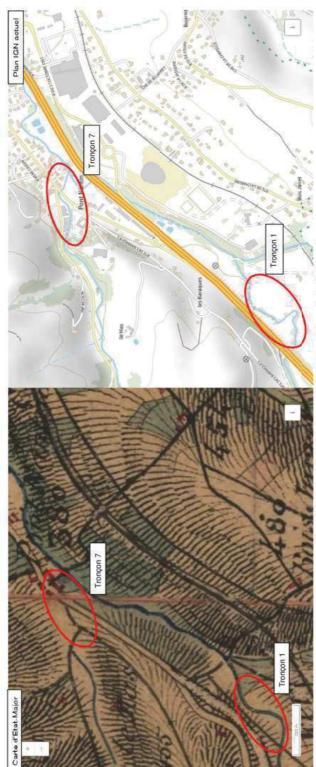


Figure 43: Analyse diachronique entre la Carte d'Etat-Major et le plan IGN actuel

O

Plusieurs secteurs n'ont pas subi de modifications de tracé entre 1953 et 2019 (en bleu ci-dessous). Les deux tronçons identifiés précédemment se retrouvent également sur cette analyse, confirmant la présence de tronçons témoins. Trois autres secteurs, bien que plus impactés par l'anthropisation, présentent un tracé similaire entre 1953 et 2019 (secteur 2, 5 et 6). Le secteur 2 est impacté par la présence de remblais au droit de bassins de rétention, le secteur 5 par les bassins appartenant à la DIRCE, et le secteur 6 par le lotissement à proximité.

Les tronçons 3, 4 et 8 sont quant à eux repris par le projet présenté dans cette note.

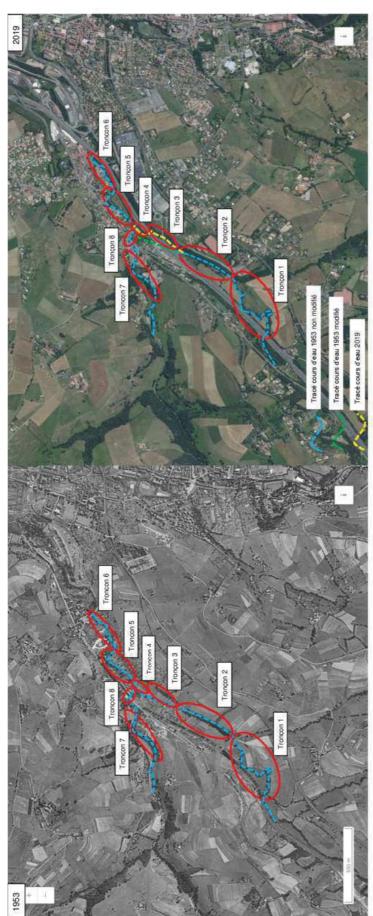


Figure 44: Analyse diachronique entre les orthophotos de 1953 et 2019

La figure ci-dessous présente les différents secteurs analysés pour l'étude des tronçons témoins sur le Janon et le Ricolin. Les tracés projetés des cours d'eau sont représentés en bleu, et les différents secteurs analysés en rouge.

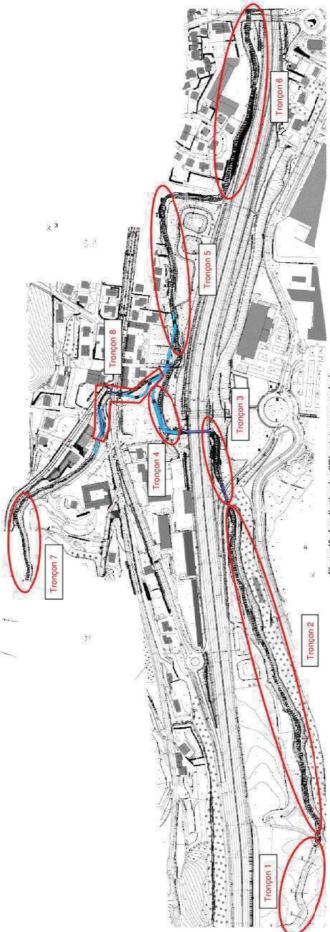



Figure 45 : Localisation des différents tronçons analysés

Le tronçon n°1 sur le Janon amont, d'une longueur de 170 m environ, est caractérisé par une largeur du fit mineur comprise entre 3 et 5 m, et une pente d'équilibre d'environ 1,4 %. En amont de ce tronçon est identifié un seuil infranchissable, provoquant une fosse de dissipation importante en avoil direct. Le tronçon étudié reste cependant peu anthropisé par rapport aux tronçons avai, avec un lit d'étage méandrant relativement bien.

Le tronçon n°2 sur le Janon, en amont de l'OH 4500 (bretelle), présente deux bassins en rive gauche impactant le cours d'eau. La largeur du lit mineur est comprise entre 4 et 5 m, pour un linéaire total de 550 m environ et une pente d'équilibre de 1,6 %.

La figure ci-dessous presente la largeur du lit à l'amont et à l'aval de l'OH 4500. A l'amont de l'ouvrage, la création naturelle d'un banc graveleux permet la restriction du lit vif, réhaussant la ligne d'eau lors des périodes de basses eaux. Le resserrement du lit par la mobilisation de matériaux alluvionnaires est un phénomène naturel, assurant une lame d'eau suffisante au cours des périodes de basses eaux.

RN88 - Échangeur de la Varizelle

O

33 / 51

Le tronçon n°3 sur le Janon, en amont de l'OH 4621 (RN88), correspond au tronçon modifié par rapport au tracé de 1535, mais non modifié par le prôle présenté dans cette note (Cf analyse d'achronique ci-dessus). La largeur du mineur dans ce secteur est comprise entre 3 et 4 m, en cohérence avec les tronçons témoins présentés précédemment. La pente d'équilibre du tronçon est de 1,8 % pour un linéaire de 80 m.

Le tronçon n°4 sur le Janon, repris par la projet présenté dans cette note, est délimité entre l'OH 4621 (RN88) et l'OH 4781 (Impasse de la Magie). La largeur du lit mineur dans ce secteur sera conforme aux tronçons témoins, à savoir 4 m, avec une pente d'équilibre d'environ 1,8 %, proche des valeurs présentées précédemment sur les tronçons témoins. Le ilt mineur présentera également un cintrage (20 cm de profondeur) créant un it d'étiage, repris naturellement par la dynamique du cours d'eau.

La largeur du lit mineur sur le tronçon n°5; sur le Janon aval, en amont des bassins DIRCE, est d'environ 4 m sur un linéaire de 200 m environ pour une pente d'équilibre de 0,7 %.

Conformément aux tronçons précédents, la largeur du lit mineur sur le tronçon n°6, sur le Janon en aval des bassins DIRCE, est comprise entre 4 et 5 m. Le linéaire total du cours d'eau est d'environ 250 m pour une pente d'équilbre à 0,9 %.

RN88 – Échangeur de la Varizelle INGEROP

Dossier Projet

Le tronçon n°7 sur le Ricolin amont se définit par une largeur de lit mineur comprise entre 2 et 3 m, sur un linéaire d'environ 200 m et une pente d'équilibre entre 1,5% et 1,9 %.
De la même façon que pour le Janon sur le tronçon n°1, le Ricolin présente de nombreux méandres, avec des blocs de roche de tailles plus ou moins importantes et des banquettes minérales réduisant pondutellement la largeur du lit.

Banc graveleux existant

Le tronçon n°8, représente la partie du Ricolin reprise par le projet en amont de la confluence avec le Janon. La largeur du lit mineur sera comme pour le tronçon témoin d'environ 3 m, pour une pente d'équilibre avoisinant les 2,3 %, relativement proche de la pente d'équilibre décrite pour le tronçon n°2. De la même façon que pour les tronçons projetés. un lit d'étiage sera réalisé avec un cintrage du fond de lit. En conclusion, les aménagements projetés sur le Janon et le Ricolin sont en cohérence avec les tronçons témoins identifiés grâce à l'analyse diachronique.

DESCRIPTION DES AMENAGEMENTS EN PHASE CHANTIER

Phase 1 : Dérivation provisoire du Janon

partie dans le tif du cours d'eau actuel. C'est aussi pendant cette phase que sera traité (Janon et Ricolin) la Renouée du Japon dans le secteur amont, selon les préconisations imposées dans le canier des charges. L'objectif de cette première phase est de permettre la réalisation des deux ouvrages hydrauliques OH2 et OH3 situé en

La première phase chantier se déroulera comme suit :

- compte du débit dans le ruisseau, un batardeau souple autobloquant sera mis en place en amont et un filtre anti Greation d'un canal de dérivation permettant de dériver les eaux provenant du lit du Janon existant (Cf plan didessous), et mise en place d'un merlon de protection empèchant le transit des eaux dans le lit existant du Janon. Cette dérivation temporaire sera réalisée par la mise en place de tuyaux suffisamment dimensionnés pour tenir WES (type desier pouzzolane) sera dispose dans le cours d'eau à l'aval des travaux (Cf photos ci-dessous).
- Réalisation d'une pêche de sauvegarde (pêche électrique) sur le tronçon allant de la confluence Janon Ricolin jusqu'à la fosse en aval du seuil existant, puis sur le secteur amont au niveau de l'ouvrage sous la RN88. La pèche de sauvegarde se fera en concertation avec la fédération de péche.
- Mise en cauvre d'un batardeau filtrant anti-MES en aval du seuil existant ainsi qu'un barrage en amont de la confluence Janon – Ricolin. Pour la mise en assec du froncon du Janon, pendant la déconstruction du seuil aval, et la reprise du profil en long du cours d'eau.
- dérivation des eaux du Janon et du Ricolin (buse annelée Ø800, avec un débit capable de 2,1 m²/s, correspondant Dérivation du Ricolin en amont du barrage nouvellement créé, avec pose d'une conduite provisoire pour
- Dérasement du seuil existant jusqu'à la cote 383,19 m NGF, et comblement de la fosse à l'aval du seuil. Les matériaux graveleux (Ø0 400 mm) actuellement retenus en amont du seuil sont estimés à 800 m³. Un contrôle des sédiments sera cependant nécessaire en phase chantier, afin de vérifier la qualité des matériaux avant leur remise en œuvre sur l'ensemble des deux lits des cours d'eau reprofilés. à une occurrence à 2,5 fois le module).
- la plante, dégrappage des rhizomes et évacuation des matériaux impropres sur une profondeur moyenne de 1 m. Traitement de la Renouée Japon, dans l'emprise des travaux : arrachage et évacuation de la partie aérienne de

ent de la renouée dans le secleur

CD AA

Derivation du Ricolin

Cp = 385.23

Réalisation des terrassements et autres aménagements, en remontant de l'avai vers l'amont jusqu'à l'ouvrage de la PN88

- projetés (Renappage de terre végétale, remise en œuvre de matériaux en fond de lit, comblement de la fosse en aval du seuil, réalisation de seuils de stabilisation, et empierrements de pied de berges). Déblais et mise en stock des matériaux existants qui seront réutilisés pour les futurs aménagements L'ensemble de des matériaux sera stocké dens un secteur hors d'eau (comme la zone du futur bassin de rétention).
- dans le cadre des aménagements projetés (terre végétale, blocs d'enrochement, matériaux graveleux de fond de lit). Les matériaux excédentaires, issus du terrassement des berges, seront évacués par Dépose des blocs d'enrochements existants et mise en dépôt des matériaux en vue de leur réutilisation l'entreprise vers des sites agréés par le maître d'ouvrage.
- Renforcement des culées de l'ouvrage de la Magie, afin de prévenir d'éventuels affouillements, en cas de crue et suite à l'abaissement du fond de lit d'environ 1,3 m (pont conservé en phase provisoire).
- Terrassement du lit provisoire sur la rive gauche actuelle, et réalisation du raccordement à l'ouvrage RN88. Au droit de l'ancien lit, un merlon sera créé pour dériver les eaux vers le chenal provisoire.

du seuit existant à la cote 383,19 m NGF permettra l'abaissement du fond de lit actuel, et par conséquent de la ligne Nota : Les aménagements prévus en phase chantier n'aggraveront pas la situation hydraulique actuelle. L'arasement d'eau. C'est pourquoi l'arasement du seuil sera realise dès le début de la phase chantier, afin d'assurer pendant cette phase une protection décennale à minima.

La figure suivante présente la vue en plan du contournement du Janon en phase provisoire (dimensionnement décennal).

Renforcement provisoire des culees

avec des blocs d'enrochement

1

Seull existant

- Marian

Abelssement ou ill au droit de louvrage et 1 ac.

-Cp BB

TTT TCAF Exicus

Echelle initiale 1/500

34 / 51

1.7.2.2. Secteur 2b - Partie aval L'objectif de cette seconde phase est de réaliser l'ensemble des deux rescindements cours d'eau du Janon et du Ricolin. Pour des raisons de planning, cette phase a été sous-découpée entre deux secteurs d'intervention, qui seront décalés dans le temps.

Phase 2 : Reprise du tracé définitif sur le Janon et le Ricolin

Cette dernière phase comprendra les aménagements suivants :

- Traitement de la Renouée du Japon sur le secteur.
- Décapage de la terre végétale de l'encemble des curfaces travaillées.
- Déblais des zones de compensation, et reprise de la berge rive droite à l'avai du bassin de la DIRCE (réalisation d'un batardeau provisoire, peche de sauvegarde avant la mise en assec d'une parte du It, enrochement de d'un batardeau provisoire, peche de sauvegarde avant la mise en assec d'une parte du It, enrochement de pied de berge avec sabot parafouille).
- Réalisation des aménagements végétalisés (fasoines d'hélophytes, plantation d'arbres, d'arbustes et des boutures de saules, ensemencement.).

Cette 2º phase comprendra en premier lieu la création des deux ouvrages sur le Janon (OH du barreau routier et de la Magie) et un ouvrage sur le Ricolin (sous le Giratoire). Une fois, la création de ces différents ouvrages, les aménagements se décomposeront comme suit :

1.7.2.1. Secteur 2a -Partie amont

- Reprofilage du nouveau lit et des berges, de l'aval vers l'amont.
- en blous, avec un appareillage fin des blous pour la réalisation de l'ensemble des enrochements prévue dans les aménagements projetés (y compris la création de la béche d'enrochements). Réalisation depuis la piste en fond de cours d'eau, de foutes les techniques de renforcement de berge, rampe
- Création des seuits de fond en blocs finement appareillés (Ø moyen variable 0,4 à 0,6 m); pour la stabilisation du profil en long, avec remplissage des interstices entre les blocs avec des matériaux graveleux.
- Fourniture et pose de barrettes béton à l'intérieur de l'ouvrage sous la RN88 sur le Janon.
- Réalisation de la banquette faune en encorbellement, à l'intérieur des OH existants, sous la bretelle de sortie de la RN88 et sous la RD32 route de la Varizelle.
- Remise en eau progressive du nouveau lit., et comblement du lit provisoire.
- Déblais des zones de compensation (après le décapage de la terre végétale, sa mise en stock provisoire, et
- Réalisation des aménagements végétalisés (lits de plants et plançons, fascines de saules ou d'hélophytes, ensemencement de l'ensemble de surfaces travaillées, plantations d'arbres et d'arbustes).

Figure 48 : Vue en plan du déroulement de la deuxième phase chantier

nvier 2023

35 / 51

La figure ci-dessous présente la limite d'inondation cinquantennale en rive gauche, dans le secteur d'implantation possible de la base vie lors de la phase chantier. Une zone hors d'eau pour cette occurrence de crue est identifiée, à l'emplacement du futur bassin de rétention n°1, avec une possibilité d'implantation de la base vie lors de la phase chantier.

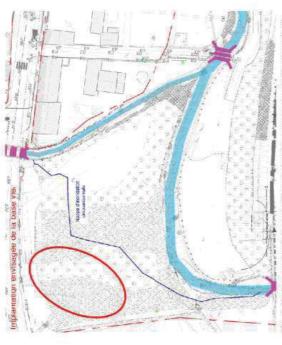


Figure 49 : Vue en plan de la nappe d'inondation cinquantennale et de l'implantation de la base vie

La partie suivante présente les principaux éléments concernant les mouvements de matériaux pendant les phases chantier 1 et 2 dans travaux en cours d'eau.

1.7.3.1. Phase 1 - Création d'une dérivation provisoire

Le schéma suivant synthétise les principaux mouvements de terre lors de la première phase chantier :

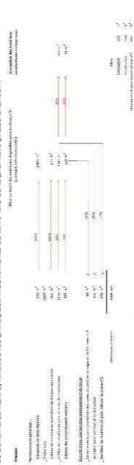


Figure 50 : Schéma bilan des mouvements de matériaux lors de la phase 1

Au total, le bilan des mouvements des matériaux se décompose comme suit :

- Évacuation estimée à : 335 m³.
- Réutilisation estimée à : 1088 m³.
- Mise en stock pour apport phase n°2 estimée à : 887 m³.

De plus, le délai pour la réalisation de la première phase de travaux est estimé à 10 semaines; soit 2 mois et demi.

1.7.3.2. Phase 2 - Réalisation des aménagements de renaturation projetés

Le schéma suivant précise les mouvements de terre lors de la deuxième phase chantier :

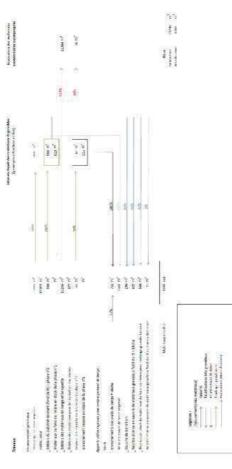
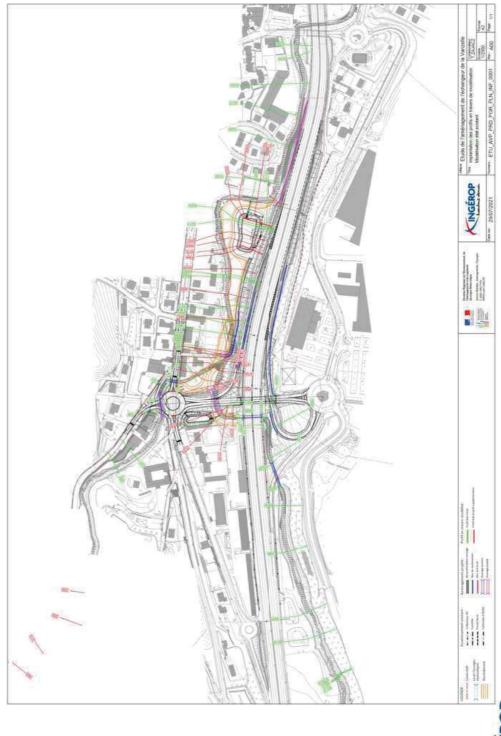


Figure 51 : Schéma bilan des mouvements de terre lors de la phase 2

Au final, le bilan des mouvements de matériaux durant cette phase sera caractérisé comme suit :

- Évacuation estimée à : 11 290 m³.
- Réutilisation estimée à : 3241 m³.

Les travaux en deuxième phase seront sectorisés en deux parties, du fait de l'importance de la durée estimée des travaux :


- Secteur 2a : 19 semaines, soil 4 mois et demi. Ce secteur sera traité l'année suivante à la phase 1.
- Secteur 2b : 22 semaines, soit 5 mois et demi. Afin d'optimiser la durée totale des travaux, ce secteur pourra être traité en même temps que la phase 1.

37 / 51

DESCRIPTION DE LA MODELISATION HYDRAULIQUE PROJETEE

La modélisation projetée se base sur les mêmes profils en travers que ceux présentés pour la modélisation existante (en verts sur la figure suivante) auxquels s'en ajoutent d'autres (en rouge sur la figure suivante). Au total, 44 profils en travers ont été réalisés pour le Janon répartis sur 2170 mètres et 11 profils en travers pour le Ricolin répartis en 3850 mètres.

La figure suivante présente la vue en plan localisant ces différents profils en travers.

Dossier Projet

Modélisation de l'état projeté sur le Janon

Bien que les aménagements projetés améliorent la situation actuelle, concemant le risque inondation au niveau de d'Ad 4621, une retenue se forme en amont de l'ouvrage pour la crue certennale. Cette dernière permet cependant d'augmenter l'écrétement de la crue, le volume d'eau en excédant est donc stocké sur une courte période et restituer à la rivière progressivement.

Le reprofilage des profils en long suite à l'arasement du seuil, induit un abaissement du niveau de fond, accompagné d'une diminution des lignes d'eau sur l'ensemble du linéaire. En effet, de l'OH 4500 sous la bretelle en aval du site au PK – 4975 la ligne d'eau a diminué pour la majorité des points modélisés (abaissement du fond compris entre 0 et

1,75 m). Cela conforte l'efficacité des aménagements projetés.

Le tableau suivant donne l'évolution du profil en long (fond de lit) et de niveau d'eau centennal pour le Janon. Les résultats bruts pour des occurrences de crues 10 ans, 50 ans et 100 ans se trouvent en annexe 1.

		Niveau du fond	pud	201	Niveau d'eau Q100	u Q100
PROFIL	Initial	Projet	Delta Initial/Projet	Initial	Projet	Delta Initial/Projet
	(m NGF)	(m NGF)	(m)	(m NGF)	(m NGF)	(m)
-4361	389.15	389.15	0.00	393.09	393.11	0.02
-4458	388.67	388.67	00.0	393.05	393.08	0.03
-4500	388.03	388.03	00:00	392.92	392,96	0.04
-4501	200000000		OH4500 - Sous Bretelle de sortie	retelle de sor	tie RN88	ONE ASSESSED
-4525	388.03	388.03	00:00	391.50	389.55	-1.95
-4532	387,95	387.95	00'0	391.55	391.31	-0.24
-4568	387.30	387,30	00:00	391,59	391.36	-0.23
-4585	386.66	386.66	00:00	391.63	391.41	-0.22
-4588	386.39	386,39	00:00	391.58	391.35	-0.23
-4588.2	386.17	386.17	0.00	391.60	391.37	-0.23
4588.5			OH4621	1 - Sous RN88		200
-4621	386.00	386.00	00:00	389.47	389.42	-0.05
-4622	386.06	386.06	00'0	388.01	388.05	0.04
-4626	386.06	386.06	00:00	388.84	389.43	0.59
-4630	385,95	385.69	-0.26	388.93	389.48	0.55
-4631	385.87	385.55	-0.32	388.92	389.49	0.57
-4636			OH4636	- Sous Barreau	-	
-4640	385.52	384.45	-1.07	388.93	387.94	-0.99
-4750	385.25	384.01	-1.24	388.93	387.92	-1.01
-4780	385.07	383.74	-1.33	388.90	387.87	-1.03
-4782	384.79	383.64	-1.15	388.90	387.83	-1.07
-4785	0.0000000000000000000000000000000000000	The Section of the second	OH4781 - Sous Impasse de la Magie	Impasse de la	Magie	that the same of t
-4786	384.80	383.57	-1.23	386,75	385.12	-1.63
-4800	384.64	383.30	-1.34	386.35	385.54	-0.81
-4808	384.94	383,19	-1.75	385.86	385.45	-0.41
-4810	382.36	383,15	67.0	385.60	385.45	-0.15
-4825	382,55	382.94	0.39	385.28	385.24	-0.04
-4845	382,39	382.54	0.15	385.12	384.88	-0.24
-4875	382.27	382.27	00:0	384,97	384,53	-0.44
-4925	381.77	381.88	0.11	384.90	384.46	-0.44
-4928	381.84	381.84	00:00	384.67	384.45	-0.22
-4975	381.52	381.52	00.00	384.42	383.59	-0.83

Figure 53 : Résultats de la modélisation projetée sur le Janon

sont strictement équivalentes du fait qu'il n'y a eu aucun aménagement du fond dans ce secteur. La ligne d'eau sera quant à elle légèrement rabaissée du fait de l'impact des aménagements sur l'ouvrage avai, à savoir l'OH 4621 (sous la RN88). Entre les deux ouvrages hydrauliques existants (OH 4500 Bretelle et l'OH 4621 RN88), les attitudes du niveau de fond

Entre l'OH 4621 (RN88) et l'OH 4636, la réhausse de la ligne d'eau constatée en amont de l'OH 4636 (barreau) peut être expliqué par la modification de plusieurs paramètres ;

- Modification de la localisation de certains profils, comme -4631, limitant la pertinence de la comparaison entre l'état existant et projeté (suite à la modification de tracé projeté). En effet, les lignes d'eau comparées ne se
 - situent pas au même endroit. Réduction de la section hydraulique (resserrement ponctuel du lit entre les ouvrages RN88 et barreau), créant ainsi une remontée de la ligne d'eau sur environ 25 m, mais qui reste toutefois contenue dans le gabarit du cours d'eau projeté (donc sans incidence sur l'inondabilité du secteur):
 - Ajout de l'OH 4636 sous le barreau nouvellement créé dans le modèle hydraulique
- Réduction de la section hydraulique des profils -4630 et -4631 (passage d'environ 25m)

Nota : Malgré la réhausse de la ligne d'eau constatée, le passage d'une crue centennale est assuré sous l'ouvrage avec un tirant d'air estimé à 1,36 m. Cette analyse sera détaillée dans la suite de la présente note. Entre l'OH 4636 (barreau) et l'OH 4781 (la magie), l'abaissement du fond du lit, et les déblais en lit majeur (compensation hydraulique), indulsent une diminution de la ligne d'eau d'environ 1 metre.

et le comblement de la fosse de dissipation existante en aval. La ligne d'eau sera quant à elle abaissée de 0.04 à 1.63 mètres (globalement l'ensemble du secteur sera abaissé). En aval de l'OH 4781 (la magie), le dérasement du seuil au PK - 4800 et - 4808 induit l'abaissement du niveau de fond

En entrée et sortie d'ouvrage, le changement des conditions hydrauliques provoque localement le changement de régime hydraulique (torrentiel à fluvial), expliquant les exhaussements et l'abaissement localisés de la ligne d'eau (classiquement observés).

La figure suivante compare l'évolution des profils en long existant et projeté pour une crue centennale.

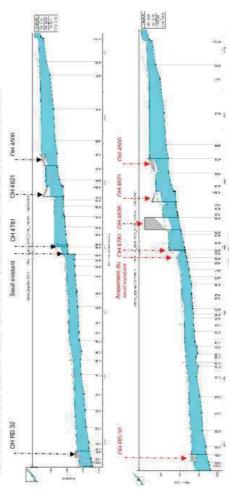


Figure 54 : Profil en long projeté pour une crue centennale sur le Janon

Bilan

dans ce secteur, mais surtout la disparition de la chute, que ce dernier provoquait, permettant ainsi, la réouverture des Le dérasement du seuil, et le reprofilage des deux cours d'eau, ont permis un abaissement significatif de la ligne d'eau parties amont du Janon et du Ricolin à la vie piscicole. Le gabarit du nouveau lit (mineur et majeur) du Janon permet de contenir la crue centennale à l'avai de l'ouvrage RN88, et globalement améliore l'aléa d'inondation dans le secteur et ce jusqu'à l'avai du bassin de la DIRCE.

Le tableau suivant présente l'évolution du profil en long (fond de lit) et de niveau d'eau centennal pour le Ricolin : Les résultats bruts pour des occurrences de crues 10 ans, 50 ans et 100 ans se trouvent en annexe 2.

Modélisation de l'état projeté sur le Ricolin

1.8.2

		Niveau du fond	puo		Niveau d'eau Q100	0100
PROFIL	Initial (m NGF)	Projet (m NGF)	Delta Initial/Projet (m)	Initial (m NGF)	Projet (m NGF)	Delta Initial/Projet (m)
3512	481.18	481.18	000	482.64	482.64	00'0
3502	480.28	480.28	0.00	482.65	482.65	0.00
3470			Ouvrage hydraulique Amont	ulique Amor	nt	A
3430	477.32	477.32	00.0	478.10	478.10	0.00
2460	444.85	444.85	0.00	446,18	446.19	0.01
2390	439.21	439.21	0.00	439.99	439.92	-0.07
257	389.27	389.27	00:00	391.07	391.08	0.01
165			Ouvrage sous	us Giratoire		
125.0	386.68	386.68	00.0	389.49	388.69	-0.80
113	386.29	386.29	00:0	389.48	388.81	-0.67
100			Ouvrages	Ouvrage sous RD32		
86	386,44	386.44	00.00	388,91	387,69	-1.22
95	386.43	386.36	-0.07	388.89	387.24	-1.65
20	385.85	385.39	-0.46	388.96	387.92	-1.04
28	385.75	384.52	-1.23	388.91	387.93	-0.98
18	385.24	384.00	-1.24	388.88	387.93	-0.95
0	385.13	383.72	-1.41	388,89	387.92	-0.97
-4780	385.07	383.74	-1.33	388.91	387.92	-0.99

Figure 55 : Résultats de la modélisation projetée sur le Ricolin

De la même façon que précédemment, une diminution des niveaux de fond ainsi que des lignes d'eau, est obtenue au regard des résultats de la modélisation. L'abaissement est compris entre 0 m au minimum et 1,41 m au maximum. Les lignes d'eau seront également abaissées de 0 m à 1,65 m.

Nappes inondations à l'état projeté

Les nappes d'inondation pour l'état projeté sont symbolisées sur la figure suivante (voir vue en plan II.6.8).

En comparaison avec l'état existant, les propriétés inondées en rive gauche ne présentent plus que des hauteurs d'eau comprises entre 33 cm et 90 cm (pour plus d'un mêtre avant aménagements). Le fonctionnement en période de crues est donc nettement amélior e par rapport à l'état existant. Le propriétaire au point côté 387,82 m NGF pour le niveau O_{no} a également été rencontré au cours des phases terrain. Sa propriété se trouve sur une zone en remblais, diminuant davantage le niveau d'eau pour une crue d'occurrence centennale,

Le point se trouvant dans le fond de lit au niveau de la confluence avec le Janon présente une ligne d'eau à 387,73 m NGF à l'état projeté pour une ligne d'eau de 388,91 m NGF à l'état existant (ce même point était alors en lit majeur).

Secteur amont de l'impasse de la Magie :

Figure 56: Nappes d'inondation pour une crue centennale à l'état projeté

Bilan

On constate sur la vue en plan ci-dessus, que les aménagements projetés permettent d'améliorer l'aléa d'inondation dans le secteur en rive gauche du Ricolin.

Secteur aval de l'impasse de la Magie :

Figure 57 : Nappes d'inondation pour une crue centennale à l'état projeté

A l'état projeté, la zone inondable en rive droite du Janon présente une hauteur d'eau d'environ 1,8 m pour une crue d'occurrence centennale, comparé aux 36 cm à l'état existant. La zone inondable au nord des bassins DIRCE quant à elle permet un stockage pour cette même crue de 1,6 m par rapport aux 80 cm actuellement. Cela témoigne de l'impact favorable des aménagements projetés, préservant le risque d'inondation dans ce secteur.

Analyse de l'impact des aménagements sur les ouvrages hydrauliques (OH)

ll est important de garder à l'esprit que plusieurs contraintes hydrauliques nécessitent de contenir le risque d'inondation dans le secteur, afin de

- Préserver l'infrastructure et les zones d'habitations
- Ne pas aggraver le risque d'inondation au droit et à l'aval de la zone de travaux.
- en visant un tirant d'air minimum de 50 cm pour les ouvrages projetés (conformément aux spécifications du Respect des taux de remplissage et de tirants d'air « acceptables » au sein des ouvrages hydrauliques projetés guide SETRA).

Les ouvrages hydrauliques feront l'objet d'aménagements afin de restaurer la franchissabilité piscicole

décennale. L'ouvrage hydraulique OH 4621 (RN88) gardera la banquette existante de 3 mètres, et sera équipé de barrettes asymétriques en V fixées au radier de l'ouvrage (h=10 cm à l'axe). Ces barrettes seront espacées de 4 m de distance, et des matériaux de fond de lit prélevés sur site (Ø50 - 150 mm) seront mis en œuvre entre ces dernières. au-dessus du niveau de la crue 2 ans. Les ouvrages hydrauliques OH 4500 (bretelle) et l'OH RD32 seront équipés de banquettes faune, en encorbellement (1:40cm x ép : 5cm), calée pour assurer sa non inondabilité pour une crue Les OH 4636 (Barreau) et 4781 (Magie) seront équipés d'une banquette en béton pleine, de 1,50 m de largeur et calée

Le tableau ci-dessous précise les résultats obtenus, avec un espacement des barrettes devant être compris entre 3,3 m et 5 m, pour une pente du fond de lit à 0,6%.

Paramètres	Ouvrage RN88 (OH 4621)
Pente (%)	0.60%
Pente (m/m)	9000
Espacement minimum (0.20 m)	3.3
Espacement maximum (0.30 m)	5.0
Espacement entre seuil (m)	4.0
Hauteur de seuil (m)	0.1
0.20 ≤ i× L/P ≤ 0.30	0.24

Figure 58: Tableau bilan du calcul de l'interdistance entre les

barrettes sous l'OH 4621

ouvrage sera accompagné par une rampe en blocs tapissant le fond du cours d'eau afin de bloquer le profil en long et éviter la création d'une nouvelle fosse plus difficilement franchissable. Les aménagements projetés prévoient la Pour permettre la franchissabilité de cet ouvrage, et afin de garantir une bonne stabilité de l'OH 4621, l'aval de cet réalisation d'une rampe en blocs, d'une longueur totale de 10 mètres environ, se décomposant de la façon suivante :

- Constituée avec une densité de blocs importante (un géotextile synthétique sous-jacent sera implanté sous la couche de transition), les interstices seront remplis de matériaux graveleux grossiers.
 - L'accès a la banquette se fera au moyen de rampes en enrochements (Ø 400-800 mm) raccordées au terrain naturel en pied de talus.
 - En tête d'ouvrage une butée amont sera créée, avec un ancrage en fond de fosse existante.
 - La rugosité de la rampe sera de l'ordre de K = 25.
- pour concentrer les écoulements, une attention particulière sera portée pendant la phase de réalisation de l'ouvrage, pour créer une bonne rugosité, afin de limiter les vitesses et rehausser les hauteurs d'eau à l'étiage, La pente longitudinale sera de 1,30%, avec des pentes latérales de 10 %, permettant le cintrage de la rampe favorable aux petites espèces

Figure 59: Profil en long de principe d'une rampe en blocs

Janvier 2023

L'accès aux ouvrages sera compacté et recouvert de terre végétale pour faciliter les déplacements des pelites espèces animales.

Le tableau suivant présente les caractéristiques des ouvrage existants sur le Janon ;

Paramètres	OH 4500 : Ouvrage sous la Bretelle	OH 4621 : Ouvrage sous la RN 88	OH 4781 : Ouvrage sous le Pont de la magie	OH RD 32
Pente en long	0,27 %	0,5 %	%.0	2,3 %
Longueur	37,30 m	32,44 m	4,62 m	22 m
Largeur	4 m	4 m	6,1m	ш9
Hauteur	3,5 ш	3,3 m sur banquettes 4,3 m sur cours d'eau	2,9 m	3,4 m
Section	14 m²	14,2 m²	17,5 m²	20,4 m ²
Niveau Q100	391,74 m	390,22 m	388,89 m	380,77 m
Niveau haut de l'ouvrage	391,81 m	390,45 m	387,67 m	381,30 m
Tirant d'air	0,07 m	0,23 m	-1,22 m	0,53 m

Figure 60 : Synthèse des caractéristiques des ouvrages existants sur le Janon

Pour une orue centennale, les ouvrages existants sont donc actuellement en charge (OH 4781 avec un dépassement du niveau d'eau de 1,22 mètre) ou présentant un tirant d'air relativement faible (7 cm pour l'OH 4500 et 23 cm pour du niveau d'eau de 1,22 mètre) ou présentant un tirant d'air relativement faible (7 cm pour l'OH 4500 et 23 cm pour FOH 4621). Les dimensions des ouvrages projetés doivent permettre d'améliorer la situation aduelle en période de crues. Chaque ouvrage a donc été dimensionné pour permettre le passage d'une crue centennale et améliorer la situation globale pour cel évènement.

Le tableau ci-dessous synthétise les principales caractéristiques concernant les ouvrages identifiés sur le Janon :

ge OH RD	2,0 %	22 m	6 m	3,4 m	20,4 m ²	380,76 m	381,30 m	0,54 m	1,5 m	50
OH 4781 : Ouvrage sous l'impasse de la magle	1,00 %	4 m	5,5 m	4 m	20,8 m²	386,34 m	387,64 m	1,30 m	1,5 m	m 08,0
OH 4636: Ouvrage sous le barreau routier	1,00 %	36 m	5,5 m	4 m	20,8 m²	388,01 m	389,40 m	1,40 m	1,5 m	m 08,0
OH 4621 : Ouvrage sous la RN 88	% 5'0	32,44 m	4 m	3,34 m sur banquettes 4,34 m sur cours d'eau	14,2 m²	389,96 m	390,45 m	0,49 m	3 m	100
OH 4500 : Ouvrage sous la Bretelle	0,27 %	37,30 m	4 m	3,5 m	14 m²	391,77 m	391,81 m	0.04 m	0,40 m (en encorbellement)	SI
Paramètres	Pente en long	Longueur	Largeur	Hauteur	Section	Niveau Q100	Niveau haut de l'ouvrage	Tirant d'air	Largeur de la banquette	Hauteur de la banquette

Figure 61: Synthèse des caractéristiques des ouvrages projetés sur le Janon

Ainsi, l'OH 4636 (sous le lutur barreau) permet le passage d'un débit centennal avec un tirant d'air de 1,39 m.

de 1,3 mêtre. Cela permet néanmoins d'optimiser le volume écrêté en zone 1 en période de crues. Les dimensions et les pentes des ouvrages projetés sont supérieures à celles des ouvrages existants plus en amont, améliorant ainsi la L'ouvrage OH 4781 (sous l'impasse de la magie) quant à lui influence le niveau d'eau en amont malgré un tirant d'air situation actuelle en période de crues, y compris au niveau des ouvrages existants comme l'OH 4621

Ce demier (sous la RNB8) sera équipé de barrettes d'une hauteur d'environ 20 cm, afin de rehausser la hauteur d'eau, réduire les vitesses, reconstituer un fond de it graveleux et ainsi amélierer la franchissabilité piscicole. Cela redonnera également une certaine sinuosité au lit vif de la rivière, cos berrettes étant asymétriques. Cet aménagement sera détaillé dans la suite de la présente note. La non-intervention sur la largeur de la banquetté au profit du Janon et la non reprise de l'entronnement en anonts éxplique par la choix de la DIRCE de conserver la banquette pour des raisons de stabilité d'ouvrage, celle-ci étant solidaire à ce demier. Cette banquette permet également le passage de la grande faune à travers l'ouvrage hydraulique.

Le reprofilage du lit en amont de cet ouvrage est nécessaire à cause de la présence d'une chute conséquente, créant une discontinuité écologique (Cf figure ci-descous). Des blocs seront redisposés dans ce secteur afin d'adoucir au maximum la pente sur la partie amont (<3% permettant la restauration de la continuité écologique).

RN88 – Échangeur de la Varizelle INGEROP Dossier Projet

Paramètres	OH 100 : ouvrage sous la RD 32	OH 165 : Giratoire
Pente en long	0,4 %	2,3 %
Longueur	13 m	30 m
Largeur	4 m	4 m
Hauteur	3,5 m	Эш
Section	11,2 m²	11,25 m²
Niveau Q100	388,18 m	389,54 m
Niveau haut de l'ouvrage	389,06 m	390,90 m
Tirant d'air	0,88 m	1,36 m
Largeur de la banquette	1,50 m	*
Hauteur de la banquette	0.50 m	

Figure 64: Synthèse des caractéristiques des ouvrages projetés sur le Ricolin

De la même façon que sur le Janon, la capacité de l'ouvrage projeté (sous le giratoire) sera supérieure à l'ouvrage existant, permettant également une nette amélioration du fonctionnement au cours d'importants évènements de crues. Les aménagements projetés à l'avai de l'OH 100 sous la RD 32 permettent une amélioration de la capacité hydraulique Suite à notre retour de terrain, nous nous sommes aperçus que l'ouvrage hydraulique sous la RN 88, restait un ouvrage

de l'ouvrage avec un gain de tirant d'air d'environ 68 cm.

Le chapitre qui va suivre, sur la franchissabilité piscicole confirme cette problématique, ainsi il est proposé d'aménager le fond de cet ouvrage, en disposant des barrettes, présenté sur la photo ci-dessous : difficilement franchissable par la vie piscicole, du fait de sa forte restriction et de la nature du radier constitué en béton.

Les travaux ne comprennent pas la reprise de cet ouvrage car son dimensionnement ne crée qu'une légère mise en charge, pour une période de retour exceptionnelle, il n'est donc pas impactant vis-à-vis des suppression du verrou hydraulique, constitué par le seuil existant et le pont de l'Impasse de la Magie. Plusieurs raisons expliquent la non-intervention dans ce secteur et sur cet ouvrage :

En effet, malgré le fait qu'il n'y ait pas d'intervention prévue sur cet ouvrage et sur le fond du lit dans ce secteur, un léger abaissement de la ligne d'eau centennale est à noter, grâce aux aménagements proposés en avai, notamment la

contre une mise en charge réduite à 4 cm en état projeté

Le coût occasionné par la reprise de cet ouvrage est trop important, pour les raisons précédemment évoquées.

Éviter l'intervention dans le ilt du cours d'eau d'engins mécaniques. Seule la mise en place d'une banquette en encorbellement sera réalisée pour permettre le passage de la petite faune. Enfin, l'OH sous la RD 32 sur le Janon présente la même altitude pour le niveau d'eau centennal, témoignant ainsi de la non-influence des aménagements projetés dans ce secteur.

Concernant le Ricolin, l'OH 100 sous la RD 32 constitue le seul ouvrage existant dont les caractéristiques sont synthétisées ci-dessous.

OH 100 : ouvrage sous la RD 32	0,4 %	13 m	4 m	3,5 m	11,2 m²	388,86 m	389,06 m	0.20 m
Paramètres OH 1	Pente en long	Longueur	Largeur	Hauteur	Section	Niveau Q100	Niveau haut de l'ouvrage	Tirant d'air

Figure 63 : Synthèse des caractéristiques de l'ouvrage existant sur le Ricolin

Cet ouvrage est aujourd'hui proche de la mise en charge lorsque survient une crue centennale, avec un tirant d'air de seulement 20 cm par rapport au niveau de l'ouvrage.

Figure 65 : Illustration de barrettes béton à l'intérieur d'un ouvrage

L'OH 4621 sous la RN 88 présente une banquette existante de 3 mètres de large, ne laissant alors plus qu'une emprise d'un mètre pour le Janon. Afin de répondre à cette contrainte, comme évoqué précédemment des barrettes seront installées sur le fond du radier, permettant ainsi le maintien d'une lame d'eau suffisante en période d'étiage

Les informations importantes

- Les aménagements projetés améliorent la situation initiale en période de crues
- L'OH 4781 impasse de la magie : est actuellement en charge, d'environ 1,2 mètre, la reprise de son gabarit permet au nouvel ouvrage, de présenter un tirant d'air de 1,3 mètre en état projeté ٠
- OH 4621 RN88 : installation de barrettes rehaussant la hauteur d'eau (à l'étiage) à l'intérieur de l'ouvrage, pour améliorer la franchissabilité piscicole. ۰

Janvier 2023

1.8.4.1. Présentation des résultats des lignes d'eau centennales au droit des ouvrages du secteur

Les illustrations suivantes sont issues de la modélisation Hec-Ras des ouvrages modélisés. Celles-ci seront présentées de l'amont vers l'aval et metront en évidence l'évolution du niveau d'eau pour une crue centennale entre l'état existant et l'état projeté.

Ouvrage hydraulique sur le Janon : OH 4500 Bretelle



Figure 66 : Profil en travers de l'OH 4500 pour une crue centennale à l'état existant et projeté

L'OH 4500 se trouve être en charge pour une crue centennale en état initial et projeté.

Ouvrage hydraulique sur le Janon : OH 4621 RN 88

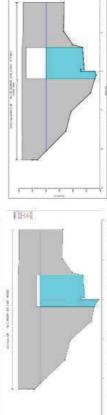


Figure 67 : Profil en travers de l'OH 4621 '(RN88) pour une crue centennale à l'état existant et projeté

La comparaison entre l'état existant et projeté de l'OH 4621 montre un net abaissement de la ligne d'eau pour une crue centennale.

En effet, le niveau d'eau à l'état initial est de 390,22 m pour seulement 389,91 m à l'état projeté. Les aménagements projetés permettent donc une réelle amélioration dans ce secteur.

Ouvrage hydraulique sur le Janon : OH 4636 Barreau

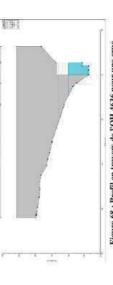
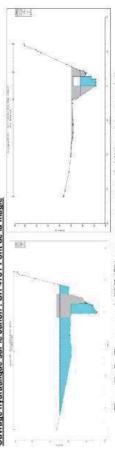



Figure 68 : Profil en travers de l'OH 4636 pour une crue centennale à l'état projeté

L'OH 4636 sous le barreau hydraulique projeté permet également le passage d'une crue centennale avec un niveau d'eau à l'intérieur de l'ouvrage de 388,01 m pour un tirant d'air de 1,39 mètres. Le dimensionnement de la capacité de cet ouvrage est donc pertinent au regard des résultats obtenus pour une modélisation centennale.

Ouvrage hydraulique sur le Janon : OH 4781 Pont de la magie

36004

Figure 69 : Profil en travers de l'OH 4781 pour une crue centennale à l'état existant et projeté

En effet, en état existant le niveau d'eau centennal à l'intérieur de cet ouvrage est de 388,89 m, soit 1,22 mètres au-La modification de l'OH 4781 permet à cet ouvrage de ne plus être en charge pour une crue d'occurrence centennale dessus du niveau haut de l'ouvrage. En état projeté, cet ouvrage retrouve un tirant d'air de 1,3 mètres avec un niveau d'eau centennal de 386,34 m. Les aménagements projetés dans ce secteur permettent donc un abaissement significatif de la ligne d'eau et ainsi améliorer la situation en période de crues.

Ouvrage hydraulique sur le Janon : OH RD 32 Janon

BHH-J

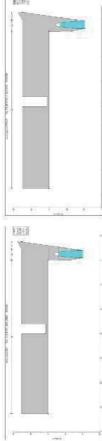


Figure 70: Profil en travers de l'OH RD 32 pour une crue centennale à l'état existant et projeté

Les niveaux d'eau pour une crue centennale à l'êtat existant et projeté, à l'intérieur de cet ouvrage sont équivalents, témoignant ainsi que ce secteur se situe en dehors de la zone d'influence des aménagements projetés.

0

Figure 71: Profil en travers de l'OH 100 pour une crue centennale à l'état existant et projeté

L'OH 100 sous la RD 32 sur le Ricolin présente également un abaissement de la ligne d'eau significatif entre l'état existant et projeté En effet, le niveau d'eau pour une crue centennale est de 388,86 m à l'état existant pour 388,18 m à l'état projeté, améliorant ainsi la situation en période de crues.

Ouvrage hydraulique sur le Ricolin : OH 165 Giratoire

Figure 72: Profil en travers de l'OH 165 pour une crue centennale à l'état projeté

L'OH 165 nouvellement crée permet largement le passage d'une crue centennale.

En effet, le niveau d'eau pour cette occurrence à l'intérieur de l'ouvrage est de 389.54 m pour un nivoau haut de l'ouvrage à 390.90 m, soit un tirant d'air de 1,35 mètres.

À la suite à cette analyse du niveau de la crue centennale au passage des ouvrages, nous avons regardé le niveau d'eau en amont immédiat de chaque ouvrage.

Le tableau ci-dessous présente les altitudes de la ligne d'eau en amont immédiat des ouvrages à l'état projeté sur le Janon.

111111

Ouvrages	Cote de mise en charge de l'ouvrage	Niveau Q20	Niveau Q30	Niveau Q50	Niveau Q100
OH 4500 Bretelle	391,81 m	391,25 m	391,61 m	392,22 m	392,96 m
OH 4621 RN 88	390,45 m	390,13 m	390,47 m	390,86 m	391,37 m
OH 4636 Barreau	389,40 m	388,31 m	388,62 m	388,98 m	389,45 m
OH 4781 Impasse de la magie	387,64 m	386,67 m	386,99 m	387,36 m	387,83 m
OH RD 32	381,30 m	380,88 m	381,15 m	381,57 m	381,73 m

Figure 73 : Altitude de la ligne d'eau en amont des ouvrages à l'état projeté

Ainsi, l'OH 4500 sous la bretelle permet le passage d'une crue trentennale sans mise en charge en amont de l'ouvrage L'OH 4621 RNô6 se trouve être l'ouvrage le plus limitant.

En effel, seule la crue vingtennale, ne pas mettre en charge l'ouvrage en amont. Les OH 4636 et 4781 permettent quant à eux le passage d'une crue cinquantennale sans mise en charge à l'amont. Enfin, i'OH sous la RD 32 est quant à lui dimensionné pour une crue trentennale. En conclusion, bien que les ouvrages projetés soient correctement dimensionnés pour une période de retour centennale, on constate que la restriction relativement brutale, provoque une hausse de la ligne d'eau sur les profis en amont des ouvrages.

Nous avons fait cette analyse afin de garantir que même en prenant ce niveau d'eau à l'amont, les ouvrages projetés ne se mettent quasiment pas en charge (analyse sécuritaire).

Enfin, il faut rappeler que cet événement reste très exceptionnel et que les ouvrages existants en amont (bretelle et RN8B), ont une capacité inférieure aux ouvrages projetés.

1.8.5.1. Maintien de la circulation piscicole

Dans de nombreux cas, le simple respect de la largeur moyenne du lit mineur, de la pente naturelle du cours d'eau et de la nature du substrat, lors du dimensionnement et du calage de l'ouvrage et des dérivations, suffit à maintenir la circulation des poissons. Un lit « naturel » doit toutefois être reconstitué dans l'ouvrage et les dérivations.

En revanche, lorsque les espèces de poissons présentes dans le cours d'eau ont de faibles capacités de saut et de nage, que la pente du cours d'eau ou sa dynamique sont élevées, que l'ouvrage et les dérivations associées ont des dimensions différentes de celles du cours d'eau, il est nécessaire d'ajouter des dispositifs de dissipation d'énergie eVou de rehausse de la ligne d'eau Il conviendra d'autant plus de vérifier l'opportunité d'équiper l'ouvrage (et parfois les dérivations) dès lors qu'un des critères suivants est présent :

- Pente naturelle du cours d'eau supérieure à 0,5 %;
- Vitesses du courant dans l'ouvrage supérieures à la capacité de nage des poissons et/ou hauteurs d'eau insuffisantes, pour des débits compris entre le QMNA (débit moyen mensuel d'étiage) et jusqu'à 2,5 fois le module (débit moyen interannuel).

définies au cas par cas, ces dernières dépendant à la fois des caractéristiques hydrauliques du cours d'eau et des espèces de poissons présentes. A cette fin, un protocole de description des obstacles à l'écoulement et de diagnostic des risques d'entrave à la circulation des poissons a été élaboré par l'ONEMA et est disponible depuis juillet 2015. Les valeurs seuils de vitesse du courant et de hauteurs d'eau « admissibles » dans les ouvrages fermés doivent être

Les paramètres déterminants du maintien de la continuité piscicole sont

- La capacité de nage et de saut des espèces de poissons présentes :
 - L'épaisseur de la lame d'eau au sein de l'ouvrage à différents débits. La vitesse du courant au sein de l'ouvrage à différents débits

aménagements. Les poefficients de rugosilé du fond de lit, ainsi que la géomètrie du lit d'étiage (mise en œuvre de modèle hydraulique spécifique à la franchissabilité piscicole a été réalisée, afin de déterminer l'impact des banqueties graveleuses) ont été adaptés, afin de modéliser au mieux les paramètres hydrauliques post-aménagements. 5

1.8.5.2. Estimation des débits de basses-eaux et du module

Pour rappels, l'espèce cible identifiée dans ce secteur est la Truite Fairo. Concemant l'hydrologie du secteur d'étude, une estimation des débits de basses-eaux (GMNA) et du module a été effectuée en utilisant la formule de Myer en se basant sur les données issues de la station hydrométrique du Gier à Rive-de-Gier. La formule se définit :

$$Q_T = Q_{TBV Comm} \ x \left(\frac{Sigv}{Sigv Comm} \right) \alpha$$

Avec. Or : débit de fréquence T en m³ /s du bassin versant à étudier.

Orey comu; débit de fréquence T en m³/s du bassin versant connu. Sey : surface en km² du bassin versant à étudier. Sey comu : surface en km² du bassin versant connu.

Le tableau suivant présente les résultats obtenus.

Comment of the comment	The same of the same of	S	QMNA5	Module
nean sinos	בסווול מב השוכתו	km ²	(m ₃ /s)	(m ₃ /s)
CTE STO	Amont Ricolin	23.7	0.050	0.307
Carlon	Aval Ricolin	30.6	0.061	0.377
Ricolin	Amont Janon	6.9	0.019	0.115
Données statio	n hydrométrioue	319	0.400	2 460

Figure 74: Débits de basses eaux, calculés par la formule de Myer

RN88 - Échangeur de la Varizelle

L'analyse des débits de basses eaux s'est également appuyée sur la cartographie des cours d'eau de la DDT 42, avec les résultats suivants :

The same of	Daint de calant	OMNAs	Module
nean sino	roint de Calcui	(m ₃ /s)	(m ³ /s)
	Amont Ricolin	0.047	0.227
Janon	Aval Ricolin	0.065	0.300
Ricolin	Amont Janon	0.012	0.058

Figure 75: Débits de basses eaux, issus de la cartographie de la DDT 42

La différence entre les débits calculés par la formule de Myer et récupérés sur le site de la DDT 42 pour le module Le tableau suivant synthétise les débits de basses eaux conservés pour l'étude de la franchissabilité piscicole sur le s'explique par la variation de pluviométrie entre la rive gauche et droite sur ce bassin versant.

Janon et le Ricolin

Course of sails	Doint do colon	OMNAs	1/10° module	Module	2,5 x module
coms a can	rollit de calcul	(m ₃ /s)	(m ₃ /s)	(s/ ₆ m)	(m ₃ /s)
ě.	Amont Ricolin	0.049	0.027	0.267	0.668
Canon	Aval Ricolin	0.063	0.034	0.339	0.848
Ricolin	Amont Janon	0.016	600.0	0.087	0.218

Figure 76: Debits de basses caux retenus dans la modélisation hydraulique

1.8.5.3. Capacité de nage des poissons

Nota : Cette approche estimative a été validée en réunion par la DDT le 08/11/2022.

La capacité de nage de chaque espèce de poissons dépend en particulier de la taille des individus et de la température de l'eau. Limitée, elle est définie par deux types de vitesses :

- La vitesse dite « de pointe » (ou de sprint) de l'espèce. Selon la taille des individus, les vitesses maximales de nage des espèces à l'âge adulte peuvent atteindre 2,5 à 5 m/s pour la truite de rivière
 - La vitesse dite de « croisière » de l'espèce. Celle-ci correspond à la vitesse que peut maintenir un individu en continu pendant plus de 3 heures. Elle correspond en moyenne au 1/3 de la vitesse de pointe* d'une espèce.

comme référence. En effet, même si les poissons sont capables d'adopter une vitesse de pointe importante, celle-ci ne Pour le franchissement des ouvrages hydrauliques, c'est la vitesse de « croisière » des espèces qui doit être utilisée sera effective que sur de courtes distances

 $U_{cr}=0.15+2.4$ L (avec $U_{cr}=$ vitesse de croisière de l'espèce en cm/s et L = taille moyenne des individus en cm)

46 / 51

1.8.5.4. Epaisseur de la lame d'eau

Les poissons ont une capacité de nage variable en fonction de paramètres externes tels que la température, les caractéristiques de l'écoulement, la hauteur d'eau ; et internes tels que la longueur de l'individu, sa physiologie.

Cependant, cette capacité de nage ne peut s'exprimer que si l'épaisseur de la lame d'eau dans l'ouvrage et les dérivations associées leur permet de nager. Ainsi, la hauteur d'eau est également un facteur limitant de la libre circulation des poissons. Pour les petites espèces telles que loches, vairons, chabots, goujons, etc. la hauteur d'eau minimale nècessaire à leur déplacement est faible, de l'ordre de 5 cm. Dés que la taille des individus augmente, l'épaisseur de la lame d'eau dans un cuvrage peut rapdement devenir un obstacle. Ains, pour assurer le déplacement des « grosses » espèces, les hauteurs d'eau minimales à respecer au point le moins profond des aménagements sont pour des individus adultes, de l'ordre 8 à 15 cm pour la truite de rivière (selon la taille à maturité). En présence de seuils, cette hauteur d'eau minimale doit être atteinte au point le moins profond de l'ouvrage.

Dans un ouvrage, et par extension au droit d'obstacles naturels ou non, les épaisseurs d'eau nécessaires à la montaison et à la dévalaison de la Truile de rivière adulte est de 10 cm.

La meilleure approche semble donc être celle qui permettra d'imposer une lame d'eau de 15 cm pendant les périodos

prédéfinies. Avec une telle hauteur d'eau l'ensemble des espèces présentes sur le secteur pourront remonter l'obstacle.

Pour se déplacer, et notamment de l'aval vers l'amont, il est par ailleurs nécessaire que les espèces disposent régulièrement de zones de repos, ainsi pour les tuturs aménagements (réalisation de rampe), des blocs plus importants seront disposés de façons alternes pour créer des zones de repos pour la faune piscicole.

Espèces	Vitesse maximale	Vitesse de croisière	Hauteur d'eau minimum
Truites	2,5 à 5 m/s	1,35	10 cm
Chevesnes	2,5 à 4 m/s	1,35	10 cm
Gardons	1,5 à 3 m/s	1 m/s	5 cm
Goujons	1,5 à 3 m/s	1 m/s	5 cm
Loches franche	1,5 à 3 m/s	1 m/s	5 cm
Vairons	1 à 2 m/s	0,7 m/s	5 cm

Figure 77 : Caractéristiques des espèces piscicoles

Les informations importantes

i	
١	
۱	0420
١.	0
ŧ.	New .
٢	ਲ
۱	ш.
۲	de
١.	Ψ.
۲	-
١	-
١	_
۱	300
5	CCS
۱	-
1	O.
١.	D
٢	45
١.	<u>w</u>
!	20
!	10
١	See.
ţ.	m.
1	n
1	_
1	· w
١	127
1	2
1	(0)
1	62
ŀ	CD
	C
ì	
1	
1	

- Vitesse maximale: 2,5 à 5 m/s
 - o Vitesse de croisière : 1,35 m/s
- Hauteur d'eau minimum : 10 cm

Le tableau suivant synthétise les hauteurs d'eau et les vitesses pour chaque ouvrage sur le Ricolin

OH 165 : Giratoire

OH 100 : ouvrage sous la

10 cm

21 cm

23 cm 34 cm

10 cm 19 cm 26 cm

Avai

Amont

Aval 21 cm

Amont

G cm

module OMNAS Module

20 cm 11 cm

34 cm 23 cm

28 cm

42 cm

42 cm

module

2,5 * 1/10

d'eau

Afin d'assurer la franchissabilité de la Truite Fario, les conditions décrites précédemment (hauteur d'eau minimum et vitesse de croisière) doivent être remplies pour des débits allant de l'étiage (1/10° du module et CMNA5) et 2,5 fois le

Le tableau suivant synthètise les hauteurs d'eau et les vitesses pour chaque ouvrage sur le Janon :

		OH 4500 sous la	OH 4500 : Ouvrage sous la Bretelle	OH 4621 : Ouvrage sous la RN 88	Ouvrage RN 88	OH 4636 sous le rou	OH 4636 : Ouvrage sous le barreau routier	OH 4781 sous le l	OH 4781 : Ouvrage sous le Pont de la magie
		Amont	Aval	Amont	Aval	Amont	Avai	Amont	Aval
	1/10° module	9 cm	7 cm	14 cm	12 cm	8 cm	8 cm	9 cm	9 cm
Hauteur	QMNAs	11 cm	8 cm	18 cm	16 cm	10 cm	10 cm	11 cm	11 cm
d'eau	Module	22 cm	14 cm	43 cm	31 cm	19 cm	19 cm	21 cm	21 cm
	2,5 x module	31 cm	16 cm	73 cm	47 cm	27 cm	27 cm	30 cm	29 cm
	1/10° module	0,31 m/s	0,28 m/s	2,25 m/s	0,42 m/s	0,44 m/s	0,41 m/s	0,42 m/s	0,41 m/s
Visconia	QMNAs	0,39 m/s	0,33 m/s	2,46 m/s	0,53 m/s	0,51 m/s	0,47 m/s	0,49 m/s	0,49 m/s
assall	Module	0.74 m/s	0,67 m/s	0,36 m/s	1,08 m/s	0,77 m/s	0,72 m/s	0,75 m/s	0,78 m/s
	2,5 x module	1,05 m/s	1,44 m/s	0,38 m/s	1,67 m/s	1,00 m/s	s/m 66'0	1,04 m/s	1,10 m/s

Figure 78 : Synthèse des hauteurs d'eau et des vitesses au droit des ouvrages sur le Janon

Sur le Ricolin, les hauteurs d'eau au droit de l'OH 165 projeté sont suffisantes en période d'étage pour assurer la franchissabilité piscicole, avec une hauteur d'eau minimale de 10 cm en amont pour le QMNAs. Les vitesses sont également inférieures à la vitesse de la Truite Fario, à savoir 1,35 m/s.

Figure 79: Synthèse des hauteurs d'eau et des vitesses au droit des ouvrages sur le Ricoli

0,46 m/s

1,16 m/s

0,16 m/s 0,52 m/s 0,81 m/s 0.85 m/s

0,07 m/s

s/m 70,0 0,10 m/s 0.29 m/s

0,60 m/s

module QMNAs Module 2,5 *

0,10 m/s 0,29 m/s 0.46 m/s

0,65 m/s

0,93 m/s

Vitesse

Les hauteurs d'eau en aval de l'OH 100 existant, sous la RD 32, est suffisante en période d'étiage pour assurer la franchissabilité piscicole, suite au recalage de l'altimétrie de la crête de seuit de fond aval.

de cet ouvrage. La reprise du profil en long en aval, et l'augmentation de la pente qui en découle, permettra de remobiliser les sédiments de fond de lit et ainsi redonner une dynamique au Ricolin. Le fil d'eau du seuil de stabilisation

à l'aval de l'ouvrage sera adapté pour rehausser la ligne d'eau à la sortie de l'ouvrage, et ainsi rendre franchissable cet

OH pour les débits faibles.

Les dépôts accumulés à l'intérieur de l'ouvrage réduisent ponctuellement la hauteur d'eau en période d'étiage à l'aval

Les hauteurs d'eau plus fortes en amont de l'ouvrage s'expliquent par la présence d'une fosse, accentuée par l'arrivée d'un collecteur d'eaux pluviales, comme illustré sur la figure ci-dessous.

Nota : nous tenons à rappeler que les étiages sont sévères sur ces deux cours d'eau, ce qui explique les faibles hauteurs pour des débits tels que le 1/10° du module Les hauteurs d'eau en période d'étage (QMNAs) pour les ouvrages faisant l'objet d'aménagements (OH 4621, OH 4636 et OH 4781) sont suffisantes pour permettre le rétablissement de la franchissabilité piscicole, avec pour hauteur minimum 10 cm, hauteur nécessaire pour le franchissement piscicole de la Truite Fario.

Concernant les vitesses d'écoulement, seul l'OH 4621 présente des valeurs au-dessus de la vitesse de croisière de la fruite Fario, pour des périodes de retour équivalente au QMNAs et 1/10° du module. Toutefois, ces valeurs restent inférieures à sa vitesse de pointe. C'est donc pour cette raison que l'ouvrage sera équipé de barrettes (barrettes asymétriques et en forme de « V ») et d'un substrat plus rugueux créant des zones de repos et réduisant la section Il est toutefois important de garder en mémoire que ces vitesses sont théoriques en ne seront en rien uniformes sur toute la section de passage. Des ralentissements seront en effet observables, créant ainsi des zones de repos aux différentes espèces piscicoles

retour inférieures au module. Pour rappel, il n'a pas été prèvu de modifier cet ouvrage dont la capacité hydraulique ne limite que très peu le passage d'une crue centennale. Cependant, cet ouvrage présente un substrat naturel, favorable à la franchissabilité piscicole, malgré le fait qu'actuellement la géométrie et les faibles débits d'étiage ne permettent pas La franchissabilité piscicole de l'OH 4500 existant ne sera pas modifiée par rapport à l'état actuel pour des périodes de d'obtenir une franchissabilité complète pour le débit 1/10e du module.

Pour assurer la totale franchissabilité de cet ouvrage pour les faibles débits, des aménagements complémentaires devront être réalisés (barrettes, blocs...). L'intervention actuellement prévue dans cet ouvrage, consiste en la simple fixation d'une banquette faune en encorbellement, des aménagements plus importants impacteraient de façon plus conséquente le lit du Janon dans ce secteur.

RN88 – Échangeur de la Varizelle

Dossier Projet

Figure 81 : Vue aval de l'OH 100 sur le Ricolin

DOSSIER DE PLANS

- II.6.8 II.6.9
- Vue en plan du rescindement Vue en plan des nappes d'inondation (état existant et projet)

ANNEXES

- Annexe 1 : Résultats brutes de la modélisation projetée pour Q10, Q50 et Q100 sur le Janon
 Annexe 2 : Résultats brutes de la modélisation projetée pour Q10, Q50 et Q100 sur le Ricolin

50 / 51

le Janon
5
9
SL
8
6
et Q100
, Q50 el
10
9
nod
tée
proje
isation
model
<u>a</u>
rutes de
S
Résulta
nnexe 1:
Anne

| 2 | 0.78 | | 8000 | E | 460
 | * | 2 2 2 2 | 0.6 | 129 | 20000 |
 | 00 | | 80 0 | 9,5,6 | 0.00
 | 0.40 | 0 0 0 | 9 0 0 | 0.40
 | 4 8 9 | 0.4 | 0.00 | 0.19 | 0.0
 |
--	---	--	---	---
---	---	--	--	
---	---	--	--	--
--	---	--	--	
---	--	--		
horasing.	2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K	123 613 613 613 613	SALPS SA SALPS SA SALPS SA SALPS SA SA SA SA SA SA SA SA SA S SA S	7.08
 | OH S | 28.55 | 11.28 | 200 | 17.9
8.81
8.80
6.43 | 2 4 8 5
 | 48.7 | 9.2
30.85
21.05 | 8 8 11 2 | 122 | 97.09
07.39
 | 18.15
27.15 | 2 E E | 71.00 | 28.0
 | 2 2 2 2 | n n
n n | 8 C E E | 35.00 | 128.45
128.75
138.84
 |
| Vines | 10.0 | 1998 | 1881 | 558 | 8 2 2 2 2
 | # 1 | 129 | 127 | 9999 | 2555 | 2 H 0 5
 | n n | 8 22 8 22 | 4 5 5 5 | 15 = 1 | 1=5
 | 178 | 1 8 2 | 1.68 | 201
 | 168 | 1.55 | 123 | 108 | 5111
 |
| Sento ligne
(Titrorgo
(m/m) | 000 | 888 | 888 | 000 | 0.00
 | 90 0 | 8 8 8 | 900 | 1000 | 8888 | 2888
 | 888 | 0.00
0.00
0.00
0.00 | 900 | 0.000000
0.0000000 | 0.000 M
 | 0.003941
0.0003744
0.000914 | 0.000972
0.00015
0.00014 | 0.000091 | 0.000547
0.003928
0.011188
 | 0.00054H
0.000734H
0.000738 | 0.000534
0.000544 | 0.000508
0.00000 | \$10000 p | 0.000962
 |
| Money Igna
d'Original
de Marri | 电影 集 集 | 8 20 9 1
9 9 9 9 | 1993)
1993) | 28.75
28.75
78.85 | 184.15
10.14
10.14
10.14
10.14
 | | 991,00
390,00
300,00
300,01 | 18 00 81 | 12 00 M | 0.000 | 18 18 18 18 18 18 18 18 18 18 18 18 18 1
 | 111 | 10 M
10 M
10 M
10 M | 18 18 18
18 18 18 18 | 18.15 | 100
 | ML30
ML70
26567 | 383.0
101.5
101.5 | 100 | 363.71
201.03
78.347
 | E 8 8 8 | ML70
ML70
ML70 | 7 A X | Ma. 18
125 |
 |
| UKSHI
IN MARI | 428,2400 | 405.000
402.0400
700.4500 | 380,5400 | 399-5700
995-2400
995-2500 | 96,120
90,140
90,140
 | DECLOR. | 90.540 | 200 5 000 | 1885.0 NO
1885.3 SO
1885.3 SO | 0054 5580 | 387.0 XM
386.3 XM
385.3 XM
 | 385,7800
941,7500 | 285,5930
285,2700
385,2900
386,5900 | 184.2-100
184.2-100
184.3-1 | 1813.W
2815.U | 983.07
983.02
183.02
 | M1.36
M2.81
M2.89 | 982.89
382.69
383.52 | 162.07 | 962,49
362,68
362.27
 | 8178 | 38041
38011 | ğ | |
 |
| Mwan dysa.
CSD
Aw MAT | 408.70
408.50
403.58 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 10.00
10.00
10.00 | 194.55
194.55 |
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55
10.55 | 1121 | 107 | 350,050
\$100,580 | 10 M | 000
 | M 2017 | 11/11
11/11
11/11 | ###
###
| 15 25 25 25 25 25 25 25 25 25 25 25 25 25
 | HATE STREET | 24.15
12.00
12.00 | 10.00
10.00
10.00
10.00 | 8 8 9
8 8 8 | 383.15
383.1
 | 90.08
30.00
30.00 | 3623)
1822
181.7 | N S IN S | 94,35
94,35 | 10
 | ML18
ML13
ML13 |
| Persentality
declar | 0.074
0.027
0.027 | 1400
0.001
0.001 | 0000 | 0.000
0.000
0.296 | 0.000
0.000
0.000
0.000
 | 0000 | 0.0118 | 1,096 | 00000 | 0.000
0.000
0.000 | 0000
0000
 | 0.000 | 0.000
0.000
0.000
0.000 | 0.015 | 1000 | 9000
 | 0.000 | 1100
0000 | 0.004 | 0.055
-0.054
0.015
 | 0.000 | 0.0006 | \$1000
\$1000
\$ | 90000
90000 | 1,0000
 |
| Number do | 406.88 | 100 to 10 | 107.00
07.100
07.100 | 390.73
395.67
305.11 | 100.17
100.18
100.18
100.18 | 10 00 | 987.35
387.30
388.30 | 386.33 | 18.00
18.00
18.00 | 8 8 8 8 | 2.25 | X 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | 2015
2015
2015
2015
2015 | 25 DE | 100 | 281.87
281.75
281.8 | N H H | ML08
M0.77 | 8 1 1 1 | 200.00 | 179.6
179.55
179.55 | 178,01
178,02 | 107.88
10.718
106.02 | iner
Da.es | 176.45
175.48 |
| Delisi
madelite | 15.99
42.71
43.04 | 1000 | 400
413
4180 | Prilips
42.83
44.53
44.53 | 3 X G S G | 45.76
Bridge | 6.80 | 80.00 | 1000 | | Profession 200 200 200 200 200 200 200 200 200 20 | 222 | 8888 | 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 100 | 14.00
16.00
16.00 | 100 | 8 2 2 | 12.2 | # # # #
| 223 | M.10
M.11
M.11 | 10 to | Print
Frint
Frint | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| 18 | - | | | 11 | 3111
 | | | 111 | . 111 | ш |
 | | -111 | | 111 | 0.07
 | W 101 ~ | | .00 | 0 11 6
 | w m w | | Ha | | 0 = 3
 |
| Mode. | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 400 4358
0.12 9357
0.13 9357
0.18 9357 | 2007
0.46
0.46
0.46
0.545
0.545 | 100 -0034
0034 -128
1128 -138 | 110
110
140
140
140
140
140
140
140
140
 | 1990 | 1.18 4532
0.4 4532
0.11 4885 | 0.18 | 1 100 100 100 100 100 100 100 100 100 1 | 4450
0.00
0.00
0.00
0.00
0.00
0.00
0.00 |
1,000
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,335
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355
2,355 | 0.79
0.17
0.17
0.17 | 13 1786 1786 1786 1787 1788 1787 1788 1787 1787 | 0.00
 | 0.0
0.0
0.0
0.0 | 明明 年 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 000 | 0.00
0.40
0.40
0.40 | 200 P
 | 500 | 0.19 539 | 0.00
0.00
0.00
0.00 | A A MA | 3 - 3 3
 |
| Prosite | 8 6 6 4 | 101 4755
000 000
010 000
010 000 | 0.046
0.046
0.046
0.046
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040 | 1.00 | 110
110
100
100
100
100
100
100
100
100 | 0 | | | 1 1880
1 | 0.08 4430
0.08 4430
0.00 4433 | | 0.19 1.100
0.10 1.100
0.10 1.100
0.100 1.100 1.100
0.100 1.100 1.100
0.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.1 | 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 1. | | | 100 010 010 010 010 010 010 010 010 010 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.0.0 | | | | | 0.19
0.19
0.19
0.19 | | 186 |
| halfrantgen frender
(Art7) | 100 00 00 00 00 00 00 00 00 00 00 00 00 | 14 10 10 10 10 10 10 10 10 10 10 10 10 10 | 20.05 | 8 1 67
2 67 | 2.00
2.00
2.00
2.00 | 6.84 | 11.00
11.00
11.00 | | 6.18 1 1000
6.76 1.80 14621
6.77 1.80 1452
6.49 0.41 1450 | 15.84 0.95 44.00
15.14 0.04 44.00
15.14 0.05 14.00
14.17 0.00 44.00 | 7.8
5.20
5.13
5.16 | 30.00 | 6.04 13 4036
2.34 136 4036
12.36 0.75 4030
2.46 0.76 4030 | 18.18
18.18
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | | 11.24 O.24
11.24 O.21
11.24 O.21
12.24 O.21 | | 0.0.0 | | 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10 | 10 M | 870 | 20.05
20.05
7.00 | 708 | 10.00 |
| Whene hydracine breate
and her. | 271 100 0
272 100 0
242 133 0 | 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6.38 30.85
1.67 31.8
1.62 33.07 | 82 981
82 821
82 7 821 | 3.12 7.48
3.02 5.98
2.63 5.88
2.48 0.30
 | 6.84 | 5.0 4.38
130 16.00
077 11.18 | 106 NAM
0.09 90.1 | 8 1 1 1 | X 6 9 5 | 130 7/8
4/9 5/8
6/00 42.15
0.78 70.46
 | 1.17 20.08 | 3 5 7 5 | 24 138 0
211 138 0
240 138 0 | |
 | | 0.0.0 | |
 | 10 M | | 1.45 20.46
1.20 34.5
4.17 7.88 | 25 mm | 1.00 1.00
2.10 1.00
1.60 10.30
 |
| diverge Viene hydrologie heade
ps/Nt (nt/t) (et/) | 0.00 0.77 34.34 0.00 0.00 1.71 14.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.00 0.38 100.85
0.00 1.69 73.5
0.00 1.63 33.53 | 0.007 3.10 7.39
0.001 2.80 9.1
0.005 1.23 7.18 | 0.00 1.02 7.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 | 0.00 1.70 (434 0 | 000 5.19 4.98
0.00 1.90 18,00
0.00 0.77 11.19 | 0.00 1.06 24.85 | 0.00 1.00
0.001 1.00
0.002 4.00 | 000
000
000
000
147 | 0m 1.70 1/8
0.22 4/9 5/8
0.00 0.00 42.35
0.00 0.78 77.49
 | 0.00 1.17 24.58 0 | 0.14 4.50
0.14 4.50
0.00 1.15
0.00 2.55 | 0.00 2.34 15.00 0
0.001017 2.13 15.89 0
0.001017 2.11 15.89 0 | |
 | | 0.0.0 | 0,00585 1.65 25.18
0,00585 1.65 25.18 | 0.00007 2.07 (5.50
0.00027 2.07 (5.50
 | 0.00000 150 MAS
0.00000 150 MAS
0.000004 117 1.28 | 0.00000 1.00 11.00
0.00000 1.00 11.00
0.00032 1.75 17.12 | 20.05
20.05
7.00 | 708 | 1.00 1.00
2.10 1.00
1.60 10.30
 |
| diverge Viene hydrologie heade
ps/Nt (nt/t) (et/) | 0.00 0.77 34.34 0.00 0.00 1.71 14.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.00 0.38 100.85
0.00 1.69 73.5
0.00 1.63 33.53 | 0.007 3.10 7.39
0.001 2.80 9.1
0.005 1.23 7.18 | 3.12 7.48
3.02 5.98
2.63 5.88
2.48 0.30
 | 0.00 1.70 (434 0 | 5.0 4.38
130 16.00
077 11.18 | 0.00 1.06 24.85 | 8 1 1 1 | 000
000
000
000
147 | 130 7/8
4/9 5/8
6/00 42.15
0.78 70.46
 | 0.00 1.17 24.58 0 | 3 5 7 5 | 0.00 2.34 15.00 0
0.001017 2.13 15.89 0
0.001017 2.11 15.89 0 | |
 | | 0.0.0 | | 0.00007 2.07 (5.50
0.00027 2.07 (5.50
 | 10 M | 0.00000 1.00 11.00
0.00000 1.00 11.00
0.00032 1.75 17.12 | 1.45 20.46
1.20 34.5
4.17 7.88 | 11 6.000014 4.38 3.00
0.00052 3.25 38.2
0.00052 3.25 38.2 | 1.00 1.00
2.10 1.00
1.60 10.30
 |
The Model of Manager (Manager	400.13 G.00 O.77 24.34 G. 40.00 G.00 2.71 L.0.00 G.00 2.71 L.0.00 G.00 G.00 2.40 13.10 G.00 G.00 G.00 G.00 G.00 G.00 G.00 G	9000 441.02 0.03 141 14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.007 3.10 7.39 0.001 2.80 9.1 0.005 1.23 7.18	0.00 1.02 7.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00	S00 M675 G00 1.78 M24 G	100.22 0.03 5.73 4.08 100.00 1.20 10.03 100.17 11.19	0.00 1.06 24.85	0.00 1.00 0.001 1.00 0.002 4.00	MOME 0.00 134 METH 0.00 1.07 METH 0.00 1.40 7500 METH 0.00 1.47	5500 867.01 0.00 1.70 7.98 8600 866.73 0.22 4.99 8.82 8.82 8.82 0.00 0.00 42.15 188.22 0.00 0.78 37.85	0.00 1.17 24.58 0	1 MESS 000 4,50 1 MESS 0.14 4,50 1 MESS 0.00 2.15 1 MESS 0.00 2.15	0.00 2.34 15.00 0 0.001017 2.13 15.89 0 0.001017 2.11 15.89 0	MR.W GANDNA L.N 18-43 0 MR.N GADDNIN L.23 28-73 0 MR.N GADDNIN GAS 28-7 0			1823 0,0009 0,77 1424 0	#2 #2.0 0.002.8 1.45 20.9 #2.0 0.003.86 1.65 25.14	0.00007 2.07 (5.50 0.00027 2.07 (5.50	M. M. CONSTR. 130 M.	MO. M. 0.000001 1.00 11.00 MO. 1.000001 1.30 11.00 MO. 15 0.00137 1.75 17.1	12 0.000=9 1.45 20.56 11 0.00133 1.99 18.5 11 0.000131 4.17 7.88	100 to 00051 130 100 100 100 100 100 100 100 100 10	0.000042
A NAVIRED THE RESIDENCE OF PACKAGE OF THE STATE OF THE ST	407.3500 409.11 0.00 0.77 34.34 0.00 407.3500 409.00 0.00 2.71, 0.00 0.00 0.4500 0.00 0.00 0.00 0.00 0.	9000 441.02 0.03 141 14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1965 0.00 0.38 2005 1964 0.00 1.67 215 900 1865 0.00 1.62 3157	9000 398,39 0.02 3.10 7.39 9000 306,39 0.03 2.50 81, 0.00 98,34 0.03 1.39 7.18	8400 2013 0.00 1.11 748 2500 30134 0.04 1.01 7.08 4500 3011 0.00 1.03 1.488 3007 0.00 1.04 1.048	MOUNT GOT 497 48	250 190.27 0.01 5.29 4.38 130 186.02 0.00 1.50 16.01 186.17 0.00 0.77 11.19	MRSG 2000 1.06 24.88	MR 2460 MR 01 0.00 150 M7 2000 MR 11 0.00 1.00 M7 2000 MR 11 0.00 1.00 M7 180 M7 10 0.00 150	MOME 0.00 134 METH 0.00 1.07 METH 0.00 1.40 7500 METH 0.00 1.47	5500 867.01 0.00 1.70 7.98 8600 866.73 0.22 4.99 8.82 8.82 8.82 0.00 0.00 42.15 188.22 0.00 0.78 37.85	MACONCO MACO CODO 1,17 34,38 (1 MESS 000 4,50 1 MESS 0.14 4,50 1 MESS 0.00 2.15 1 MESS 0.00 2.15	MA-650 MA-80 0.00 2.34 5.00 0.00 MA-190 M	MR.W GANDNA L.N 18-43 0 MR.N GADDNIN L.23 28-73 0 MR.N GADDNIN GAS 28-7 0		18155 0.000110 0.06 12.75 18159 0.000096 1.01 15.88	Min	MLFF MCTN 00028 1-65 2053	77 10.5 0.00077 2.0 15.0	90.90 90.4 0.09501 1.90 20.1 90.54 90.50 0.00501 1.90 20.51	170.46 MO.24 0.00003 2.40 12.56 170.46 MO.2 0.00003 2.78 12.56 170.14 MO.25 0.00137 2.75 17.3	578.02 0.000m3 1.45 30.66 579.01 0.000133 1.37 3.08 3.05.01 0.000133 4.17 7.08	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100
CONTROL OF THE SECOND SEC	407.3500 409.11 0.00 0.77 34.34 0.00 407.3500 409.00 0.00 2.71, 0.00 0.00 0.4500 0.00 0.00 0.00 0.00 0.	40.00 40.00 40.00 0.00 1.64 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	59 106.59 0.00 0.28 200.85 65 50.00 1.69 23.6 65 38.90 0.00 1.62 33.07	594.50 294.8000 295.39 0.007 3.1.0 7.39 394.00 294.200 295.29 0.00, 2.80 9.1. 394.61 294.6010 395.34 0.03 1.33 7.18	14 30,2400 303.54 0.01 3.11 7.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	196,59 JHS 500 190,75 G.00 1.76 JA.34 G.00 186,59 G.00 18.04 G.00 G.00 G.00 G.00 G.00 G.00 G.00 G	286.07 281.250 190.27 0.05 4.29 4.38 281.25 281.250 28	987,9600 388-56 0.00 0.09 30.1	MACA MACAO MACA GO 100 100 100 100 100 100 100 100 100 10	107-88 0.00 1.34 167-78 0.00 1.07 167-28 0.00 1.07 167-760 107-10 0.00 1.47	See 5500 8674 6.00 3.00 1/88 NE 5640 166.75 0.72 4.99 5.82 NE 5640 186.75 0.70 0.00 0.13 188.72 0.00 0.00 0.73 188.72 0.00 0.77 0.78	200,12 184,0070 186,17 0.000 1,17 310.00 1,000 1	284.6) 245.0000 245.52 0.07 4.38 245.72 245.700 245.64 4.02 245.77 245.250 245.64 0.02 4.03 346.65 246.460 245.57 0.02 2.55	MA-650 MA-80 0.00 2.34 5.00 0.00 MA-190 M	MAX.57 MAX.89 GADONS4 L9 [6.43 0 0 0 0 0 0 0 0 0	186.7 MLTS, 186.75 COUNTS ON 18.134 188.7 MLTS, 188.75 COUNTS ON 18.134 188.4 MLTS, 188.75 COUNTS ON 18.134 188.4 MLTS, 188.4 MLTS, COUNTS ON 17.7 MLTS	1815 8825 8855 5000190 081 171 1815 8825 8855 5000190 081 171 1816 8855 1815 5000190 081 171 1818 1818 1815 1815 1818 1818	Min	NATION NATION 0.000239 1-45 20152 20	10,77 10,27	91.5 90.99 91.4 0.00000 1.5 20.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 9	1964 1744 960.3 0.00170 1.56 1.146 1746 1746 1746 1746 1747 1746 1747 1747	STREE GOODS 1.45 2016 STREE GOOSTS 1.79 185 STREE STREE GOOSTS 4.17 7.08	100 cc 10	1900 1700 1700 1700 1700 1700 1700 1700
	0.055 88310 873300 88211 000 0.77 31319 0. 0.007 88310 873800 88211 000 2.77, 1.00 0.007 88310 873800 800.00 0.00 100 100 1111 0.	40.00 40.00 40.00 0.00 1.64 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.003 person person person 0.00 0.00 0.00 person person 0.00 0.00 0.00 person person 0.00 person 0.00 person person 0.00 perso	594.50 294.8000 295.39 0.007 3.1.0 7.39 394.00 294.200 295.29 0.00, 2.80 9.1. 394.61 294.6010 395.34 0.03 1.33 7.18	711.64 710.5400 201.54 0.00 1.11 7.00 201.54 0.00 1.11 7.00 201.54 0.00 1.11 7.00 201.54 0.00 1.10 7.00 201.54 0.00 1.10 7.00 201.54 0.00 1.10 7.00 201.54 0.00 1.10 7.00 201.54 0.00 1.10 7.00 201.54 0.00 1.10 7.00 201.54 0.00 1.10 7.00 201.54 0.00 1.10 7.00 201.54 0.00 1.10 7.00 201.54 0.00 2.10 7.00 201.54 0.00 2.10 7.00 201.54 0.00 2.10 7.00 201.54 0.00 2.10 7.00 201.54 0.00 2.10 7.00 201.54 0.00 2.10 7.10 7.00 2.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7	0.000 200,000 100,000 0.000 1.00 1.00 1.00 0.00 0	0.0019 388.82 388.3560 1902 0.00 5.23 4.59 0.000 388.40 188.000 0.00 5.20 1.00 0.000 388.40 388.47 0.00 0.07 11.99	1.098 28651 287,980 288-56 0.00 0.05 34.81 0.00 0.00 0.00 9.01	4011 MR24 MR240 MR30 0.00 100 0.00 0.00 0.00 0.00 0.00 0.0	807.79 1807.88 0.00 1345 1877.80 1877.88 0.00 1.07 1877.75 1877.70 1877.10 0.00 1.47 1807.75 1867.700 1877.10 0.00 1.47	886.14 (886.500 (887.01 0.00 1.70 7.98 85.45 85.00 186.75 0.27 4.99 1.82 85.15 186.75 0.27 4.99 1.82 85.15 186.75 0.27 4.99 0.20 4.21 9.25 186.75 0.20 0.20 4.21 9.25 186.75 0.20 0.20 4.21 9.25 186.75 0.20 0.20 4.21 9.25 186.75 0.20 0.20 4.21 9.25 186.75 0.20 0.20 4.21 9.25 186.75 0.20 0.20 0.20 4.21 9.25 186.75 0.20 0.20 0.20 4.21 9.25 186.75 0.20 0.20 0.20 4.21 9.25 186.75 0.20 0.20 0.20 4.21 9.25 186.75 0.20 0.20 0.20 4.21 9.25 186.75 0.20 0.20 0.20 4.21 9.25 186.75 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	OUTS DBN.22 BELGEO DBL.17 OLDO 1.17 24585 (0.033 28.40 28.0000 28.53 0.00 4.59 0.03 28.50 0.03 28.50 0.03 28.50 0.03 0.03 4.50 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0	\$44.0 \$44.000 \$44.00 \$2.3 \$3.0 \$3.0 \$3.0 \$3.0 \$3.0 \$3.0 \$3.0 \$3	MAX.57 MAX.89 GADONS4 L9 [6.43 0 0 0 0 0 0 0 0 0	0.000 188.77 34.45 188.73 0.001943 0.08 13.3 0.000 188.73 0.001943 0.08 13.3 0.000 188.73 0.001943 0.08 13.3 0.001 188.49 188.49 0.001943 0.08 18.43 0.001 188.49 0.00198 0.77 0.001	OOM MALE SELVE SELVE CONTROL ON THE SELVE CONTROL O	0.000, 10.23 92.00 10.23 0.00000 0.77 14.23 0.0000 0.001 10.23 92.00 10.23 0.00000 0.77 14.23 0.0011 0.0011 10.23 10.20 0.0011 10.23 10.23 10.20 0.0011 10.23 10.23 10.20 0.0011 10.23 10.	NATION NATION 0.000239 1-45 20152 20	10,77 10,27	91.5 90.99 91.4 0.00000 1.5 20.1 91.1 91.1 91.1 91.1 91.1 91.1 91.1 9	0,000 100 174 174 180 180 0 0 0 0 0 174 1 174 1 174 1 180 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15781 5712 0.00000 1.45 20.06 157.11 575 5751 0.00133 1.47 7.00	0.00144 0.00145 0.00140 0.00141 4.170 7.00 0.0015 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017	177.0 177.0 177.0 177.0 20065 1.0 2.0 2.0 177.0
The second control of	0.055 88310 873300 88211 000 0.77 31319 0. 0.007 88310 873800 88211 000 2.77, 1.00 0.007 88310 873800 800.00 0.00 100 100 1111 0.	80.4 to 7800 81190 81190 8100 1010 141 14 15 15 15 15 15 15 15 15 15 15 15 15 15	10 10 10 10 10 10 10 10		0.00% PLES POLSHO PRIS 000 111 748 0.011 PLES POLSHO PRIS 000 112 748 0.000 PRIS POLSHO PRIS 000 112 558 0.001 PRIS POLSHO PRIS 000 116 748 0.011 PRIS POLSHO PRIS 000 116 748	0 PCS	147.54 OUT 286.27 SEA.250 INCU OUT 5.70 L/ss 247.70 OUT 286.27 SEA.250 INCU OUT 0.70 L/ss 246.70 OUT 246.74 SEA.27 SEA.	286.17 0.000 286.52 817,950 286.56 0.00 0.05 30.11	186.00 0.001 187.24 187.000 187.00 18	100 100	0.018 9864 981490 80.01 0.00 3.70 789 0.00 0.01 0.00 0.01 1.00 0.01 0.01 0.0	18134 Office Sen 22 1844, sied, sied, sied, comp. 1, 217 20-200. C. 1815, comp. 1816, comp. 1816, comp. 1817, comp. 1, 241, 2017, comp. 1, 241, 20	Mars. Outp March Macotoo Mars. Out 4.84 Mars. Outp Mars. Outp			Maries 00000 Marie Maries Maries (Maries) 0,000 Maries (Maries) 1,000 Maries (Maries) 1,	HI 10 COLD 1887 10 COLD 1887 COLD 1887 10 COLD 1888 10 CO	181.05	MALS 0.051 NR.06 NR.07 NR.79 0.00129 1.65 NR.9 MALS 0.094 NR.03 NR.07 NR.78 0.00158 1.65 NR.9 MALS 0.095 NR.03 NR.03 NR.78 0.00158 1.65 NR.9 MALS 0.00158 1.65 NR.9		179.14 0.004 0.005 0.007 0.0070 0.007	174.0. 0.000 174.0. 174.0. 100.0. 100.0. 114	177.14 0.0775 179.81 179.82 0.000000 1.46. 20.046 177.13 0.0480 1.77.14 179.82	104.57 0.04/14 1104.00 1014.00 1014.01 0.000.01 1.04 1.00 1.00	0.000 TRACE TRACE TRACE OF TAXABLE TO TRACE TO TRACE T

0.0000 0.

Figure 82 : Résultats brutes pour la modélisation projetée pour Janon

RN88 – Échangeur de la Varizelle

Annexe 2 : Résultats brutes de la modélisation projetée pour Q10, Q50 et Q100 sur le Ricolin

PROFIL	Débit modélaé	Niveze du fond	Per to the lit	Myeau d'eau 030	Nivelac Critique	Miyeau ligne d'insergie	Fenteligne d'énergie	Whoese.	Section Nydraulique	Fraude
	m'/s	(in MSF)	Sm/mg	(m NGF)	(in NGF)	(re-NGF)	(m/m)	(m/s)	(147)	
3512	1.35	481.18	0.090	481.72	481.7200	481.68	0.08	1.82	0.75	1.01
3502	1.35	480/28	0.090	481.44	490.8200	481.A5	0.00	0.46	2.91	0.35
3470	Colvert									
3430	1.15	ATTES	0.054	477.18	ATT BACKS	498.03	21.06	3.18	8.62	1.16
2460	5,67	444.65	0.075	445,77	445:7800	446.09	8.08	2.49	2,28	1,02
2390	5.67	439.31	0.031	439.60	439.9800	480.90	6.30	4.88	1.16	3:06
460	9,60	395.31	0.780	.196.48	396.4900	396.82	0.05	2.57	3.73	3.00
410	9,60	394.55	0.018	395.26	395.6600	396.65	0.36	5.24	2.83	2,35
320	9,60	393.70	0.008	395.06	294,6100	395.20	0.00	1.65	5.82	0.5
300	9,60	393.16	0.063	394.14	39.4.14(3)	394.46	0.03	2.49	3.85	1
297	9,60	389.95	0.003	391.78	390,8500	391.83	0.00	1.02	9.79	0.29
267	9.60	389.27	0.037	390.45	390,4500	390.85	0.08	2.79	3.44	1
172	9,60	387.90	0.000	388.59	368,9000	305.68	0.03	4.63	2.07	2.16
165	Bricker									
140	9.60	387.02	0.009	387.29	368,0500	388.66	: 6:02:	4,14	2.32	1.77
125	9.60	386.68	0.027	387.84	387,8400	388.24	0.68	2.62	3.41	1.00
113	9.60	386.29	0.000	187.92	387.4700	10.00	0.00	1.12	8.1	0.47
100	Bricker									
98	9.60	386,44	0.025	387.18	387,3500	387.83	0.00	3.55	2.7	2,42
95	9.60	336.76	0.041	.180.94	387,3800	367.73	0.08	3.93	2.44	1,98
50	9.60	385,39	0.044	386.17	386,0500	386.23	0.02	1.07	8.96	0.57
26	9.60	38452	0.097	386.20		386.21	0.00	0.27	43.62	0.07
18	9,60	384.00	0.000	386.20		385.21	0.00	0.25	38.8	0.06
0	9.60	383.72	-0.003	386,19		386.20	0.00	0.37	25,79	0.09
-4790	9.60	385.74		386.19	384,4200	384.70	0.00	0.37	26.07	0.09

P8091	Detet modelse	Nivezo du Tond	Pente du lit	Niverai d'essu 050	Niessy: critique	Niveras Tigras d'énergie	Pente Egne d'Ynerge	Vitese.	Section hydraulique	Fraude
	m1/4	/m MGF)	jeyled	(m NG/)	(m-frGF)	(m NGA)	(m/m)	lins/st	(he')	
3512	2.54	481.18	0.090	482.60	481,9100	482.63	0,00	0.59	4.3	0.22
3502	2.54	480.28	0.090	482.60	481.0100	482.60	0.00	0.72	12,1	0.06
3470	Curvert									
3430	2.54	477.12	0.034	478.63	476.0300	428.36	0.03	2.13	1.34	5.81
2460	10.64	444.85	0.075	#46.07	446.1200	446.54	0.03	3.05	3.46	1.11
2390	-1044	439,21	0.021	439.86	440,2400	34(1.30)	0.23	5:32	20	2.78
460	18.00	395.31	0.760	396.86	396.8600	397.31	8,02	2.96	6.05	
410	18.00	394.53	0,018	395.60	396,0800	397,15	6.13	5.52	3.26	2.18
393	18.00	393,713	13.00%	295.52	395,0100	393.76	10.0	3.17	8.31	0.57
300	18.00	393.16	0.063	394.50	394,5000	394:90	0.03	2.86	6.26	1,01
297	18.00	389.95	0.003	392.16	391,2400	392.20	0.00	1.03	22.9	0.25
257	18.00	389.27	0.037	390.90	390,9000	291.43	0.03	3.70	5.62	0.99
175	18.00	387.50	0.000	388.87	389,3200	390.56	0.03	5.41	1.11	2.02
165	Bridge									
140	18.00	387.02	0.000	188.08	386,4600	386.37	:0.02	5.02	3.59	1:77
125	18.00	366.68	0.027	386.37	388.2900	300.04	0.02	3.03	3.95	0.91
115	1600	386.29	0.000	38854	387,8300	388,70	0.00	1.80	9.97	0.45
100	Bridge									
98	1800	386.44	0.625	387.54	387,7700	388.47	0.01	4.27	4.21	1:37
95	18.00	389.36	0.041	387.15	387,5200	308.36	0.09	4.87	3.7	- 2
50	18.00	385.39	0.044	387.46	386,1800	387.47	0.00	0.39	45.89	0.1
28	38.00	38452	0.037	237.46		367.46	0.00	0.78	86:22	0.05
1.0	38.00	384.00	0.010	387.46		317.40	0.00	0.35	75.77	0.05
0	1800	383.72	4.003	38745		387.46	0.00	0.38	48.2	0.08
4200	18.00	383.74	2.000	387.45	384,68000	317.46	0.00	0.37	31.72	0.07

PROFIL	Désir modésé	Niversi de fond	Aunte du lit	Niverse d'issu Q100	Niveau critique	Nivezu kgro d'énorgio	Perteligne d'énorgie	Vitesor	Section hydraulique	Frouds
W. ARMY	m'/s	Sec MGFT	(m/m)	(mNGR)	(ev MGF)	[mNGF]	Seyled.	Im/st	(int)	9-12
3512	3.10	481.18	0.090	482.64	481 9800	482.60	0.00	0.68	4.55	0.25
3502	3.10	480.26	0.090	482.65	481.0900	482,65	0.00	0.26	13.32	0.07
3470	Culvert.									
3430 2460	3.10 13.00	477.32 884.85	0.084	478.10 496.19	478.1000 446.2600	478.35 446.71	0.03 0.03	3.23	1.39	1.01
2300	1100	419.71	0.001	439.93	440.1300	441.40	0.22	5.54	2,34	2.78
960	22.00	395.32	0.780	367.00	397.0000	397,49	0.02	3.10	7.11	1
410	32.00	394.53	0.018	395.72	396,2300	397.33	0.13	5.63	3.91	2.17
350	32.03	391.70	0.008	395.67	395:1800	395.88	10.0	3.19	13.65	0.56
300	22.00	393.26	0.063	394.62	394.6200	355,08	0.02	2.04	7.23	1
297	22.00	383.55	0.003	392.31	391,3900	392,35	0.00	1.02	27.98	0.24
252	22.00	389.27	0.087	391,08	391,0900	391.65	0.02	3.35	6.57	1
175	22.00	387.96	0.000	390.17	389.4800	390.43	0.00	2.21	10.01	0.53
165	bridge									
140	22.00	367.02	0.009	386.95		189.37	0.00	2.87	7.66	0.75
125	22.00	386.68	0.027	388.69		389.10	0.02	2.86	7:69	0.8
113	32.00	386.29	0.000	388.81	\$87,9700	388,99	0.00	1.09	11.61	0.44
100	Bridge									
98	22.00	306.44	0.025	387.69	367,9400	365,74	0.00	4.52	4.86	1.35
95	22.00	201.36	0.041	387,73	387.6600	388,62	0.09	5.21	4.22	2.02
50	22.00	385.39	0.084	387,92	386,2400	387.94	0.00	0.27	65.50	0,06
28	22.00	384.52	0.087	387,93		387,93	0.00	0.29	109.8	0.05
18	22,00	384.00	0.010	387,93		387,93	0.00	0.25	99.01	0.05
U.	22.00	303.72	-0.003	387.92		367.93	0.00	0.30	58.98	0.07
-4780	22.00	383,74		387.92	384.7900	387.93	0.00	0.37	71.58	0.07

Figure 86 : Résultats brutes pour la modélisation projetée pour Q10 sur le Ricolin

Figure 85 : Résultats brutes pour la modélisation projetée pour Q50 sur le Ricolin

Figure 87 : Résultats brutes pour la modélisation projetée pour Q100 sur le Ricolin

ANNEXE 3 : FICHE DE TERRAIN DES PRELEVEMENTS PISCICOLES

the type water	NOM DE L'INTERVENANT	FICHE OPERATION
	ARALEP	ATTA-0279-0-0050)
		DATE: 14/09/202
Code WAMA	ignements généraux du point de prélèveme	nt Localisation (GPS)
Code Sandre		Abscisse aval 816632
Nom pt. prel.	Zone d'étude RN88 la Varize	le
Nom du cours	d'eau Le Janon	Ordonnée aval 6485930
Nom de comm	Saint-Chamond	
Code départer	ment 42	* limite aval de la zone d'étude
Photos	Vue générale Limite amont Limite aval	Nb Feuilles "Poisson" 3
-	Qualité de l'habitat	OMBRAGE
	Ombrage 3	1 : Rivière dégapée
	Trou, fosse 3	3 : Rivière assez couverte
	Sous-berge 2	Observations abris :
	TYPE Abris rocheux 2 D'ABRIS Embâcle, Souche 2	Fosse d'affouillement 2 : Faible
	Végétation aquatique	importante à l'aval du seuil. 3 : Moyes 4 : Important
	Végétation de bordure	5 : Inditerminable
OI	bservations générales	rous (mouilles) entrecoupés de long radiers/plats courant
	Pêcheurs à la ligne pêchant dans la fosse d'af	
9		
	Indices de travaux / aménagements récents -	berges
	Indices de travaux / aménagements récents -	100 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	Déboisement / reboisement récent de la ripis	live 📙
	Plantation récente Indice de crue / éclusées récentes	님
	Connaissance d'une pollution (accidentelle) re	Scente
Rensei	gnements concernant l'opération	
Responsable of		pérateurs Echantillonnage Anne Morgillo
Référent écha	intillonnage JY Brana	Paul Gauthier
	and Haran	JY Brana
Référent biom		pérateurs Biométrie
Biométrie	1 Simultanée 2 Différée	dem Idem
	Heure de début / fin d'opération	12 H45 15H30
		13 H 15 H 15
	Heure de début / fin de biométrie	H H

Fiche de terrain des prélèvements piscicoles du Janon 2/2

Hydrologie			Matériel			
Température de l'eau (°C)	18,4			Modèle 4		ron rún-pěcheur
Conductivité (µS/cm à 25°C)	1051				4 : Au	tre (préciser) nith-Root
Conditions hydrologiques	1	1 : Basses caux 2 : Eaux moyennes 3 : Hauten eaux				
Tendance du débit	2	1 : Augmentation 2 : Dunituation 3 : Stabilité		Tension (V) Intensité (A) Puissance (Kw)	Y.	200
Turbidité	1	1 : Nulle 2 : Faible 3 : Appréciable		Nombre d'anod Nombre d'épuis Maille de l'épuis	ies settes	1 2 5
Largeur en eau (m) 7 (la Présence d'annexes / bra		Marie Company	Largeur du lit n	nineur (m) 3	,5	
Isolement du secteur pen	dant l'éch	antillonnage	à l'amont à l'aval	1 2 3	Pas d'isoleme Seud partielle Obstacle infin Filet	ement franchissable
Prospection	_		Temps	de péche		and all the second
Moyen de prospection	1	1 : A pied 2 : En bateau 3 : Mixte		Unité 1		1 en minute 2 en 1/100 heures
Méthode de prospection	2	1 : Compléte 2 : Partielle par Points		Temps passage		
Nombre de passages		1		Temps passage	en°3	
Nombre de points "représ	entatifs"] [Temps passage	en°4	
Nombre de points "compl	émentaire	es"		Temps total*	[50
						te OU durée totale de nts : 10+5+5+15+10+5

Fiche de terrain des prélèvements piscicoles du Ricolin 1/2

et per valleur aquetiques			e:	FICHE OPERATION
NOM I	DE L'INTERVENANT			000000000000000000000000000000000000000
ARAI	-Cr		J	DATE: 14/09/2021
Renseignements	généraux du point de prél	èvement	Localisatio	n (GPS) *
Code WAMA Code Sandre Nom pt. prel.	Zone d'étude RN88 la \	/arizelle	Abscisse av	ral [816247
Nom du cours d'eau	Le Ricolin		Ordonnée a	vai 6485722
GREENWANDSALVENORENWESS IN	Saint-Chamond		0.HR1750000000	2777 III t Canadalium — — — — — — — — — — — — — — — — — — —
SPORT AND ME IN THE	42		* limite avail de	la zone d'étude
Photos Vue généra Limite amo Limite aval	35 F T T T T T T T T T T T T T T T T T T		Nb Feuill	es "Poisson"
Qualité	de l'habitat		OMBRAGE	7.7.2
	Ombrage	2	Rivière dégagée Rivière assez de Rivière assez co	gagée
TYPE D'ABRIS Observations I'res faibles	Sous-berge Abris rocheux Embâcle, Souche Végétation aquatique Végétation de bordure i générales s profondeurs dans les radis		au niveau de beton de bor	sous-berges 2 Faible 3 Moyen
Indices de l Déboiseme Plantation r Indice de ci	travaux / aménagements ré- travaux / aménagements ré- int / reboisement récent de l écente rue / éclusées récentes nce d'une pollution (acciden	cents - lit la ripisylve		Précisions :
Renseignements of	concernant l'opération	-		
Responsable opération	JY Brana	Opérateurs	Echantillonnage	Anne Morgillo
Référent échantillonnage	JY Brana			Paul Gauthier JY Brana
Référent biométrie	JY Brana	Opërateurs	Diomátria	
Biométrie 1	1 Simultanice 2 Differee	Operateurs	and mente	Idem
Heure de d	ébut / fin d'opération ébut / fin d'échantillonnage ébut / fin de biométrie	15 H25 15 H 25	16H30	

Fiche de terrain des prélèvements pissicales du Bisalin 2/2

Hydrologie			Matériel
Température de l'eau (°C	19		Modèle 4 2 : Héron 3 : Martin-pêcheur
Conductivité (µS/cm à 25°C	1109		4 : Autre (préciser) Smith-Root
Conditions hydrologiques	1	1 : Basses eaux 2 : Eaux moyennes 3 : Hautes eaux	Smurroot
Tendance du débit	2	1 : Augmentation 2 : Diminution 3 : Stabilité	Tension (V) 200 Intensité (A) Puíssance (Kw)
Turbidité	1	Nulle Paible Appréciable	Nombre d'anodes 1 Nombre d'épuisettes 2 Maille de l'épuisette (mm) 5
Charles come consistency of the constraint of th			: 80 + 13) sur 222 m. Largeur du lit mineur (m) 1,5
Longueur prospectée (m) Largeur en eau (m) 4 (la	argeur de	e plein bord)	A STATE OF THE PARTY OF THE PAR
Largeur en eau (m) 4 (la	ardeur de	e plein bord) aires 2	Largeur du lit mineur (m) 1,5
Largeur en eau (m) 4 (la Présence d'annexes / bra	ardeur de	e plein bord) aires 2	Largeur du lit mineur (m) 1 : Oui 2 : Nos 1 : Pas d'isolament 2 : Seuil partiellement franchissable 3 : Obstacle infranchissable 3 : Obstacle infranchissable
Largeur en eau (m) 4 (la Présence d'annexes / bra Isolement du secteur per	ardeur de	aires 2 antillonnage	Largeur du lit mineur (m) 1 : Oui 2 : Nos 1 : Pas d'isolament 2 : Seuil partiellement franchissable 3 : Chatacle infranchissable 4 : Filet
Largeur en eau (m) 4 (la Présence d'annexes / bra Isolement du secteur per Prospection Moyen de prospection	ardeur de	aires 2 mantillonnage	Largeur du lit mineur (m) 1,5 1: Oui 2: Non 1: Pas d'isolement 2: Seail partiellement franchissable 3 l'aval 1: Pas d'isolement 2: Seail partiellement franchissable 4: Filet Temps de pêche Unitè 1: en minute
Largeur en eau (m) 4 (la Présence d'annexes / bra solement du secteur per Prospection Moyen de prospection Méthode de prospection	argeur de as secondadant l'éch	aires 2 antillonnage 1: A pied 2: En bulcau 3: Mixte 1: Complete	Largeur du lit mineur (m) 1: Oui 2: Non 1: Pas d'isolement 2: Seuil partiellement franchissable 3: Obstacle infranchissable 4: Filet Temps de pêche Unité 1: en minute 2: en 1/100 heures Temps passage n°1
Largeur en eau (m) 4 (la Présence d'annexes / bra Isolement du secteur per Prospection Moyen de prospection Méthode de prospection Nombre de passages	argeur de second	aires 2 antillonnage 1: A pied 2: En bulcau 3: Mixte 1: Complete	Largeur du lit mineur (m) 1 : Oui 2 : Non à l'amont 1 : Pas d'isolement 2 : Seuil partiellement franchiesable 3 : Obstacle infranchissable 4 : Filet Temps de pêche Unité 1 : en minute 2 : en 1/160 heures Temps passage n°1 Temps passage n°2
Largeur en eau (m) 4 (la Présence d'annexes / bra Isolement du secteur per	argeur de as seconda dant l'éch	aires 2 antillonnage 1: A pied 2: En batcau 3: Mixte 1: Complete 2: Partielle par Points	Largeur du lit mineur (m) 1 : Oui 2 : Non à l'amont à l'aval 1 : Pas d'isolement 2 : Seuil partiellement franchiesable 3 : Obstacle infranchissable 4 : Filet Temps de pêche Unité 1 : en minute 2 : en 1/160 heures Temps passage n°2 Temps passage n°3

ANNEXE 4 : RÉSULTATS BRUTS DES PRÉLÈVEMENTS PISCICOLES SUR LES LINÉAIRES DU JANON ET DU **RICOLIN** Janon n°2

Ja	n	0	n	n	٩
30		v	**	**	

Code espè -	Taille (cm)
VAI	5,7
VAI	6,2
VAI	6,4
VAI	6,4
VAI	6,6
VAI	6,6
VAI	6,7
VAI	6,8
VAI	6,8
VAI	6,8
Mari	0.9

TRF

VAI	6,8	esper-
VAI		TRE
1	0,9	TRF
VAI	6,9	-
VAI	6,9	
VAI	7	10000
VAI	7	Jan
VAI	7,1	Code
VAI	7,1	espèi -
VAI	7,2	VAI
VAI	7,2	VAI
VAI	7,3	VAL
VAI	7,3	VAI
VAI	7,3	VAI
VAI	7,3	VAL
VAI	7,4	VAI
VAL	7,4	VAI
VAI	7,5	TRF
VAI	7,6	VAI
VAI	7,6	TRE
10000	200	-

VAI

VAI VAI VAI VAL VAI VAI VAI VAI VAI VAI VAI VAL VAI VAI VAI VAI VAI VAI VAI VAI TRF TRF TRE TRF TRF TRE TRF TRF TRE TRF TRF TRE TRF

2000000	HOM HIGH IN	
7,1	Code	Taille (cm)
7,1	espèi -	8 1
7,2	VAI	6,9
7,2	VAI	7,5
7,3	VAI	7,5
7,3	VAI	7,6
7,3	VAI	8,1
7,3	VAI	8,2
7,4	VAI	8,5
7,4	VAI	8,8
7,5	VAI	9
7,5	VAI	9,4
7,5	VAL	9,6
7,5	TRF	9,8
7,6	VAI	10,3
7,6	TRE	11,9
7,6	TRF	12
7,6	TOE	15,9
7,6	TOE	16,4
7,7	TRE	
	September 1997	16,4
7,7	TRF	16,6
7,8	TRF	17
7,8	TRF	17,1
7,8	TRF	17,5
7,8	TRE	17,5
7,9	TRF	18,1
8,2	TRF	18,1
8,2	TRF	18,4
8,3	TRF	18,7
8,3	TRF	18,7
8,6	TRE	18,8
9,2	TRF	19
9,4	TRF	19,1
9,4	TRF	19,3
9,4	TRF	19,3
9,7	TRE	19,6
9,7	TRE	19,6
9,9	TRF	19,8
10,5	TRE	20
11,9	TRF	21
16,8	TRE	21,8
17,6		
17,7	TRF	22,5
18,6	TRF	22,7
	TRF	22,8
19,4	TRF	22,9
20,4	TRE	23
20,6	TRF	23,7
21,4	TRF	24
22,1	TRF	24,1
22,4	TRF	24,2
23	TRE	25
26,7	TRE	25,3
28,1	TRE	28,5

n n°5

1,7 1,7 2,3

2,7 2,9

3,3

8,2 10,8

Janoi		
Code espèi -	3	
VAI	1	
VAI		
	Code espèi + VAI VAI VAI VAI VAI	

VAI

TRF

Janon n°3		
Code spèi -	Taille (cmi	
TRE	9.3	
TRF	9,5	

Code

TRF TRF TRF TRF

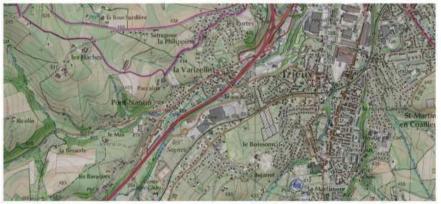
Janon	n°4
Code	

		1,75,00	
		TRF	16
,	on n°4	TRF	17
	211 11 4	TRF	17
	Taille (cm)	TRF	18
•	(5) (5)	TRF	18
	6,9	TRF	18
	7,5	TRF	18
	7,5	TRF	18
	7,6	TRF	2
	8,1	TRF	20
	8,2	TRF	21
	8,5	TRF	21
	8,8	TRF	24
	9		-
	9,4		
	9,6	lane	

Janon n°6

Code espè	Taille (cm)
TRF	9,4
TRF	19,5
TRF	22,2
TRF	22,9
TRF	31,2

Ricolin n°1


Code	Taille (cm)	
espèi «	Taille (cm)	
VAI	6,9	
VAL	6,9	
TRF	6,9	
TRE	7,3	
TRF	7,8	
TRF	8,4	
TRF	8,5	
TRF	8,7	
TRF	8,7	
TOF	9	
TRF.	9	
TRF	9	
TRF	9,2	
TRF	9,3	
TRF	9,7	
TRF	9,7	
TRF	9,8	
TRF	9,8	
TRF	10	
TRF	10,3	
TRF	10,8	
TRF	10,8	
TRF	11	
TRF	11,1	

Ricolin n°2 Code Town

	Taille (cm)	
esper -	it means see	
VAI	5,1	
VAL	5,3	
VAI	5,3	
VAI	5,5	
VAL	5,6	
VAL	5,7	
VAI	5,8	
VAI	6	
VAI	6,1	
VAL	6,4	
VAI	6,4	
VAI	6,4	
VAL	6,7	
VAI	6,7	
VAI	7,2	
VAI	7,7	
VAI	8,1	
TRF	8,5	
TRF	8,6	
TRF	9,2	
TRF	9,7	
TRF	10,3	
TRF	11,4	
TRF	16,1	
TRE	17,6	
TRF	20,7	
TRF	21,9	
TRF	22,7	
TRF	25,2	
TRF	30,8	

ANNEXE 5: DIAGNOSTIC ZONES HUMIDES

RN88 - ÉCHANGEUR DE LA VARIZELLE

Diagnostic des zones humides

Indice	Date	Modifications	Établi	Vérifié	Approuvé
Α	02/12/2022	Version initiale	A. DELBE	A. GENEVOIS	V. THIEL
В	18/01/2023	Compléments DDT	A. DELBE	A. GENEVOIS	V. THIEL

Codification du document

RN88 – Échangeur de la Varizelle Janvier 2023 Rév. B 2

SOMMAIRE

1. PRÉSENTATION DE L'ÉTUDE	
MÉTHO DOL OGIE DES ZONES HUMIDES DÉFINITION DES ZONES HUMIDES DÉTERMINATION DES ZONES HUMIDES.	
3. ANALYSE DES ZONES HUMIDES SUR LE SITE D'ÉTUDE 3.1. SELONLE CRITÈRE DES HABITATSNATURELS 3.2. SELONLE CRITÈRE FLORISTIQUE 3.3. SELONLE CRITÈRE PÉDOLOGIQUE 3.4. FONCTIONNALITÉ DES ZONES HUMIDES 3.5. CONCLUSION	
4. ANNEXES	4
Annexe 1 : Numérotation des sordages pédologiques	
Figure 1 : Habitats naturels et anthropiques de la zone d'étude	
Annexe 1 : Numérotation des sondages pédologiques	19

1. PRÉSENTATION DE L'ÉTUDE

Le projet de complément du demi-échangeur de la Varizelle à Saint-Chamond a fait l'objet d'une étude d'impact et d'inventaires faune/flore en 2019 qui avait conclu à l'absence de zones humides.

Dans le cadre de l'instruction du dossier d'étude d'impact du dossier DUP en 2020, les services de l'État ont demandé que des sondages pédologiques soient menés sur la zone pour confirmer l'absence de zones humides.

INGEROP avait réalisé une journée de prospections pédologiques au printemps 2021. Lors de la demande de compléments méthodologiques de la DDT en septembre 2022, il s'est avéré que les données étaient incomplètes (absence d'éléments photographiques et de coupes). Il a donc été décidé d'organiser une nouvelle campagne de sondages en octobre 2022.

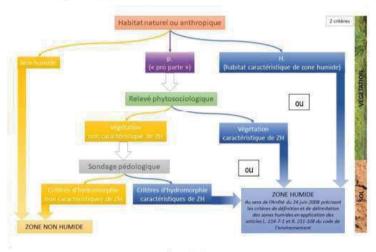
Cette étude présente donc la méthodologie mise en œuvre, le diagnostic zones humides et l'impact du projet du compiement à echangeur de la varizeire et les mesures proposees. Ces elements seront rétrifégrés dans le dossier d'Autorisation Environnementale.

RN88 - Échangeur de la Varizelle Janvier 2023 Rêv. B 3 RN88 - Échangeur de la Varizelle Janvier 2023 Rêv. B

MÉTHODOLOGIE DES ZONES HUMIDES

2.1. DÉFINITION DES ZONES HUMIDES

Selon la Loi sur l'Eau de 1992, les zones humides sont définies comme des « terrains, exploités ou non, habituellement inondés ou gorgés d'eau douce, salée ou saumâtre de façon permanente ou temporaire ; la végétation, quand elle existe, y est dominée par des plantes hygrophiles pendant au moins une partie de l'année ».


Cette définition juridique, codifiée à l'article L211-1 du Code de l'environnement, définit ce qu'est une zone humide du point de vue réglementaire. Elle diffère des définitions scientifiques utilisées pour qualifier les zones humides prioritaires, Zones Humides d'Intérêt Environnemental Particulier (ZHIEP) et les Zones Stratégiques pour la Gestion de l'Eau (ZSGE) qui ne sont pas directement en lien avec la Loi sur l'Eau.

Le concept de zones humides a été précisé par le décret du 30 janvier 2007 (articles: L214-7-1 et R211-108 du Code de l'environnement), par l'arrêté ministériel du 24 juin 2008 modiffé par l'arrêté du 1er octobre 2009 et par la circulaire du 18 janvier 2010..

2.2. DÉTERMINATION DES ZONES HUMIDES

La détermination des zones humides se base sur deux critères alternatifs :

- Les caractéristiques pédologiques du sol.
- Le cortège floristique présent.

Source Ingérop

La méthodologie d'identification des zones humides se base sur la détermination des critères suivants :

Les investigations visent dans un premier temps à caractériser les habitats naturels et les cortèges floristiques présents sur site. Ces sondages sont effectués en différents points du site et sont positionnés afin d'être les plus représentatifs de chaque milieu. Lorsqu'un changement est observé (ex : passage d'un point de sondage positif à un point négatif) des transects sont réalisés afin d'identifier la limite de la zone humide.

Les habitats occupés par une végétation spontanée font l'objet d'un inventaire floristique avec coefficients d'abondance/dominance des taxons afin de déterminer si au moins 50% des espéces ayant un taux de recouvrement supérieur ou égal à 20% sont caractéristiques des zones humides (liste inscrite à l'arrêté du 24 juin 2008) ou s'ils sont inclus dans la liste des habitats naturels caractéristiques des zones humides (liste inscrite à l'arrêté du 24 juin 2008). Dans les deux cas, le secteur est considéré commezone humide.

En cas de présence de sol nu ou de végétation non spontanée (cultures, champs, prairies artificialisées...), le critère de végétation ne peut pas permettre de caractériser une zone humide. La détermination se base donc uniquement sur les sondages pédologiques pour confirmer / infirmer la présence de sol humide qui entraine une classification du secteur en tant que zone humide.

Les sondages pédologiques permettront la recherche de sols correspondants à des zones humides conformément à la circulaire du 18 janvier 2010 relative à la délimitation des zones humides.

La Police de l'Eau s'appuie sur la définition des zones humides inscrite à l'article 1er de l'arrêté du 24 juin 2008 modifié par celui du 1er octobre 2009 :

« Un espace peut être considéré comme zone humide [...], des qu'il présente l'un des critères suivants :

- Ses sols correspondent à un ou plusieurs types pédologiques parmi ceux mentionnés dans la liste figurant à l'annexe 1.1 et identifiés selon la méthode figurant à l'annexe 2;
- Sa végétation, si elle existe, est caractérisée :
- soit par des espèces indicatrices de zones humides, identifiées selon la méthode et la liste d'espèces figurant à l'annexe 2.1 [..];
- soit par des communautés d'espèces végétales, dénommées « habitats », caractéristiques de zones humides, identifiées selon la méthode et la liste correspondante figurant à l'annexe 2.2 ».

INGEROP a entrepris une campagne complémentaire de sondage le 20 octobre 2022 sur le site d'étude par des écologues qualifiés.

30 sondages pédologiques ont été réalisés.

Deplus, INGEROP dans le cadre de sa mission d'inventaires faune/flore, a réalisé un inventaire habitat naturel et flore le 5 mai 2021 par un botaniste. 12 points de relevés floristiques avaient été réalisés.

RN88 - Échangeur de la Varizelle Janvier 2023 Rév. B 5 RN88 - Échangeur de la Varizelle Janvier 2023 Rév. B

3. ANALYSE DES ZONES HUMIDES SUR LE SITE D'ÉTUDE

3.1. SELON LE CRITÈRE DES HABITATS NATURELS

INGEROP dans le cadre de sa mission d'inventaires faune/flore, a réalisé un inventaire habitat naturel et flore le 5 mai 2021 par un botaniste.

12 points de relevés floristiques ont été réalisés. Certains comprennent des espèces indicatrices de zones humides mais dans de faibles proportions (inférieur à 20% de recouvrement par taxon), ce qui ne permet pas de classer leur secteur en zone humide. Le reste du cortège est composé d'espèces communes non indicatrices de zones humides, fréquemment rencontrées dans les zones rudérales et suburbaines.

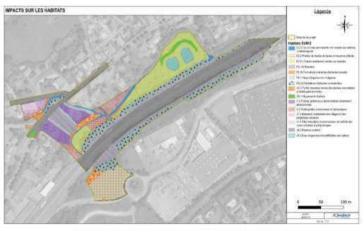


Figure 1 : Habitats naturels et anthropiques de la zone d'étude

Les zones humides présentes sur la zone d'étude ont été identifiées selon le critère floristique (habitats humides).

La caractérisation des habitats a permis d'identifier un habitat humide au sens de l'Arrêté du 24 juin 2008 précisant les critères de définition et de définitation des zones humides : G1.2 Forêts riveraines mixtes des plaines inondables et forêts galeries mixtes. Cela représente 1 274 m² de zones humides (critère habitats).

Sur les habitats potentiellement humides (habitats *pro parte*), les investigations ont été poursuivies par la réalisation de relevées phytosociologiques et de sondages pédologiques pour identifier d'éventuelles zones humides supplémentaires.

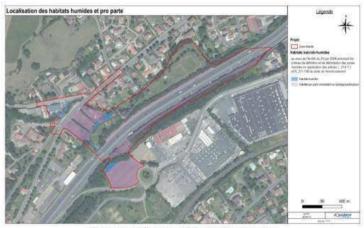


Figure 2 : Localisation des habitats humides et pro parte

Tableau 1 : Synthèse des habitats indicateurs de zones humides

Habitat naturel et anthropique (EUNIS)	Corine Biotope	Zone humide*	Surface (m²)	% de l'aire d'étude
C2.3 Cours d'eau permanents non soumis aux marées, à débit régulier	24.1	*	1181,7	1,88
E2.61 Prairies améliorées séches ou humides	81.1		9209,3	14,65
FA.1 Haies d'espèces non indigénes	84.2		984,4	1,57
FB.32 Plantations d'arbustes ornementaux	85	15	8943,4	14,23
G5.1 Alignements d'arbres	84.1		804,0	1,28
I2.2 Petits jardins ornementaux et domestiques	85.2		611,2	0,97
J1.2 Bâtiments résidentiels des villages et des périphéries urbaines	86	21	2352,6	3,74
J1.4 Sites industriels et commerciaux en activité des zones urbaines et périphériques	86	8	1243,9	1,98
J4.2 Réseaux routiers	86		20179,7	32,10
J5.3 Eaux stagnantes très artificielles non salées	89.2	-	1315,7	2,09
F9.35 Formations riveraines d'arbustes invasifs	87.1	p	1069,4	1,70
G1.2 Forêts riveraines mixtes des plaines inondables et forêts galeries mixtes	44.4	н	1274,4	2,03

RN88 - Échangeur de la Varizelle Janvier 2023 Rév. B 7 RN88 - Échangeur de la Varizelle Janvier 2023 Rév. B 7

E2.2 Prairies de fauche de basse et moyenne atitude	38.2	p	4310,5	6,86
F3.131 Randers	87	p	6397,9	10,18
I1.5 Friches, jachères ou terres arables récemment abandonnées	87	р	2983,0	4,75

H. : habitat humide ; p. : habitat pro parte au sens de l'Arrêté du 24 juin 2008 précisant les critères de définition et de délimitation des zones humides.

3.2. SELON LE CRITÈRE FLORISTIQUE

En complément des inventaires des habitats naturels et des sondages pédologiques, des inventaires florintiques avece des indices d'abendance dominance (coefficient de Braun Blanquot) ent été réalisée afin d'identifler ou non d'éventuelles zones humides selon le critère floristique.

Selon l'Arrêté du 24 juin 2008 précisant les critères de définition et de délimitation des zones humides en application des articles L. 214-7-1 et R. 211-108 du code de l'environnement, une zone est considérée humide si la majorité des espèces ayant un taux de recouvrement de plus de 20% est représentée par des espèces indicatrices de zones humides (liste de l'annexe II table A).

12 relevés phytosociologiques, réalisés lors de la période d'inventaire de 2021 et détaillés ci-dessous, ont révélé l'absence de végétation caractéristique de zones humides.

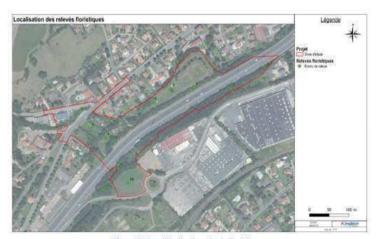


Figure 3 : Localisation des relevés floristiques

	Relevé de la flore					
	Famille	Nom vernaculaire	Nom scientifique	Espèce indicatrice ZH	Coefficien Braun- Blanquet	
	Fabacées	Luzerne d'Arabie	Medicago arabica		3	
	Poacées	Fétuque ovine	Festuca ovina		2	
	Poacées	Dactyle aggloméré	Dactylis glomerata		2	
1	Lamiacées	Lamier pourpre	Lamium purpureum			
Ĭ.	Astéracées	Achilée mile feuilles	Achillea millefolium		- 11	
	Urticacées	Ortie dioïque	Urtica dioica		81	
	Plantaginacées	Plantain knościć	l'Antago kerceolata			
	Renonculacées	Renoncule acre	Ranunculus acris		. 3	
	Poacées	Dactyle aggloméré	Dactylis glomerata		3	
	Poacées	Fétuque ovine	Festuca ovina		3	
	Renonculacées	Renoncule acre	Ranunculus acris		. 9	
	Géraniacées	Géranium mou	Geranium molle		3	
	Fabacées	Luzeme d'Arabie	Medicago arabica	ij.	i ii	
2	Fabacées	Trefle des prés	Trifoken pretense	Ja	. 8	
	Fabacées	Vesce des haies	Vicia sepium	W.	i ii	
	Plantaginacées	Plantain lancéolé	Plantage lanceolata	a a	. 9	
	Fabacées	Vesce a épis	Vicia cracca		- 8	
	Euphorbiacées	Euphorbe à feuilles d'amandier	Euphorbia amygdaloides		9	
	Astéracées	Paquerette	Bellis perennis	2	1	
	Salicacées	Tremble	Populus tremula	9	9	
	Rosacées	Merisier	Prunus avium	1	2	
	Rosacées	Prunier cultivé	Prunus domestica		3	
	Corylacées	Charme	Carpinus betulus		9_	
	Oléacées	Frêne commun	Fraxinus excelsior		1	
3	Cornacées	Cornouiller sanguin	Cornus sanguinea		2	
	Acéracées	Erable champêtre	Acer campestre		1	
	Salicacées	Saule marsault	Salix caprea		:4	
	Acéracées	Erable sycomore	Acer pseudoplatanus		- 81	
	Araliacées	Lierre grimpant	Hedera he lix		1	
	Caprifoliacées	Sureau noir	Sambucus nigra		- 1	
	Polygonacées	Rumex crépu	Rumex crispus		1	
4	Lamiacées	Menthe à feuille ronde	Mentha suaveolens	Н	1	
30	Géraniacées	Géranium mou	Geranium molle	ili:	- 1	
	Poacées	Dactyle aggloméré	Dactylis glomerata		2	

RN88 - Échangeur de la Varizelle Janvier 2023 Rév. B 9 RN88 - Échangeur de la Varizelle Janvier 2023 Rév. B

	Poacées	Fétuque ovine	Festuca ovina		2
	Astéracées	Paquerette	Bellis perennis		1
	Astéracées	Achillée mile feuilles	Achillea millefolium	d.	- 1
	Caprifoliacées	Viorne lantane	Vibumum lantana		81
	Renonculacées	Renoncule acre	Ranunculus acris		- 31
	Urticacées	Ortie dioïque	Urtica dioica		- 1
_	Acéracées	Erable sycomore	Acer pseudoplatanus		- 1
	Bétulacées	Bouleau verrugueux	Betula pendula		1
	Oléacées	Frêne commun	Fraxinus excelsior		1
	Fabacées	Robinier faux-acacia	Robinia pseudoacacia		1
	Rosacées	Merisier	Prunus avium		- 1
	Caprifoliacées	Viorne lantane	Viburnum lantana		2
5	Corylacées	Charme	Carpinus befulus		1
	Rosacées	Pruneller	Prunus spinosa		
	Acéracées	Erable champêtre	Acer campestre		9
	Lamiacées	Lamier jaune	Lamium galeobdolon		1 9
	Araliacées	Lierre grimpant	Hedera helix		2
	Lamiacées	Lierre terrestre	Glechoma hederacea		1
	Violacées	Violette des bois	Viola reichenbachiana		1
	Rosagées	Ronce	Rubus fruticosus		3
	Poacées	Dactyle aggloměré	Dactylis glomerata		2
	Caprifoliacées	Sureau noir	Sambucus nigra		1 5
6	Rosacées	Prunier cultivé	Prunus domestica		1
	Poacées	Fétuque ovine	Featuce ovina		2
	Fabacées	Trèfle des prés	Trifokon pratense		1 1
	Renonculacées	Renoncule acre	Ranunculus acris		1
	Bétulacées	Aulne glutineux	Alnus glutinosa	H	3
	Salicacées	Saule blanc	Salx aba	н	1
	Corylacées	Noisetier	Corylus avellana		1
7	Rosacées	Sorbier des oiseaux	Sorbus aucuparia		1
	Acéracées	Erable sycomore	Acer pseudoplatanus		1
	Rubiacées	Gaillet gratteron	Gallum aparine		2
	Urticacées	Ortie dioïque	Urtica dioica		2
	Fabacées	Robinier faux-acacia	Robinia pseudoacacia		3
	Caprifoliacées	Sureau noir	Sambucus nigra		1
	Poacées	Dactyle aggloméré	Dactylis glomerata		2
8	Rubiacees	Gaillet gratteron	Galium aparine		2
	Oléacées	Frêne commun	Fraxinus excelsior		1
	Polygonacées	Renouée du Japon	Reynoutria japonica		- 1

	Fabacées	Robinier faux-acacia	Robinia pseudoacacia		3
	Salicacées	Peuplier noir	Populus nigra	Н	1
9	Rosacées	Merisier	Prunus avium		31
9	Aralacées	Lierre grimpant	Hedera he fx		2
	Rubiacées	Gailet gratteron	Gallum aparine		2
_	Urticacées	Ortie diolique	Urtica dioica		1
	Poacées	Fromental	Arrhenatherum elatius		3
	Rubiacées	Gaillet mollugine	Gallum mollugo		3
	Poacées	Fétuque ovine	Festuca ovina		2
	Renonculacées	Renoncule acre	Ranunculus acris		- 31
10	Polygonacées	Oseile	Rumex acetosa		
	Poacées	Dactyle aggloméré	Dactylis glomerate		1 1
	Rosacées	Potentile rampante	Potentilla reptans		
	Fabacées	Trèfle des près	Trifokun pratense		1
	Lamiacées	Bugle rampante	Ajuga reptans		- 9
	Salicacées	Saule blanc	Salx aba	н	3
	Betulacées	Aulne à feuilles en cœur	Alnus cordata	H	2
	Salicacées	Peuplier noir	Populus nigra	н	. 1
	Fabacées	Robinier faux-acacia	Robinia pseudoacecia		- 8
	Polygonacées	Renouée du Japon	Reynoutria japonica		2
1	Urticacées	Ortie dioïque	Urtica dioica		1 1
	Caryophyllacees	Stellaire holostée	Stellarium holosfea		9
	Ranunculacées	Ficaire	Ficaria vema		2
	Rubiacées	Gaillet gratteron	Galtum apanne		1
	Rosacées	Benoite commune	Geum urbanum		1
	Acéracées	Erable sycomore	Acer pseudoplatanus		1
	Bétulacées	Aulne glutineux	Ahus glutinosa	н	- 1
	Acéracées	Erable sycomore	Acer pseudoplatanus		2
	Oléacées	Frêne commun	Fraxinus excelsior		1
	Corylacées	Noisetier	Corylus avellana		2
	Polygonacées	Renouée du Japon	Reynoutria japonica		2
2	Urticacées	Ortie dioïque	Urtica dioica		- (1
	Rosacées	Ronce	Rubus fruticosus		- 31
	Brassicacées	Alliaire officinale	Allaria petiolata		1
	Ranunculacées	Ficaire	Ficaria verna		1
	Aralacées	Lierre grimpant	Hedera helix		1

| RN88 - Échangeur de la Varizelle | Janvier 2023 | Rév. B | 11 | RN88 - Échangeur de la Varizelle | Janvier 2023 | Rév. B |

3.3. SELON LE CRITÈRE PÉDOLOGIQUE

INGEROP a entrepris une campagne de sondage le 10 octobre 2022 sur le site d'étude par des écologues qualifiés.

Sur les 30 sondages présentés ci-dessous, 6 d'entre eux sont positifs et attestent de la présence de zones humides. 7 sondages sont non interprétables en raison de refus de tarière et 17 sont négatifs.

Les sondages S1 à S5 (cf. annexe 1) effectués au nord de la RN88, jouxtant le Janon, démontrent que celle-ci est une zone humide. Cela correspond à 1278m².

Le sondage S16 positif révèle également une zone humide. De plus, un micro-habitat de jonchaie (observé lors du sondage) est présent à proximité immédiate du sondage pédologique, ce qui confirme la présence d'une zone humide qui correspond à 748m².

Certains sondages n'ont pas pu être réalisés pour cause d'accessibilité ou de dépôt de remblais sur le site, notamment près du giratoire existant, au sud RN88. La zone de remblais n'est pas liée à ce projet. En effet, au vu de sa topographie et de son caractère remanié (implantation du giratoire à proximité) des sondages au droit de cette demière ne seraient pas représentatifs.

De plus, vers le Ricolin, les sondages n'ont pas été menés au droit d'anciennes bâtisses (refus de tarière dès les premiers centimètres).

Et, au droit des berges du Ricolin, des zones humides sont déjà identifiées via le critère « habitat » et au vu des pentes des berges, les sondages dans ce secteur sont compliqués à réaliser.

Au total, les sondages pédologiques ont permis d'inventorier 2 026 m² de zones humides.

Figure 4 : Résultats des sondages pédologiques

Point	Résultat	Classe GEPPA	Classable en ZH	Commentaire
1	Poskif	IV a - c	Oui	Sondage jusqu'à 30 cm. Présence de traces rédoxiques entre 0 et 25cm. Couleur marron fonce, texture fraiche et sablo- argileuse.
2	Postif	VI c1 -c2 - d	Oui	Sondage jusqu'à 30 cm. Présence de traces réductiques et rédoxiques à 30cm. Couleur marron foncé, texture fraiche et sablo-argileuse. Devient plutôt sableuse à 15cm.
3	Postif	IVa-c	Oui	Sondage jusqu'à 30 cm. Présence de traces rédoxiques à 20cm. Couleur marron foncé, texture fraiche et sablo-argileuse.
4	Postř	Va-b- c-d	Oui	Sondage jusqu'à 30 cm. Présence de traces réductiques et rédoxiques à 10cm. Intensification des traces rédoxiques à 15- 20cm Couleur marron foncé, texture fraiche et sablo-argileuse.
5	Postf	IV a - c	Oui	Sondage jusqu'à 30 cm. Présence de traces réductiques à 15cm et de traces rédoxiques à partir de 20cm. Couleur marron foncé, texture fraiche et sablo-argileuse.
6	Non interprétable		Non	Refus de tarière à 10 cm. Remblais Absence de traces d'oxydoréduction.
7	Négatif		Non	Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. Couleur marron foncé, texture fraiche et argilo-sableuse. Remblais à partir de 25 cm.
8	Negatif		Non	Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. Couleur marron clair, texturé séche et sableuse.

 RN88 – Échangeur de la Varizelle
 Janvier 2023
 Rév. B
 13
 RN88 – Échangeur de la Varizelle
 Janvier 2023
 Rév. B
 14

9 Négatif Non Remblais Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. 10 Couleur marron foncé, texture fraiche et argilo-sableuse. Négatif Remblais à partir de 25 cm. Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. Non 11 Négatif Couleur marron clair, texture seche et sableuse. Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. 12 Négatif Non Couleur marron clair, texture seche et sableuse. Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. 13 Non Negatif Couleur marron intermédiaire, texture seche et sableuse. Sondage jusqu'à 25 cm. Absence de traces d'oxydoréduction. 14 Negatif Non Couleur marron clair, texture sèche et sableuse. Refus de tarière à 20 cm. Couleur marron foncé, texture Non interprétable fraiche et sablo-argileux, présence de cailloux. Très faibles traces rédoxiques à 15 cm. Sondage jusqu'à 25 cm. Présence de traces rédoxiques à 15cm. Début de traces réductiques à 20 cm. Intensification des 16 Positif VI c1 -c2 Oui traces rédoxiques à 25 cm. Couleur marron foncé, texture fraiche et argilo-sableuse. Micro-habitat de jonchaie. Refus de tarière à 15 cm. Couleur marron foncé, texture 17 Non interprétable fraiche et sablo-argileux. Traces rédoxiques très faibles. Refus de tarière à 20 cm. Couleur marron intermédiaire, 18 texture fraiche et sablo-argileux. Absence de traces Négatif d'exyderéduction 19 Non interprétable Non Refus de tarière à 5 cm. Remblais Sondage jusqu'à 25 cm. Faibles traces rédoxiques. Coufeur 20 Negatif marron foncé, texture fraiche et argilo-sableuse. Morceaux de terre cuite. Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. 21 Negatif Non Couleur marron foncé, texture fraiche, sèche et sabloargileuse. Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. 22 Négatif Non Couleur marron foncé puis ocre à 25 cm, texture fraiche, sêche et sablo-argileuse. Refus de tarière à 20 cm. Couleur marron foncé, texture fraiche et argilo-sableuse. Absence de traces 23 Negatif Non d'oxydoréduction. Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. 24 Negatif Non Couleur marron foncé, texture fraiche et argilo-sableuse. Sondage jusqu'à 30 cm. Absence de traces d'oxydoréduction. 25 Négatif Non Couleur marron foncé, texture fraiche et argilo-sableuse. Refus de tarière à 25 cm. Remblais. Absence de traces 26 Negatif Non d'oxydoréduction. Refus de tarière à 25 cm. Absence de traces d'oxydoréduction. 27 Non Negatif Couleur marron intermédiaire, sablo-argileux. Refus de tarière à 25 cm. Légères traces rédoxiques, Couleur 28 Non interprétable Non marron foncé, sablo-argileuse.

Sondage jusqu'à 30 cm. Absence de trace d'oxydoréduction.

29	Non interprétable	Non	Refus de tarrière à 20 cm. Lègères traces rédoxiques à 20 cm. Couleur marron foncé, texture fraiche et argilo-sableuse, devient plutôt sableuse à 20 cm.
30	Non interprétable	Non	Refus de tarière à 10 cm. Absence de traces d'oxydorèduction. Couleur marron foncé, texture fraiche et argilo-sableuse, devient plutôt sableuse à 20 cm.

Figure 5 : Traces rédoxiques et réductiques du sondage \$16

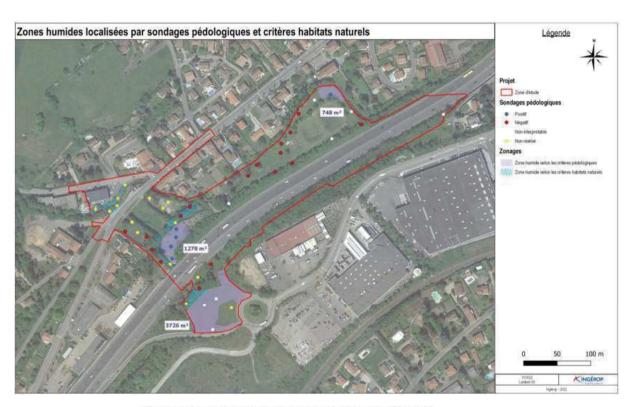


Figure 6 : Résultats des sondages et surfaces de zones humides détectées

3.4. FONCTIONNALITÉ DES ZONES HUMIDES

L'habitat « forêts riveraines mixtes des plaines inondables et forêts galeries mixtes » impacté par le projet, est un habitat pouvant être à structure complexe présentant plusieurs strates de végétation et riche en espèces. Ils sont localisés le long des cours d'eau des zones némorales, steppiques et subméditerranéennes.

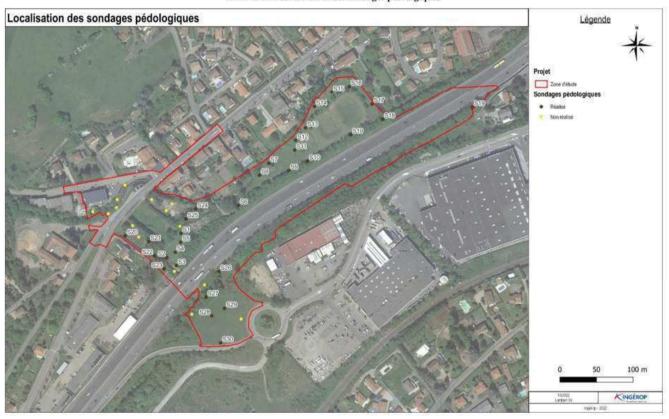
Parmi les 3 300 m² des zones humides identifiées, cet habitat représente 1 274 m² (38,6% de la surface), réparti principalement le long du Janon au sud-ouest de la zone d'étude. Certaines parties se situent à l'interface du Janon et d'une prairie améliorée humide d'une surface de 1278 m². L'autre, prairie améliorée humide est localisée au nord-est de la zone d'étude couvrant une surface de 748m². Toutes ces zones humides situées à proximité d'habitations ou de réseaux routiers sont alimentées par les deux cours d'eau : le Janon et le Ricolin. Ceux-oi permettent le maintien des conditions hydrologiques à l'origine de l'existence de ces zones humides dans la zone d'étude.

De nombreuses activités humaines sont présentes sur le secteur : réaménagement des berges pour les constructions, construction du seuil, dépôt de matériel, jardins...

En raison de la forte anthropisation du secteur (présence forte d'espèce exotiques envahissantes, notamment la Renouée du Japon, nombreuses constructions, notamment des infrastructures et habitations), les surfaces de zones humides sont fragmentées sur le secteur. Par conséquent, le site offre actuellement des habitats et des fonctions biologiques limitées pour la faune.

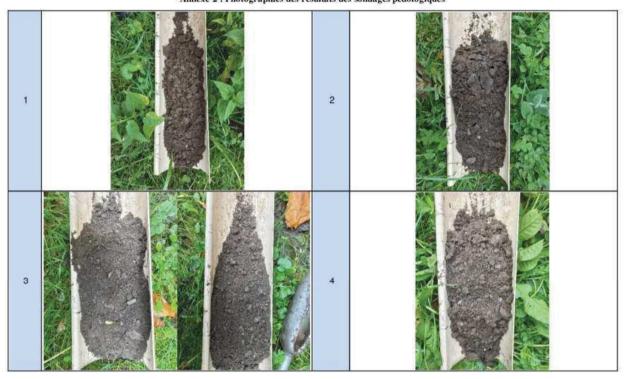
3.5. CONCLUSION

La caractérisation des habitats naturels et anthropiques de la zone d'étude a pemis d'identifier un habitat humide : G1.2 Forêts riveraines mixtes des plaines inondables et forêts galeries mixtes.

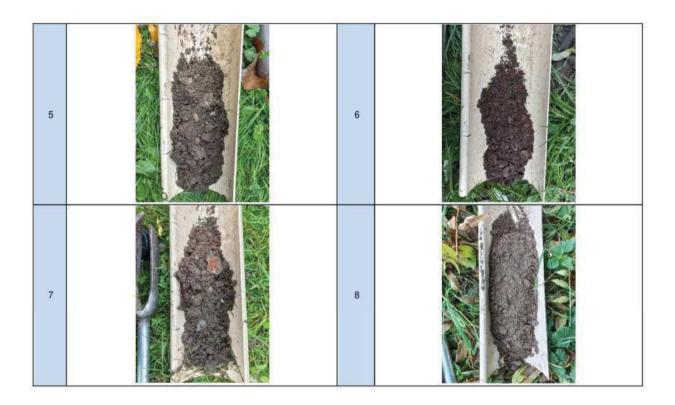

Suite à cette caractérisation, des relevés phytosociologiques et des sondages pédologiques ont été réalisés au droit des habitats non humides et pro parte (potentiellement humides), afin de compléter l'inventaire des zones humides. Les relevés phytosociologiques se sont révélés négatifs, en revanche 6 des 30 sondages pédologiques effectués sont positifs. Cela a permis d'identifier des zones humides en complément de la caractérisation d'habitats.

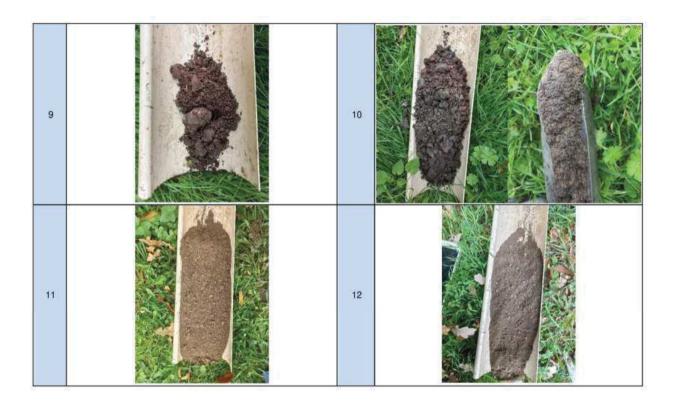
Au total, les différents inventaires (habitats, relevés phytosociologiques et sondages pédologiques) mis en place nous ont permis d'identifier 3 300 m² de zones humides sur l'ensemble de l'aire d'étude.

4. ANNEXES

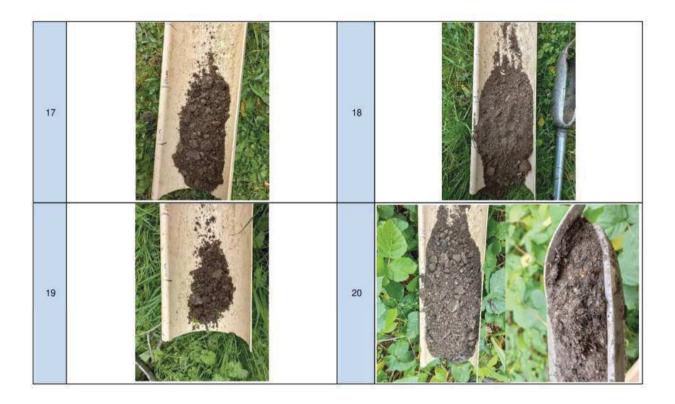

RN88 - Echangeur de la Varizelle Janvier 2023 Rév. B 17 RN88 - Echangeur de la Varizelle Janvier 2023 Rév. B

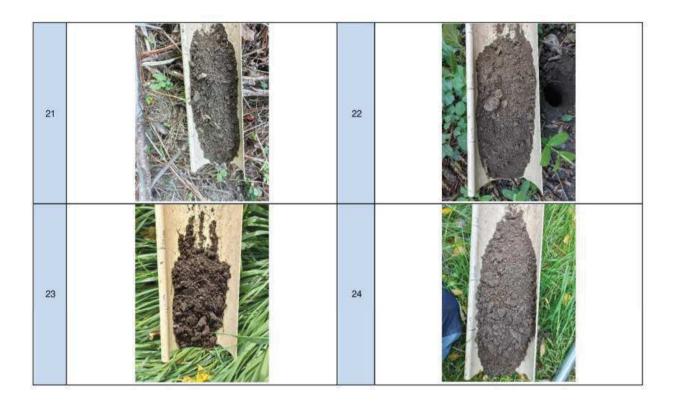
Annexe 1 : Numérotation des sondages pédologiques

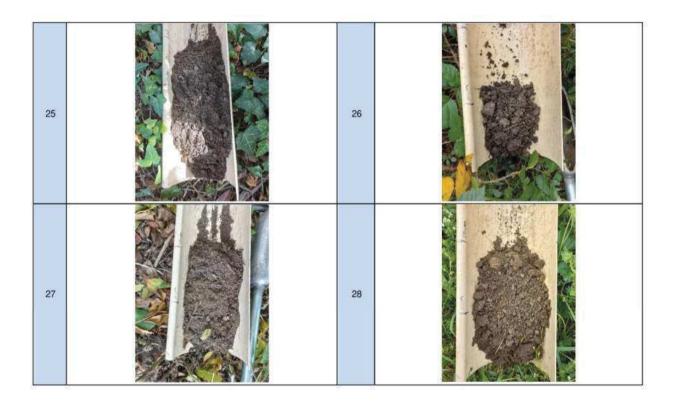


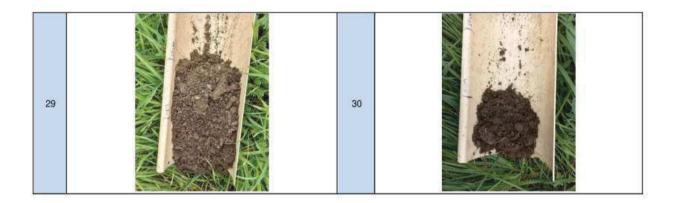

RN88 – Echangeur de la Varizelle Janvier 2023 Rév. B 19

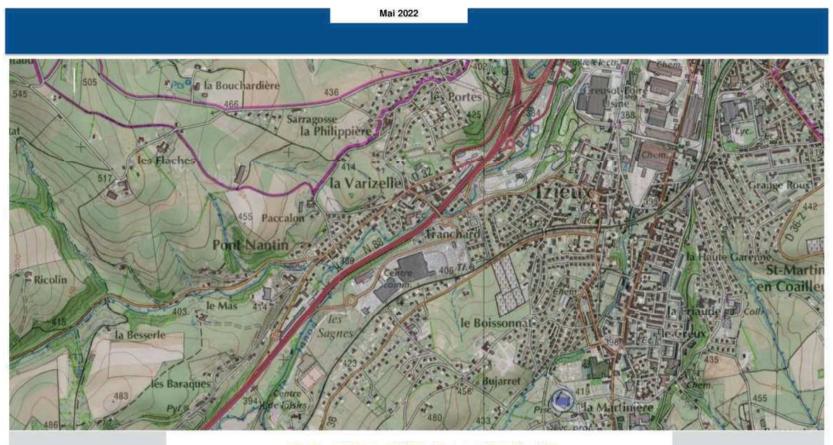

Annexe 2 : Photographies des résultats des sondages pédologiques




RN88 - Echangeur de la Varizelle Rév. B Janvier 2023







ANNEXE 6 : ÉTUDE ASSAINISSEMENT

RN88 - ECHANGEUR DE LA VARIZELLE

Dossier Projet

II.6 ASSAINISSEMENT ET HYDRAULIQUE

II.6.1 Rapport d'assainissement

А	20/05/2022	1ère émission	A. KOHN	G. PIVOT	D. ROUVEURE
Indice	Date	Modifications	Établi	Vérifié	Approuvé

Codification du document

PRO_PRD_NOT_00320_A

SOMMAIRE

	E L'ETAT INITIAL ET DES ENJEUX	
1.2. HYDROGEO	DLOGIE ET GEOTECHNIE	5
1.2.2.	Bassin 2	6
2. ASSAINISS	SEMENT ROUTIER - GESTION DES EAUX PLUVIALES	7
	I DES IMPLUVIUMS ROUTIERS	
2.2. DEFINITION	I DES HYPOTHESES DE CALCUL DES DEBITS ET BASSINS	7
	INEMENT DES BASSINS	
2.3.1.	Traitement	8
2.4. PRINCIPE	D'ASSAINISSEMENT	9
DOSSIER DE	PLANS	. 10
ANNEXES		. 10
	NSIONNEMENT - ECRETEMENT (METHODE DES PLUIES)	
FICHES DE DIME	NSIONNEMENT - FICHES SETRA	. 12
FICHES DE DIME	NSIONNEMENT – DIMENSIONNEMENT DE LA COLLECTE A Q10 – AVEC VERIFICATION A Q30	113

Liste des figures

Figure 1 : Extrait du PPRNP « Inondations » du Gier et ses affluents	1
Figure 2 : Localisation du piézomètre PZ11	
Figure 3 : Résultats du forage PZ11.	.1
Figure 4 : Synthèse des niveaux d'eau avant et après drainage des bassins	9
Figure 5 : Localisation du piézomètre PZ12	!
Figure 6 : Résultats du forage PZ12	
Figure 7 : Définition des impluviums routiers du projet	. :
Figure 8 : Extrait du PLU - Saint-Chamond	
Figure 9 : Débit de fuite des deux bassins	!
Figure 10 : Coefficients de Montana de la station de St-Etienne – Bouthéon	
Figure 11 : Volumes utiles reterru nour les deux bassins	

1. RAPPEL DE L'ETAT INITIAL ET DES ENJEUX

1.1. GENERALITES

Le projet de complément de l'échangeur de la Varizelle se situe en zones rouge et bleue vis-à-vis du risque inondation. Le réglement autorise toutefois les constructions et installations nécessaires à des équipements collectifs ou à des services publics sous réserve de prendre en compte le risque inondation dans leur conception.

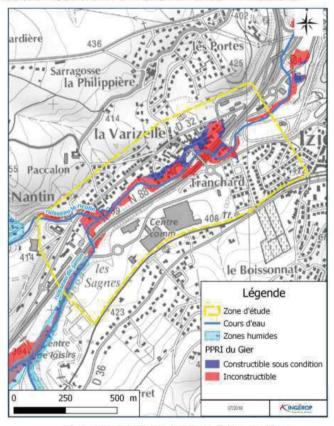


Figure 1 : Extrait du PPRNP « Inondations » du Gier et ses affluents

Dossier Projet

RN88 – Échangeur de la Varizelle

Deux cours d'eau superficiels, à faible débit et relativement contraints et anthropisés, traversent la zone d'étude :

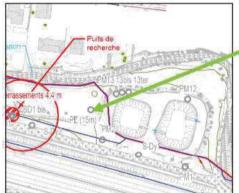
- Le Janon, évalué au SDAGE avec un état chimique bon mais un état écologique médiocre,
- Le Ricolin, qui est un affluent du Janon, non référencé au SDAGE.

Ces deux cours d'eau sont concernés par le Plan de Prévention des Risques Naturels Prévisibles d'Inondation (PPRNPi) du Gier approuvé le 8 novembre 2017.

Le projet sera conçu de façon à ne pas dégrader la situation actuelle. Un dossier au titre de la Loi sur l'eau sera élaboré dans le cadre de la procédure d'autorisation environnementale unique.

Des zones humides sont identifiées à proximité du projet, sans interférer sur les emprises de l'aménagement.

1.2. HYDROGEOLOGIE ET GEOTECHNIE


Le site d'étude repose sur la masse d'eau souterraine « Formations variées bassin houiller stéphanois BV Rhône ». Il s'agit d'une nappe imperméable localement aquifère qui ne présente pas de désordre du point de vue qualitatif et quantitatif.

Le site d'étude n'est localisé dans aucun périmètre de protection des captages en alimentation potable (AEP) d'après les données de l'Agence Régionale de la Santé (ARS) Rhône-Alpes.

1.2.1. Bassin 1 Bassin 2

La figure suivante localise le piézomètre PZ11, dans le secteur de la future implantation du bassin de rétention n°1.

rof pièzo (m) 15,45 PZ11 Prof sonde 9,36 Cote NGF PZ1 390.97 Mesura Niveau d'eau réel Cote NGF 7.062 2,298 388,672 7.056 2.304 388.666 6.9789 2.3811 388.5889 0 OSP10 (15m)

La figure suivante précise l'implantation du piézomètre PZ12, réalisé à proximité des bassins existants de la DIR CE.

Figure 5 : Localisation du piézomètre PZ12

Prof piêzo (n	n).	16,23	P212
Prof sonde		9,21	
Cote NGF PZ	1	384,3	1
Mesure	Nive	au d'eau réel	Cote NGF
6,7	112	2,4988	381,8112
6,3	743	2,835	381,4743
6,3	713	2,838	381,4713

Figure 2 : Localisation du piézomètre PZ11

Analyse du bassin nº1

Dans ce secteur est identifié une strate de schistes altérés marron à oris, caractérisée par une faible perméabilité, en-dessous d'un niveau d'eau à environ 2,5 mètres de profondeur dans une strate sablo-argileuse à graviers marron.

La présence d'eau sous le futur bassin pourrait provoquer pour exemple un soulèvement de la géomembrane et/ou du fond béton.

C'est pourquoi afin de prévenir tout désordre impactant l'intégrité de l'ouvrage projeté, un système de drainage sera réalisé avec l'implantation d'une tranchée drainante en périphérie du bassin.

Le tableau ci-dessous synthétise les principaux éléments à retenir concernant le bassin n°1. La hauteur d'immersion théorique avant drainage est estimée à 1,52 m (prise en compte dans cette analyse du niveau du volume mort). Le niveau d'eau après rabattement est estimé à -0,40 m, par la mise en place d'un drainage toutes hauteurs périphériques ceinturant le bassin.

Analyse du bassin n°2

Dans ce secteur, malgré l'identification d'un niveau d'eau à environ 2,5 mètres sur le forage PZ 12 (Cf coupe ci-contre), aucune donnée ne remet en cause l'implantation et la réutilisation des bassins DIRCE pour la suite du projet.

Le tableau ci-dessous reprend les caractéristiques du bassin n°2 et de la nappe à proximité. La nappe se situe 1 mêtre en-dessous du bassin (selon niveau d'eau mesuré du 03 février 2022), il n'est par conséquent pas nécessaire de mettre en place un système de drainage en périphérie sur ce bassin.

Nota: Ce bilan se base sur un raisonnement hypothétique sur l'emprise. En effet, nous sommes partis de l'hypothèse que dans les conditions étudiées, les écoulements pourraient être gérés par un simple drainage périphérique, et éventuellement un lestage complémentaire au besoin sur le bassin n°1. Cette problématique donnera lieu à la réalisation, imposé dans le DCE, d'une étude hydrogéologique de niveau exécution à réaliser par l'entreprise en charge des travaux.

Bassin	Niveau de nappe (m.Ht≠)	Niveau du fond in NGP)	Miveau du volume Umort (m MIF)	Haumur d'immersion thésrique (delts H tand Genin nive et de seppe) (m)	Nivers to du draininge (m NGF)	Niveau d'eau après rabatisment (m) idets h'riveau dirak roige sprès d'allege (kint bessin)
Bassin nº1	388,67	386,65	387.15	1.52	386.25	-0.40
bassin n°2	381.81	382.30	382.80	-0.99		1

Figure 4 : Synthèse des niveaux d'eau avant et après drainage des bassins

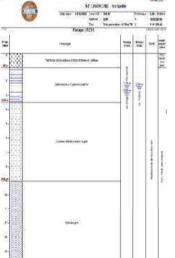


Figure 3 : Résultats du forage PZI1

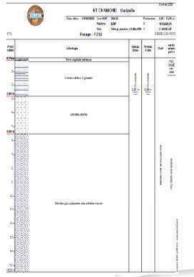


Figure 6 : Résultats du forage PZ12

2. ASSAINISSEMENT ROUTIER - GESTION DES EAUX PLUVIALES

Conformément à ce qui a été défini en phase AVP, les bassins projetés seront hors d'eau, et par conséquent préservés des crues. L'implantation des bassins en lit majeur dans des zones pouvant être utilisées pour la compensation hydraulique n'est aujourd'hui plus envisageable. De plus, les eaux ruisselées au niveau de la bretelle sens 2 seront également captées et gérées par un bassin de rétention contrairement à ce qui était nitialement prévu.

2.1. DEFINITION DES IMPLUVIUMS ROUTIERS

La définition des impluviums est établie suivant les exploitants projetés des différentes sections, pour anticiper les conditions d'exploitation. Les bretelles de sortie et d'entrée nouvellement créées seront exploitées par la DIRCE à l'instar de la section courante de la RN88. L'exploitation du giratoire nouvellement créé et du barreau de franchissement de la RN88 sera à préciser ultérieurement.

Ainsi, 2 impluviums seront envisagés pour la collecte des eaux superficielles :

- Un premier composé de tout le barreau de franchissement excepté le giratoire existant, un tronçon de la Route de la Varizelle (RD 32) et de la Route des Barraques à proximité du giratoire nouvellement créé ainsi que la brêtelle de sortie en sens 1 venant de Lyon.
- Un deuxième comprenant la section courante de la RN 88 ainsi que la bretelle de sortie sens 2 en direction de Lyon.

Les bassins versants 1 et 2 au sud de la RN86 seront quant à eux déconnectés des deux impluviums décrits précédemment, via un caniveau en « U » au sommet du mur de soutènement. Les eaux seront dirigées vers la traversée existante située à l'aval de l'impluvium ayant pour exutoire le Janon.

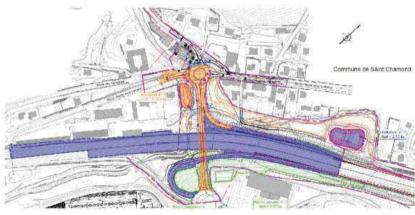


Figure 7 : Définition des impluviums routiers du projet

Impluvium 1 :

Ce bassin a été déplacé à l'ouest du barreau de franchissement, permettant ainsi de garantir son implantation en dehors de la zone de compensation (inondable).

- Surface de ruissellement de l'impluvium : 5 470 m².
- Coefficient de ruissellement : 1.00.
- Surface du bassin pondérée : 5 470 m² = 0.55 ha.

Impluvium 2 :

Les deux bassins appartenant à la DIRCE ont été mutualisés et remis aux normes concernant les pollutions accidentelles et chroniques. La gestion des pollutions par temps de pluie a été considérée afin de gèrer au mieux chaque incident de pollution. Les bassins-versants au sud de la RN88 ont quant à eux été déconnectés de cet impluvium, les eaux ruisselant à l'intérieur ne sont donc plus prises en compte.

- Surface de ruissellement de l'impluvium : 25 882 m².
- Coefficient de ruissellement: 0,91 (coef 1 pour la surface de chaussée, et 0.3 pour la surface de talus).
- Surface du bassin pondérée : 23 573 mº = 2,36 ha.

2.2. DEFINITION DES HYPOTHESES DE CALCUL DES DEBITS ET BASSINS

L'aménagement du demi-échangeur doit veiller à ne pas rehausser les lignes d'eau, ni agrandir le périmètre des zones exposées au risque.

La lecture du schéma directeur des eaux pluviales de Saint-Etienne Métropole permet de définir les hypothèses de conception des bassins suivantes :

- Débit spécifique de 5 l/s/ha pour les projets neuf.
- Occurrence de la période de retour : 30 ans.

La rectification du Janon induit d'après le SDAGE Rhône-Méditerranée, la réalisation d'opération de restauration écologique de la zone déviée.

Enfin, le PLU de la commune de Saint-Chamond indique les préconisations en termes de maîtrise des zones pluviales suivantes (figure 4) :

- Surface grise: L'imperméabilisation de surface doit être compensée par un assainissement des éaux de ruissellement afin que le débit généré par l'aménagement soit équivalent à celui sans aménagement.
- Surface rose: Des ouvrages de rétention des eaux pluviales doivent être mis en place de capacité équivalente aux débits générés. L'imperméabilisation de surface doit être compensée par un assainissement des eaux de ruissellement afin que le débit généré par l'aménagement soit équivalent à celui sans aménagement. Les eaux de ruissellement de la chaussée devront être traitées avant rejet (aménagement de bacs séparateurs d'hydrocarbures). Les bassins seront enherbés et plantés.

Les bassins sont dimensionnés conformément au Guide Technique Pollution d'Origine Routière du SETRA pour la gestion des pollutions accidentelles et chroniques et suivant la méthode des pluies pour les écrétements, méthode la plus couramment utilisée pour ce type de bassin.

Le niveau des données d'entrée n'étant pas suffisant pour estimer la vulnérabilité réelle de la zone d'études, les bassins seront dimensionnés de façon sécuritaire vis-à-vis de leur capacité et avec volume mort. Le point de rejet sera considéré comme très fortement vulnérable.

Figure 8 : Extrait du PLU - Saint-Chamond

2.3. DIMENSIONNEMENT DES BASSINS

Les bassins sont dimensionnés conformément au guide technique Pollution d'origine routière – Conception des ouvrages de traitement des eaux du SETRA (2007) pour contenir une pollution accidentelle lors d'une pluie de période de retour de 2 ans, avec l'ouvrage de sorti fermé pendant 2 heures. Le dimensionnement des bassins doit également être compatible avec un détai d'intervention de 1 heure.

Les calculs de rétention sont réalisés pour une période de retour de 30 ans avec un débit de fuite indiqué ci-dessous, respectant les 5 l/s/ha. Saint Etienne Mètropole indique qu'à partir de 2l/s le débit de fuite est techniquement réalisable.

Bassin	Impluvium 1	Impluvium 2				
Débit de fuite (ratio 5 l/s/ha	2,7 l/s	12,9 l/s				

Figure 9 : Débit de fuite des deux bassins

L'échange avec la DDT42 nous a confirmé la nécessité d'application stricte de ces débits de fuite.

Afin d'assurer la régulation d'un débit de fuite inférieur à 5 l/s (risque d'obstruction et donc entretien plus important), le BM1 sera équipé d'un régulateur (type à effet vortex »). Pour information seul le bassin collectant les eaux de l'impluvium n°1 sera équipé d'un tel dispositif. En revanche, le bassin de rétention existant modifié de la DIRCE, sera régulé par un simple orifice de régulation de débit. De plus, afin de d'empêcher la remontée des eaux provenant du Janon en cas de crues, des clapets-anti-retours seront installés en sortie des deux ouvrages.

Nous attirons cependant l'attention sur les conséquences de ce choix technique :

Ces ouvrages nécessitent un entretien régulier afin de confirmer/fiabiliser le fonctionnement des dispositifs,
 Les temps de remplissage / vidange des bassins compte tenu de ces faibles débits de fuite est très long augmentant significativement le risque d'un second évènement pluvieux consécutif non pris en compte dans ces calculs.

Les coefficients de Montana utilisés sont issus des mesures de la station Météo-France de St-Etienne – Bouthéon. Ils sont calculés par un ajustement statistique entre les durées et les intensités de pluie pour des durées de retours données.

	6 min <	T < 2 h	2 h < T < 24 h				
Période de retour	а	b	а	b			
10 ans	7,628	0,612					
30 ans	8,836	0,596	10,967	0,676			

Figure 10 : Coefficients de Montana de la station de St-Etienne - Bouthéon

Le calcul du volume utile des bassins a été réalisé, conformément aux préconisations du CEREMA, pour le traitement de la pollution accidentelle, pour le traitement de la pollution chronique et pour l'écrétement des débits. Le volume utile le plus grand, le plus contraignant, sera retenu.

Les volumes utiles V_u calculés pour les différents cas sont les suivants (le volume utile calculé pour le traitement de la pollution chronique est déterminée par la surface utile de sédimentation, pour une hauteur de volume mont de 0.5 m):

Bassin	Impluvium 1	Impluvium 2
V _u pour pollution accidentelle	205 + 50 m ³	725 + 50 m ³
Vu pour écrêtement des débits	400 m ³	1 980 m ³
V _u retenu	400 m ³	1 980 m ³

Figure 11: Volumes utiles retenu pour les deux bassins

Les feuilles de calcul en annexe une application stricte du Guide technique *Pollution d'origine routière – Conception des ouvrages de traitement des eaux* du SETRA (2007), développé par les services internes de l'Etat.

2.3.1. Traitement

Le traitement de la pollution chronique est réalisé par mise en place d'ouvrages simples de décantation et de déshuilage (type ouvrage en béton équipé de cloison siphoïde) sur chacun des bassins considérés.

Les déchets flottants (sous l'action d'un dégrillage) et les liquides non miscibles à l'eau et plus légers (comme les huiles et les hydrocarbures) seront donc piécés par les ouvrages de sortie, dans les bassins.

Ceux-ci se dégraderont sous l'effet du soleil de l'activité bactérienne.

De plus, la surface de fond des bassins, sera définie pour permettre la décantation des particules pendant le temps de séjour dans chacun des bassins.

Les vitesses de sédimentation seront déterminées en fonction des objectifs de traitement permettant de respecter le bon état écologique des milieux naturels récepteurs et selon les résultats de la vulnérabilité du site.

Le dimensionnement qualitalif, qui permet de déterminer les caracléristiques nécessaires pour un abattement de pollution en termes de surface de décantation :

$$Rh = \left(\frac{0.8 * Q_x - Q_y}{V_x * Le\left(\frac{0.8 * Q_x}{Q_y}\right)}\right) * 3600$$

Avec:

Sb : Surface (m2) au miroir

Qf = Débit (m3/s) de fuite du bassin à mi-hauteur

QR = Débit (m3/s) de pointe d'entrée de référence (2 ans)

Vs = Vitesse (m/h) de sédimentation du bassin ; fixée ici à 1 m/h

2.4. PRINCIPE D'ASSAINISSEMENT

L'assainissement de l'échangeur inclut :

- La création d'ouvrages récepteur de la pollution accidentelle et chronique des eaux de chaussée.
- La limitation de la concentration de la pollution par un réseau d'ouvrages hydrauliques dense acheminant les eaux polluées vers les bassins.

Au regard de la délimitation des impluviums, le principe d'assainissement se base sur la collecte des eaux dirigées vers deux bassins, l'un lié aux eaux de la bretelle de sortie depuis Lyon, du barreau de franchissement et d'un tronçon des routes de la Varizelle et des Barraques, l'autre pour la collecte des eaux de la section courante de la RN 88 et de la bretelle d'entrée en direction de Lyon. Le fonctionnement de ces bassins avec volume mort est issu du guide technique Pollution d'origine routière — Conception des ouvrages de traitement des eaux du SETRA (2007).

Le choix du positionnement de ces bassins est cohérent avec les eaux à collecter ainsi que les zones de compensation à considérer. La mutualisation des 2 bassins appartenant à la DIRCE a permis d'optimiser au mieux les surfaces utilisables pour les zones de compensation présentées dans la note « II.6.2 Note hydraulique : Janon-Ricolin ». De plus, la déconnexion des bassins versants au sud de la RN88 dans la prise en compte des eaux captées permettent la diminution des volumes des bassins.

Les eaux seront acheminées vers les bassins respectifs par des dispositifs étanches d'assainissement (cunettes, caniveau à fente, collecteurs, fossés...) d'imensionnés pour une période de retour 10 ans avec une vérification de non-débordement à 30 ans comme illustré sur le plan 1l.6.5. Vue en plan assainissement

DOSSIER DE PLANS

11.6.3	Vue en plan de l'existant
11.6.4	Plan des impluviums routiers et bassins-versants naturels
11.6.5	Vue en plan assainissement
11.6.6	Cahier de détails des bassins de rétention
11.6.7	Cahier de détails des ouvrages
11.6.8	Vue en plan du rescindement
11.6.9	Cahier de détails des aménagements projetés

ANNEXES

- Fiches de dimensionnement Ecrêtement (Méthode des pluies).
 Fiches de dimensionnement Fiches SETRA
 Fiches de dimensionnement Dimensionnement de la Collecte Q10 Q30

FICHES DE DIMENSIONNEMENT - ECRETEMENT (METHODE DES PLUIES)

CALCULS HYDRAULIQUES D'UN BASSIN DE RETENUE

Méthode des pluies

Projet:

RN88 - Echangeur de la Varizelle

Commune (s) : Saint Chamond

Secteur (s) : Bassin n°1 - Impluvium PS + Giratoire

CARACTERISTIQUES ELEMENTAIRES

Surface élémentaire St = 0.55 ha

Coefficient d'apport C = 1.00

Surface active Sa = 0.55 ha

Débit de fuite Q.f. = 2.74 l/s

PARAMETRES REGIONAUX : LOI DE MONTANA

Station météo de rétérence : St-Ftienne - Bouthéon (42)

Période de retour retenue : 30 ans (Durée de 2 à 24 h)

a = 10.967 **b** positif = 0.676

CALCULS INTERMEDIAIRES

q = 0.030 mm/mn

(1-b) = 0.32

Ratio

5 Vs/ha

Delta h = 73.03 mm

RESULTATS

Volume brut (régulé) : Volume majoré (non régulé) :

399 m3 479 m3

Volume retenu : 400 m

CALCULS HYDRAULIQUES D'UN BASSIN DE RETENUE

Méthode des pluies

Projet:

RN88 - Echangeur de la Varizelle

Commune (s): Saint Chamond

Secteur (s) : Bassin n°2 - Impluvium Bretelle entrée + RN88

CARACTERISTIQUES ELEMENTAIRES

Surface élémentaire St = 2.59 ha

Coefficient d'apport C = 0.91

Surface active Sa = 2.36 ha

Débit de fuite Q.f. = 12.94 l/s

PARAMETRES REGIONAUX : LOI DE MONTANA

Station météo de référence : St-Etienne - Bouthéon (42)

Périod e de retour retenue : 30 ans (Durée de 2 à 24 h)

a = 10.967 b positif = 0.676

CALCULS INTERMEDIAIRES

q = 0.033 mm/mn

(1-b) - 0.32

Delta h = 69.89 mm

RESULTATS

Volume brut (régulé) : Volume majoré (non régulé) : 1647 m3 1977 m3

Volume retenu : 1980

Ratio

5 Vs/ha

FICHES DE DIMENSIONNEMENT - FICHES SETRA

Bassin retention n°1

Dimensionnement des bassins de traitement guide SETRA 2006

Données		Unité	Abreviation:	
Surface active		mª	Sa [5470.2546
Volume de poliution accidentelle à stocker		m3	Vpa	50
débit de fuite		l/a	or [2.74
Dimensionnement hydraulique			26 Unio 24	
Période de retour			T	30
débit de fuite		l/s	Qf	2.74
volume		m3	v [400
Dimensionnement pollution accidentelle vanne ferm	ée			
hauteur d'eau pour une période de retour T de durée t		m	h (T,t)	0.0284
volume utile à stocker		m3	Vu	205.36
Caracteristiques géométriques du bassin routier à p		utile		
prédimensionnement cas d'un bassin rectangulaire penti pente de talus. I/h	e de talus l/h	3	2	1.5
hauteur d'eau utile dans le bassin		m	hu	1.1
rapport longueur largeur			x=LA	4
Largeur du bassin au miroir du volume mort		m	1	8.3
Longueur du bassin au miroir du volume mort		m	L	37.0
Surface du bassin au miroir du volume mort		m2		282.0
hauteur d'eau du volume mort		m	hm	0.5
valume mort		m3	Vm [123.0
Débit de fuite pour assurer le temps d'intervention				
Temps de propagation d'une poliution miscible (temps d	Intervention)	h	Tp [- 1
Qf = Vm/7,2/Tp		Ma.	Qf (1/2) =	17
Dimensionnement de l'orifice de sortie				
Débit à pleine hauteur			-	1.24200
(5)	nifice mu = 0,60		Ø	0.025
Débit à mi-hauteur		l/s	Qf	2.74
	orifice mu = 0,60	m	0	0.02
		l/s	Qf (1/2) =	1.0
Dimensionnement pollution chronique				
Débit à mi-hauteur Qf (1/2)		m3/s	Qf (1/2)	0.00095019
Période de retour de traitement		an	T	2
Débit pour la période de retour de dimensionnement		m3/s	QT	0.1656
Vitesse de sédimentation du bassin		m/h	Vs	1
surface du miroir nécessaire		m³	Sbn	95.9
Sb surface du miroir existante		111000	Sib	282.0
Vitesse horizontale dans l'ouvrage		m/s	Vh:	0.000

Bassin rétention n°2

Dimensionnement des bassins de traitement guide SETRA 2006

Données	Unité	Abréviation	
Surface active	75.2	Sa [23753.31
Volume de pollution accidentelle à stocker	m3	Vpa	50
débit de fuite	l/s	Qf	12.94
Dimensionnement hydraulique			
Période de retour		T [30
débit de fuite	Va.	Qf	12.941
volume	m3	٧ [2000
Dimensionnement pollution accidentelle vanne fermée			
hauteur d'eau pour une période de retour T de durée t	m	h (T,t)	0.0284
volume utile å stocker	m3	Vu [724.59
Caractéristiques géométriques du bassin routier à partir du volum	e utile		
prédimensionnement cas d'un bassin rectangulaire pente de talus l'h pente de talus. I'h	2	1	2
hauteur d'eau utile dans le bassin	m	hu 1	1.77
nauteur d'eau utile dans le bassin rapport longueur largeur	SEC.	nu x=L/I	3.77
Largeur du bassin au miroir du volume mort	m	1	18.7
Largeor du bassin au miroir du volume mort Longueur du bassin au miroir du volume mort	m	1	49.0
Surface du bassin au miroir du volume mort	m2		896.6
haufeur d'eau du volume mort	m	hm	0.5
volume mort	m3	Vm	411.0
Débit de fuite pour assurer le temps d'intervention			
Temps de propagation d'une pollution miscible (temps d'intervention)	h	Tp [1
Qf = Vm/7,2/Tp	1/0	Qf (1/2) =	57
HANGE OF THE STATE OF THE PROPERTY OF THE PROP	10.00	21(112)-[
Dimensionnement de l'orifice de sortie Débit à pleine hauteur			
prince mu = 0.6	3 m	Ø	0.062
WANTED STREET	l/s	Qf	12.94
Débit à mi-hauteur		1040	
orifice mu = 9,6		Ø	0.06
	Ve	Qf (1/2) =	7.4
Dimensionnement pollution chronique	20000	020 00000 P	
Débit à mi-hauteur Qf (1/2)		Qf (1/2)	0.00742369
Période de retour de traitement	an	т	2
Débit pour la période de retour de dimensionnement	m3/s	77701	0.5292
Vitesse de sédimentation du bassin	m/h	11177	1
surface du miroir nécessaire	m²	Sbn	370.3
Sb surface du miroir existante	mª	Sb	896.6
Vitesse horizontale dans l'ouvrage	nn/e	Vh.	0.001

RN88-Varizelle-Calcul SETRA xism

5/19/2022

RN88-Varizelle-Calcul SETRA .xlsm

5/19/2022 A

Mai 2022

12 / 16

Dossier Projet

RN88 – Échangeur de la Varizelle

FICHES DE DIMENSIONNEMENT - DIMENSIONNEMENT DE LA COLLECTE A Q10 - AVEC VERIFICATION A Q30

Impluvium n°1 - Q10 :

Calcul-Collecte_Varizelle_Boutheon_Calculs(Q10 et Q25)_B-FGT xlsx lmp-1-Q10-Bouthéon

Catcul d'assainissement sur la plateforme Impluvium n°2 : RN88 + Bretelles Coefficient montana Station Meteo Période de retour Pas de temps 6 min - 2 h

Taille collecteur en mm, fossé caniveau en metre

	Collecteur		Fosse		Cani	veau		Cunette		_													
	Ø	L gueule	L fond	h hauteur	L largeur	ri hauteur	L gueste	Laxe	H hauteur	Pm	Sm	- K	pente	Gmax (Vs)	Vmax (m/s)	Tc (min)	Uneatre	5 Voirie	5 cumul V	SEV	5 cumul EV	C .	Q (l/s)
	-		v .						Impluvium	théoriq	ue - BV	routier	type						0 -				
Branche Nord-Ouest							1000									3							
PT - S 04.5							1.50	0.75	0.19	1,55	0.14	70	1.70%	265	1.86	3.71	67	1485.614	1485.61	323.41	323,408	0.87	90
PT -S 04.6	500		9 3								60	70	1.70%	482	2.60	5.06	180	3991,203	5476.82	868.86	1192.27	0.87	275
PT - S.04.7	600											70	1.70%	784	2.94	5.88	122	2705.149	8181.97	588.89	1781.16	0.87	375
PT 8 04.6	600											70	1.70%	784	2.94	7.62	261	5787.244	13969.2	1259.8	3041	0.87	546

100				 															
100	Bretelle d'entrée											3							
	E 02 5 - E 12	300	-					70	6.00%	232	3.48	4.02	180	1697	1697	258	258	0.91	96
	E12-E145	300		10			6 6	70	3.70%	182	2.73	4.41	55	395	2092	0	258	0.92	111

Bretelle sortie												3				[n .		
S 15.5 - S 06	400		3 10					70	6.00%	499	4.21	3.88	190	1206	1206	D	0	1.00	67
S.06 - S 04.5	400							70	1.27%	230	1.94	4.17	28	434	1640	0	0	1.00	87
0 0000 00000	0.000	 750	0.000	***		e 65			-Conjugate	20000	5 - 1615A	00-110AX	17 (545)	00,000	ri consensi		8.11	W 715	-
Branche Sud-Ouest			3				- 3		- 4			3					1		
E11 - E14.5	300						0.0	70	1,70%	123	1.85	3.85	80	1437	1437	0	0	1.00	80
Demi-traversée de la bretelle	300							70	1.00%	95	1.42	3.96	8	0	1437	0	0	1.00	79
E 14.5 - Traversée	500							70	1.50%	453	2.44	5.71	162	3441	6970	0	258	0.98	308
Traversée Sud -> Nord	600		1					70	0.50%	425	1.59	5.08	30	0	6970	0	258	0.98	297
demi traversée de la bretelle	800						1 5	70	0.60%	1003	2.11	7.69	8	0	20939.2	0	3299	0.90	800
Entrée bassin	800						100	70	0.70%	1083	2.28	7.81	14	0	22579.2	0	3299	0.91	851

Impluvium n°1 - Q30 :

Calcul-Collecte_Varizelle_Boutheon_Calculs(Q10 et Q25)_B-FGT xlsx Imp-1-Q30-Bouthéon

Calcul d'assainissement sur la plateforme Impluvium n°2 RN88 + Brefelles

Coefficient montana

Station Meteo Période de retour Pas de temps Bouthéon (42) 30 ans 6 min - 2 h b

6

coefficient EV Pente 3/2 0.3

Taille collecteur en mm, fossé caniveau en metre

Collecteur		FOSSE		Can	iveau		Cunette															
Ø	L gueule	L fond	H hauteur	L largeur	H hauteur	L gueule	Laxe	H hauteur	Pm	Sm	K	pente	Qmax (Vs)	Vmex (m/s)	Tc (mn)	Lineaire	5 Voine	S cumul V	SEV	S cumul EV	C	Q (lis
								Impluvium	théorig	ae - RV	routier	type	M-contract of the contract of		Case IIIIIII (Case		W - 5.47 - 5.47					
															3							
						1.50	0.75	0.19	1.55	0.14	70	1.70%	265	1.86	3.71	67	1485.614	1485.61	323.41	323.408	0.87	107
500			1								70	1.70%	482	2.60	5.06	180	3991.203	5476.82	868.86	1192.27	0.87	327
600)			13	70	1.70%	784	2.94	5.88	122	2705.149	8181.97	588.89	1781.16	0.87	447
600											70	1.70%	784	2.94	7.62	261	5787.244	13969.2	1259.8	3041	0.87	653
	500 600	Ø L gueule 500 600	500 600	D L gueule L fond H hauteur 500 600	Device Lifered Historical Literature Literature Signature Signatur	D L gueule L fond H hauteur L largeur H hauteur 500 600	Ø L gueule L fond H hauteur L largeur H hauteur L gueule 500 1.50 600 1.50		Description Description		Description Content Content	Company Comp	Description Content	Company Comp	Description Colored Colored	Company Comp	Company Comp	Compact Comp	Company Comp	Company Comp	Company Comp	Company Comp

7.50		25	G.		1 8	36	36	55											2 56		
B	retelle d'entrée									-				3				100100000			
	E 02.5 - E 12	300								70	6.00%	232	3.48	4.02	180	1697	1697	258	258	0.91	114
- 3	E 12 - E 14.5	300		1						70	3.70%	182	2.73	4.41	55	395	2092	0	258	0.92	132

Bretelle sortie			0					177.55			3	127						
S 15.5 - S 06	400						70	6.00%	499	4.21	3.88	190	1206	1206	0	0	1,00	79
S 06 - S 04.5	400		3				70	1.27%	230	1.94	4.17	28	434	1640	0	0	1.00	103
Branche Sud-Ouest											3							7
E 11 - E 14.5	300	- 2		0			70	1.70%	123	1.85	3.85	80	1437	1437	0	0	1.00	95
Demi-traversée de la bretelle	300						70	1.00%	95	1.42	3.96	8	0	1437	0	0	1.00	93
E 14.5 - Traversée	500						70	1.50%	453	2.44	5.71	162	3441	6970	0	258	0.98	367
Traversée Sud -> Nord	600		3		1		70	0.50%	425	1.59	6.08	30	0	6970	0	258	0.98	354
demi traversée de la bretelle	800		8				70	0.60%	1003	2.11	7.69	8	0	20939.2	0	3299	0.90	957
Entrée bassin	800				T .		70	0.70%	1083	2.28	7.81	14	0	22579.2	0	3299	0.91	1019

| Mai 2022 | A | 14/16

Calcul-Collecte_Varizelle_Boutheon_Calculs(Q10 et Q25)_B-FGT.xlsx Imp-2-Q10-Bouthéon

Pas de temps

Calcul d'assainissement sur la plateforme
Impluvium n°1 : Barreau + giratoire

Coefficient montana

Station Meteo
Période de retour

10 ans

	Taile collect	eur en mr	n, fossé	caniveau e	en metre																		
	Collecteur		Fosse		Cani	veau		Cunette															
	0	Ligueule	L fond	H hauteur	Llargeur	H houtour	L gueule	L axe	H hauteur	Pm	Sm	K	pente	Omax (I/s)	Vmax (m/s)	Te (mn)	Lineaire	S Voirie	S cumul V	SEV	S cumul EV	C	Q(l/s)
				acceptation to the second	14.000		Para Carlotti Carlo		Impluviun	i théorig	ue - BV	routie	type	112 112 114 115		A STATE OF THE PARTY OF THE PAR	re-dimension			and seems			allie-ing-time
Branche Nord-Ouest																3							
Giratoire PtHaut - PtBas	300		Ų.									70	0.50%	67	1.00	3.90	46	497	497	0	0	1.00	27
Giratoire PtBas - Bretelle	300											70	1.00%	95	1.42	4.13	17	774	1271	0	0	1.00	68
Traversée bretelle	400											70	1.00%	204	1.72	4.45	28	0	2991	0	0	1.00	152
Entrée bassin	500		2	9 8		5			1			70	1.00%	370	2.00	4.54	8.5	0	5470	0	0	1.00	276
,			-																				
	3.500	7.1																					
Branche Varizelle-Ouest																							
Branche Varizelle-Ouest																3							
Bourrellet	300											70	2.00%	134	2.01	3.47	48	501	501	0	0	1.00	30
Traversée RN Existante	300											.70	0.40%	60	0.90	3.73	12	365	866	0	0	1.00	49
surface giratoire	300											70	0.40%	60	0.90	4.10	17	0	866	.0	0	1.00	46

6 min - 2 h

Branche Sud-Est			33	1			9.85				3	9					1	3
B02.5 · OuvrageD	300		- 5				70	6.80%	247	3.70	3.28	52	297	297	0	0	1.00	18
OuvrageD - OuvrageF	300						70	6.80%	247	3.70	3.57	55	250	547	.0	Ω	1.00	32
OuwrageF - B09.6	300		9			1	70	5.80%	228	3.42	3,77	36	135	682	0	0	1.00	38
demi traversée de la bretelle	300		- 1				70	2.00%	134	2.01	3.87	10	0	682	0	0	1.00	38
B09.5 - B12.5	300						70	5.10%	214	3.21	4.22	57	610	1720	0	0	1.00	91

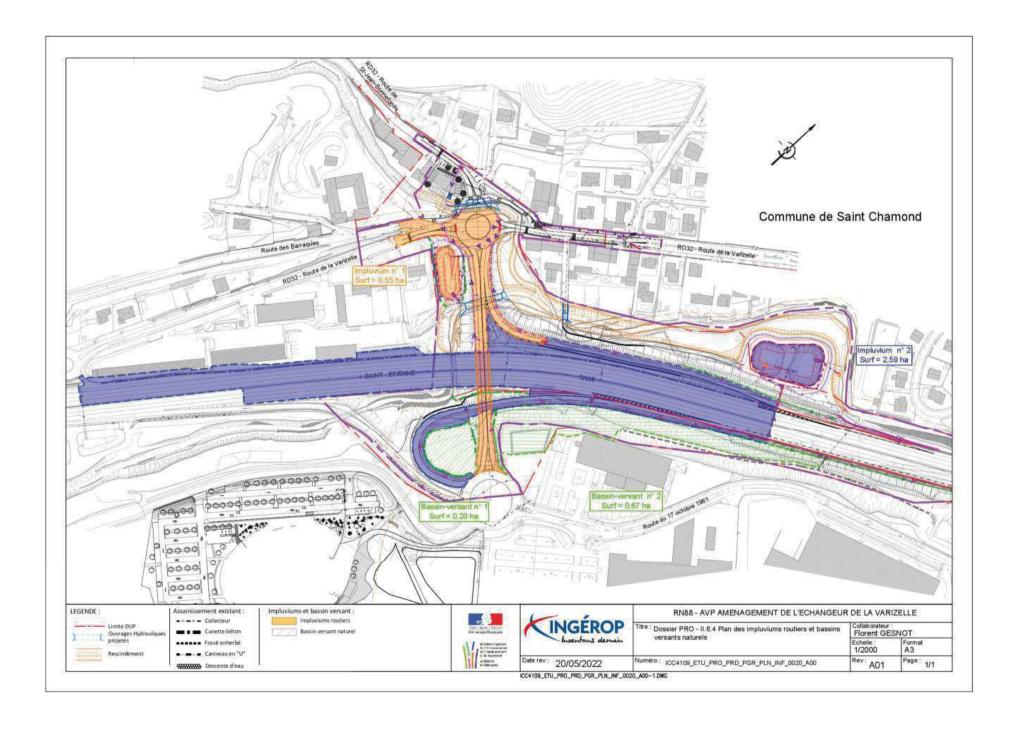
Branche Sud-Ouest														3							
B02.5 - OuvrageD	1 200/42			0.20	0.20			0.60	0.04	70	6.80%	120	3.00	3.29	45	468	468	0	0	1.00	29
OuvrageD - OuvrageF	300									70	6.80%	247	3.70	3.59	55	396	864	0	.0	1.00	50
OuvrageF - B012.5	300									70	5.80%	228	3.42	4.11	92	749	1613	-	0	1.00	86
						3								0							
bretelle sortie														3							
B02.5 - B05	300	6	1						1 0	70	6.80%	247	3.70	3.29	54	428	428	0	0	1.00	26

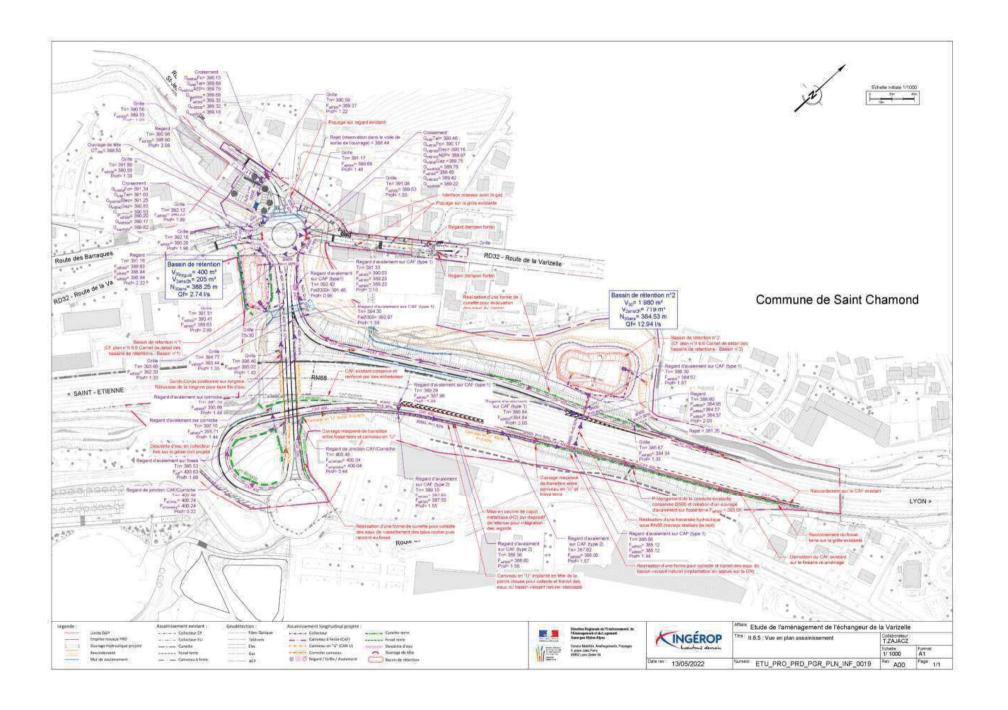
Mai 2022 A 15 / 16

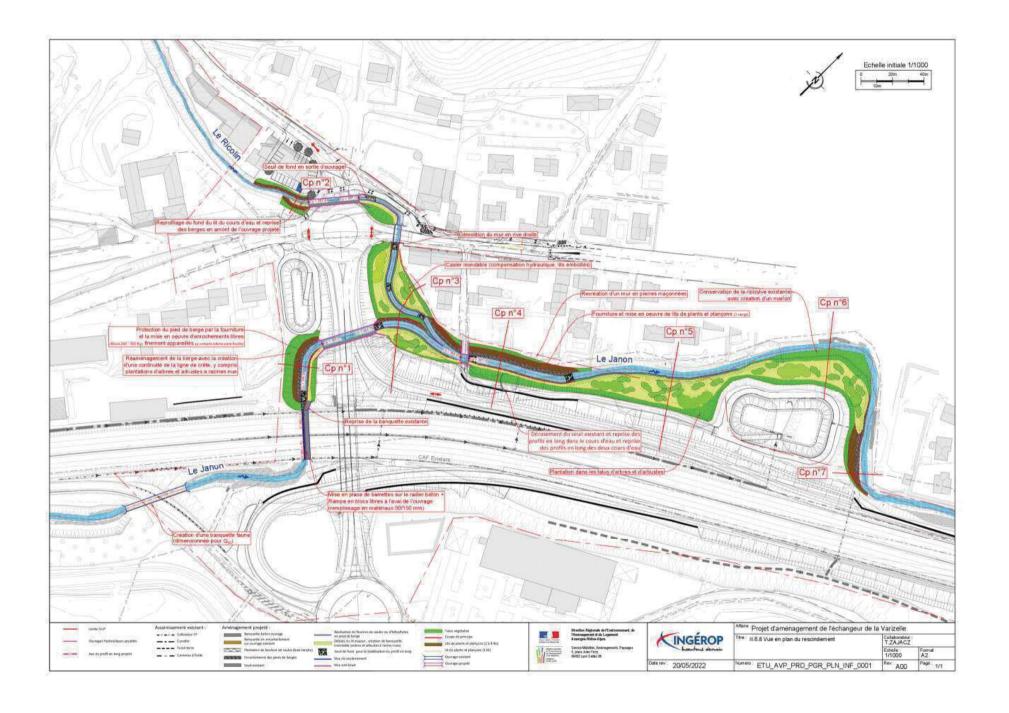
coefficient EV

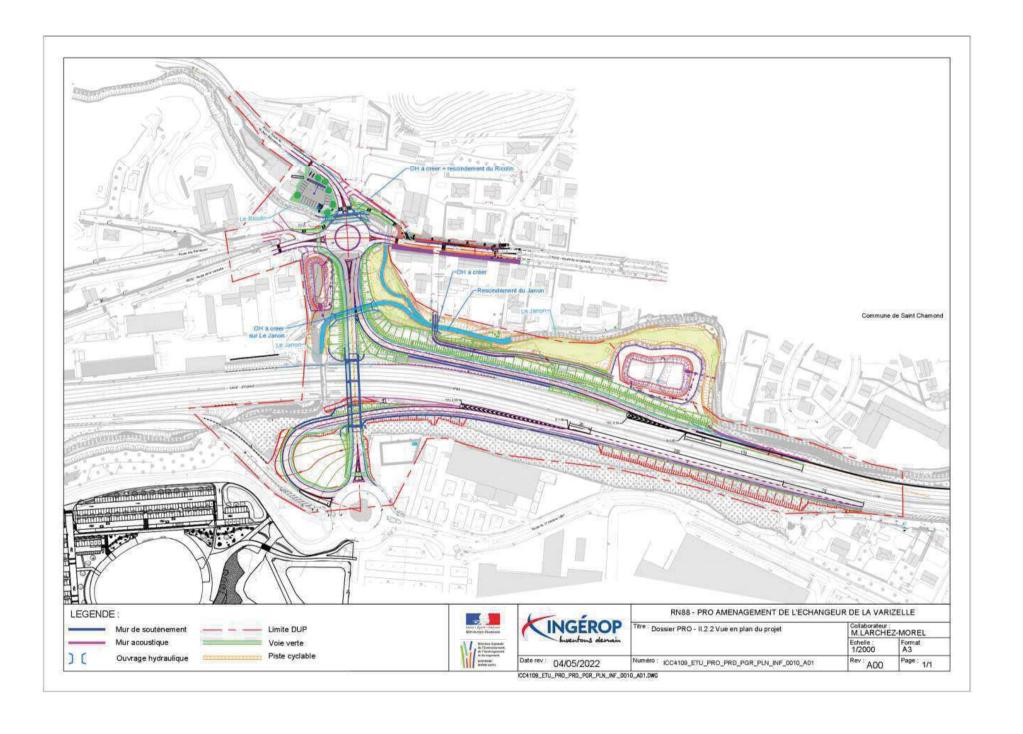
Pente 3/2

Calcul-Collecte_Varizelle_Boutheon_Calculs(Q10 et Q25)_B-FGT.xlsx Imp-2-Q30-Boutheon


Calcul d'assainissement sur la plateforme Coefficient montana Station Meteo b -0.596 coefficient EV Impluvium nº1 : Barreau + giratoire Bouthéon (42) a 8.836 30 ans Pente 3/2 Période de refour Pas de temps 6 min - 2 h Taille collecteur en mm, fossé caniveau en metre Collecteur Fossé Caniveau Cunette B Lgueule Lifond Hhauteur Llargeur Hhauteur Lgueule Laue Hhauteur Pm Sm K pente Qmax(lis) Vmax(mb) Tc (mn) Lineaire S voinie S cumul V S EV S cumul EV C Q (lis) Branche Nord-Ouest Giratoire PtHaut - PtBas 300 0.50% 1.00 3.90 497 497 1.00 33 17 300 70 1.00% 95 1.42 4.13 774 1271 0 0 1.00 80 Giratoire PtBas - Bretelle 1.72 4.45 28 Traversée bretelle 400 70 1.00% 204 0 2991 0 0 1.00 181 5470 500 70 1.00% 370 2.00 4.54 0 1.00 Entrée bassin Branche Varizelle-Ouest 300 70 2.00% 134 2.01 3.47 48 501 501 0: 0: 1.00 35 Bourrellet Traversée RN Existante 300 0.40% 60 0.90 3.73 12 365 866 0 1.00 58 300 0.40% 60 0.90 4.10 0 866 1.00 55 surface giratoire Branche Sud-Est 300 6.80% 247 3.70 3.28 297 297 1.00 22 B02.5 - OuvrageD 300 55 OuvrageD - OuvrageF 6.80% 247 3.70 3.57 250 547 0 0 1.00 38 OuvrageF - B09.6 300 70 5,80% 228 3.42 3.77 36 135 682 0 0 1.00 46 300 134 2.01 3.87 10 45 demi traversée de la bretelle 70 2.00% 0 682 0 1.00 300 214 3.21 4.22 57 610 1720 0 1.00 107 70 5.10% 0 B09.5 - B12.5 Branche Sud-Ouest B02.5 - OuvrageD 0.20 0.20 6,80% 120 3.00 3.29 468 468 1.00 34 45 300 247 3.59 396 864 59 6.80% 3.70 1.00 OuvrageD - OuvrageF 300 3.42 749 1613 1.00 102 5.80% OuvrageF - B012.5 4.11




B02.5 - B05


| Mai 2022 | A | 16 / 16

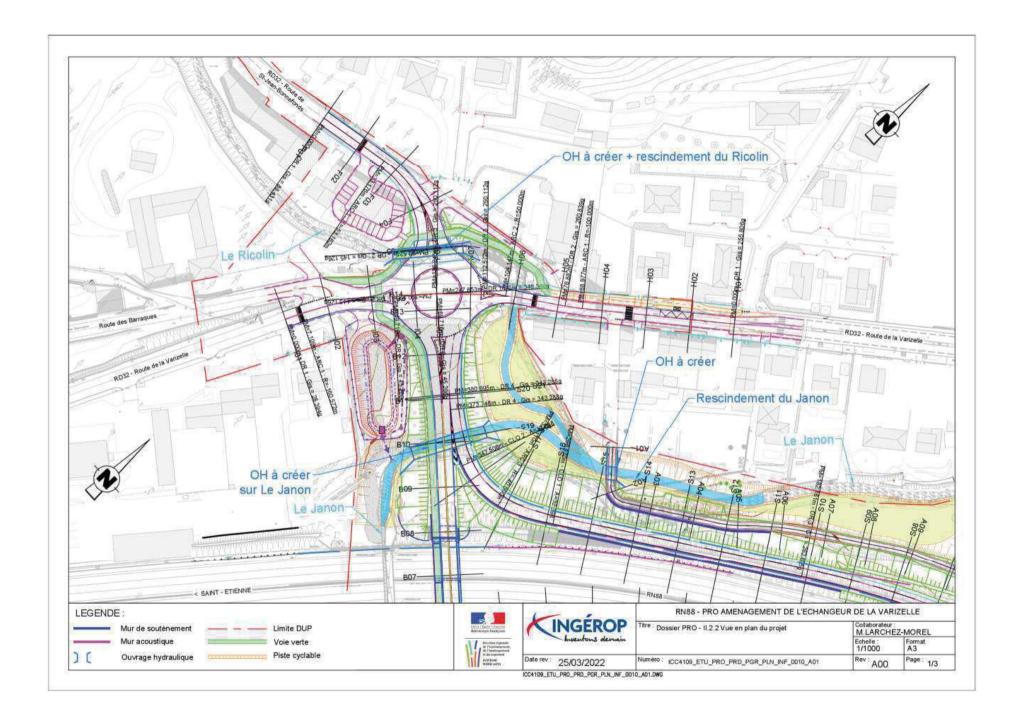
Maître d'ouvrage :

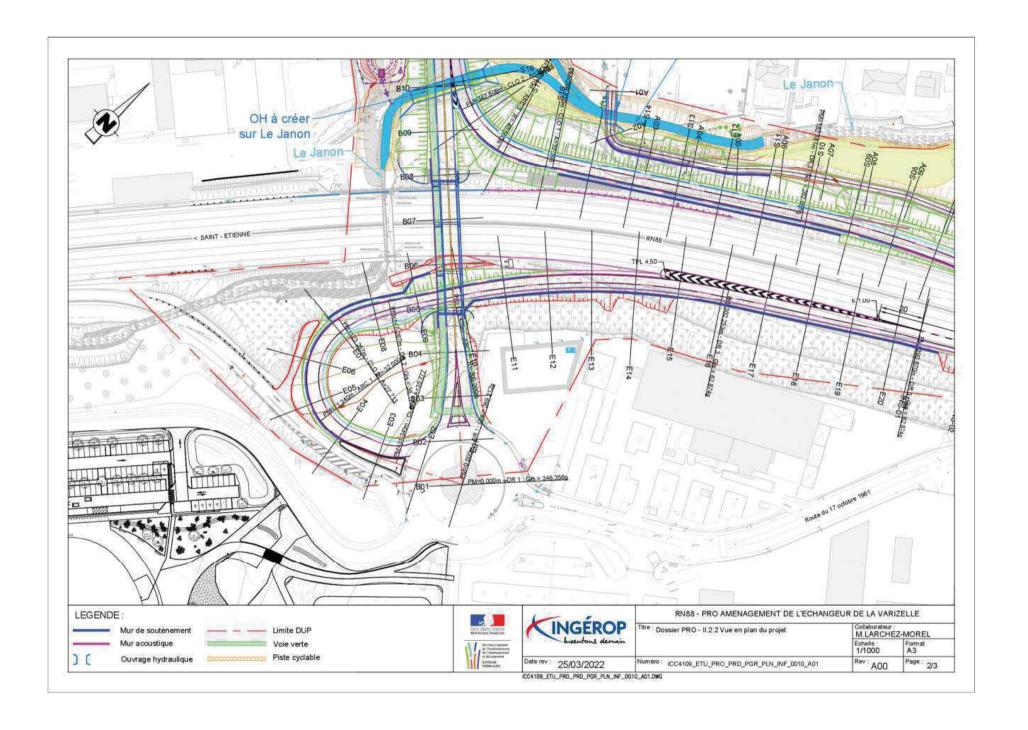
La Direction Régionale de l'Environnement, de l'Aménagement et du Logement Auvergne-Rhône-Alpes

ROUTE NATIONALE 88 AMENAGEMENT DE L'ECHANGEUR DE LA VARIZELLE

PROJET

II.2.2 VUE EN PLAN DU PROJET


Maître d'oeuvre :




Indice	Date :	Modifications :	Etabil par :	Verifie par :	Contrôlé par :
Α	25/03/2022	Première èdition	M.LARCHEZ-MOREL	F. CHANEL	R. SAUNIER

Reference AGORA: ICC4109_ETU_PRO_PRD_PGR_PLN_INF_0010_A01

Fichier : ICC4109_ETU_PRO_PRD_PGR_PLN_INF_0010_A01

ANNEXE 7 : SIMULATION ACOUSTIQUE D'ÉCRANS PROVISOIRES

Etude acoustique relative à l'implantation d'une protection temporaire en phase chantier dans le cadre du projet d'aménagement d'un échangeur à Saint-Chamond (42)

22-20-60-01602-02-A-YTI

Votre interlocuteur VENATHEC Yann TISCHMACHER ydschmachergivenichec.com 04 76 14 06 73 ENGEROP Mine Virginie THEE, virginie thield-ingerop.com 04 74 53 61 89

Acoustique Environnementale

	Client
	INGERÓP
Interlocuteur	Mme Virginie THIEL
	0474538189
	virginie.thiet@ingerop.com

	Diffusion
Version:	A
Elotei	13 janvier 2023

VENATHEC 22-20-66-03602-02-A-YTI Echangeur de 5t Chamond (42) - Phase chantier

La diffusion ou la reproduction de ce document n'est autorisée que sous la forme d'un fac-similé comprenant 16 pages. Rédigé par Yann TISCHMACHER, transmis le 13/01/2023.

Table des matières

1	IN	TRODUCTION	
2	CO	NTEXTE REGLEMENTAIRE ET NORMATIF	4
2	1	Réglementation	
2	2	Normes	6
2.	.3	Autres référentiels	0
3	MC	DELISATION DU SECTEUR D'ETUDE	
3.	1	Logiciel de simulation	
3.	2	Hypothèses de calcut.	
3.	.3	Scénarios étudiés.	5
3.	4	Niveaux sonores calculés aux points de l'étude	5
3.	.5	Cartographies sonores.	12
1	co	NICLUSION	14

1 INTRODUCTION

Le présent document s'inscrit dans le cadre des études d'impact du projet d'aménagement d'un échangeur à Saint-Chamond (42)

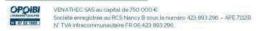
Dans le cadre de ces études. INGEROP a missionne le bureau d'études en acoustique VENATHEC pour la réalisation de l'étude acoustique de la suppression d'un merton et de la mise en place d'un écran de protection temporaire lors de la phase chantier du projet.

L'objectif de la présente étude n'est pas une analyse réglementaire, mais une estimation du niveau sonore en phase chantier sulte à la suppression du merlon, et suite à la mise en place d'un écran de protection temporaire en substitution. L'étude d'impact acoustique réglementaire du projet a fait l'objet d'un précédent rapport reférence 21-20-60-01602-01-B-YTI

Lacalisation du secteur d'étude

Page 3 tur 16

Aucune analyse réglementaire n'est effectuée dans le cadre de cette étude


L'objectif de cette étude est de déterminer l'ambiance sonore issue de la contribution des infrastructures routières pendant la phase projet. Or, les seuils réglementaires sont à analyser à l'horizon 20 ans après la mise en service du projet. Ces analyses ont fait l'objet d'un rapport référence 21-20-60-01602-01-B-YTI et ont permis de conclure que le projet respecte les réglementations sur la construction et la modification d'infrastructures routières.

Une liste générale des réglementations et normes pouvant s'appliquer à ce type de projet est donnée ci-après.

2.1 Reglementation

Dans le cadre du projet, les textes réglementaires suivants peuvent s'appliquer

- Loi du 31 décembre 1992 relative à la lutte contre le bruit, article 15, comptétée par le décret d'application du 9 janvier 1995 et l'arrêté du 5 mai 1995 (infrastructures routières)
- Code de l'environnement (livre V, titre VI), reprenant tous les textes relatifs au bruit et notamment les articles L571-9 et R571-44 à R571-52 du Code de l'Environnement
- Directive européenne 2002/49/CE, du 25 juin 2002, relative à l'évaluation et la gestion du bruit dans l'environnement.
- Directive européenne 2020/367, du 4 mars 2020, modifiant l'annexe III de la directive 2002/49/CE du Parlement européen et du conseil relatif à l'établissement de méthodes d'évaluation des effets nuisibles du bruit dans l'environnement
- Articles L571-9 et R571-44 à R571-52 du Code de l'Environnement.
- Décret n'2006-1110 du 11 août 2016 relatif à la modification des règles applicables à l'évaluation environnementaie des projets, plans et programmes
- Circulaire du 15 décembre 1992 relative à la conduite des grands projets nationaux d'infrastructures
- Circulaire du 25 mai 2004 relative aux nouvelles instructions à suivre concernant le recensement des Points Noirs Bruit des transports terrestres et les opérations de résorptions de ces PNB
- Circulaire du 12 juin 2001 relative à l'observatoire du bruit des transports terrestres et à la résorption des points noirs du bruit des transports terrestres
- Décret n° 2002-867 du 3 mai 2002 (et l'arrêté de la même date), précisant les modalités de subventions accordées par l'Etat concernant les opérations d'isolation acoustique des Points Noirs Bruit des réseaux routiers et ferroviaires nationaux
- Décret n°2006-1099 relatif à la lutte contre le bruit de voisinage du 31 août 2006.
- Arrêté du 5 décembre 2006 relatif aux modalités de mesurage des bruits de voisinage, modifié par l'arrêté du 1^{er} août 2013
- Décret 95-22 du 9 janvier 1995 relatif à la limitation du bruit des aménagements et infrastructures de transports terrestres
- Circulaire n° 97-110 du 12 décembre 1997 relative à la prise en compte du bruit dans la construction de routes nouvelles ou l'amenagement de routes existantes du réseau national
- Arrêté du 5 mai 1995 relatif au bruit des infrastructures routières

VENATHEC 22-20-60-01802-02-A-YTI Echangeur de St Chamond (42) - Phase chantier

2.2 Normes

2.2.1 Matériel

- Norme NF EN 61672-1 (2003) Electroacoustique Sonomètres Partie 1 spécifications
- Norme NF EN 60942 (2003): Electroacoustique Calibreurs acoustiques

2.2.2 Mesurage

- Norme NF S 31-010 : Caractérisation et mesurage des bruits de l'environnement
- Norme NF S 31-110. Caractérisation et mesurage des bruits de l'environnement Grandeurs fondamentales et méthodes générales d'évaluation
- Norme NF S 31-120: Caractérisation et mesurage des bruits de l'environnement Influence du sol et des conditions météorologiques
- Norme NF EN ISO 3741 (2012): Détermination des niveaux de puissance acoustique et des niveaux d'énergie acoustique émis par les sources de bruit à partir de la pression acoustique
- Norme NF S 31-085: Caractérisation et mesurage du bruit du au trafic routier

2.2.3 Calculs

- Norme ISO 9613: Atténuation du son lors de sa propagation à l'air libre
- Norme NF S 31-131 : Descriptif technique des logiciels
- Norme NF S 31-132: Méthodes de prévision du bruit des infrastructures de transports terrestres en milleu extérieur.
- Norme NF S 31-133: Bruit dans l'environnement Calcul de niveaux sonores.
- Norme NF S 31-130 de décembre 2008: Cartographie du bruit en milleu extérieur Elaboration des cartes et représentation graphique.

2.3 Autres référentiels

- Note d'information du Service d'Etudes Techniques des Routes et Autoroutes (Sétra) Calcul prévisionnel de bruit routier - Avril 2007
- Guide Sétra/Certu Bruit et études routières Manuel du chef de projet Octobre 2001

3.1 Logiciel de simulation

Toutes les simulations numériques ont été réalisées sur le logiciel CADNAA de chez DATAKUSTIC, logiciel d'acoustique environnementale.

Les logiciels de propagation environnementale sont des logiciels d'acoustique prévisionnelle basés sur des modélisations des sources et des sites de propagation, et sont destinés à décrire quantitativement des répartitions sonores pour des classes de situations données.

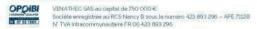
Ils permettent de modéliser la propagation acoustique en extérieur de tout type de sources de bruit en tenant compte des paramétres les plus influents, tels que la topographie, le bâti, les écrans, la nature du sol ou encore les conditions météorologiques.

La modélisation est effectuée à partir de la norme NF S 31-133 « Acoustique – Bruit des infrastructures de transports terrestres – Calcul de l'atténuation du son lors de sa propagation en milieu extérieur, incluant les effets météorologiques », complétée par la méthode NMPB 2008 développée par le SETRA, en collaboration avec le CSTR.

3.2 Hypothèses de calcul

Nous considérons que les infrastructures de transport constituent les sources principales de bruit sur le périmètre de l'étude

Pour le calcul, notre logiciel prend en compte les paramètres suivants


- Topographie du site.
- Bátiments.
- Conditions météorologiques,
- Trafic routier:
- Vitesse de circulation sur les différents secteurs du projet,
- Type de revêtement de chaussée, la granulométrie et l'année de realisation.

Le modète de calcul réalisé dans le cadre de l'étude d'impact du projet a été réutilisé pour cette étude.

3.2.1 Paramètres généraux de calcul

Les paramètres généraux de calcul suivants ont été pris en compte dans le modèle :

- Parametres météo correspondant aux données moyennes annuelles sur la région ;
- Absorption au sol: 0.6;
- Nombre de réflexions 5
- Absorption des bâtiments : 0.01 ;
- Hygrométrie de 70 % ;
- Cartographie acoustique : maillage de 10m x 10m, à une hauteur de 4m du sol.

3.2.2 Topographies

Les données topographiques utilisées proviennent de la BDTOPO de l'IGN.

Ces données ont été complétées par un fichier DWG transmis par INGEROP, représentant la topographie du site en l'absence de merton lors de la phase chantier.

VENATHEC 22-20-60-01602-02-A-YTI Echangeur de St Chamond (42) - Phase chantier

3.2.3 Trafics routiers

Les trafics routiers utilisés sont identiques à ceux qui ont été utilisés lors de l'étude d'impact du projet. Il a été retenu l'horizon 2023 sans projet pour la réalisation de cette étude.

Ces trafics sont récapitulés dans le tableau ci-dessous

Axe routier	Trafic en véh/h		Vitesse
	6h-22h	zzh-6h	(km/h)
RN88 - Entre echangeurs 16 et 17, à l'Ouest de Pont de Rivaud	4518	475	90
RN88 - Sud de l'echangeur 17	5035	530	110/90
Route de la Varizelle	450	100	50
Route du 17 octobre 1961	878	195	50
Echangeur 17 - Sortie depuis St-Etienne	371	83	70
Route Saint-Jean Bonnefonds	219	49	50

3.2.4 Ecran acoustique

Lors de la phase chantier, en substitution du merlon existant, il est prévu la réalisation d'un écran acoustique temporaire.

A ce jour, les caractéristiques techniques de cet écran ne sont pas connues. Pour l'étude, les caractéristiques cidessous ont été prises en compte. Deux hauteurs d'écran différentes sont testées.

- Longueur : 420m ;
- Hauteurs: 170m (variante 1) et 2:30m (variante 2);
- Coefficient d'absorption acoustique α_w = 0.01;
- Affaiblissement acoustique RA ≥ 25 dB

Le linéaire de l'écran acoustique temporaire est représenté en bleu sur l'illustration ci-dessous :

Remarque; il a été pris en compte un ecran réfléchissant, permettant l'utilisation de panneaux en PMMA transparent ou équivaient, ou d'une bâche acoustique avec un affaiblissement acoustique RA ≥ 25 dB. En l'absence de logements au sud de la RN88 sur la portion étudiée. L'absence de traitement absorbant n'est pas problématique.

Page 7 sur 16

3.3 Scenarios étudiés

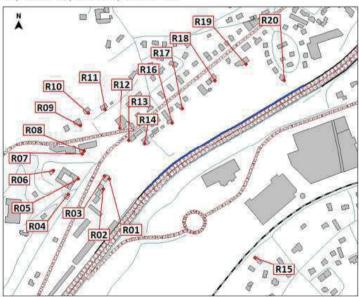
Quatre scenarios seront étudiés :

- Situation avec la topographie actuelle :
- Situation avec suppression du merion existant, sans écran acoustique ;
- Situation avec suppression du merlon existant et mise en place d'un écran acoustique de 1.70m;
- Situation avec suppression du merion existant et mise en place d'un écran acoustique de 2.30m.

Remarques:

- La suppression du merlon existant s'accompagne de la suppression d'une partie des écrans existants de chaque côté du merlon.
- Dans la situation avec la topographie actuelle, la vitesse prise en compte sur la RN88 est de 110km/h contre 90km/h pour les situations en phase chantier (sans merlon, avec ou sans écran temporaire).

3.4 Niveaux sonores calculés aux points de l'étude


3.41 Localization des points de calcul

Une analyse spécifique est réalisée en façades des habitations existantes potentiellement impactées.

Les points se situent tous à 2 mêtres en avant des façades, à une hauteur de 1,5m du sol pour les RdC, et à une hauteur de 4,5m du sol pour les R+1. Ils sont repérés en rouge sur l'illustration ci-dessous, numérotés de RO1 à R19.

Ces points de calculs sont identiques à ceux utilisés dans le cadre de l'étude d'impact du projet.

L'écran de protection temporaire est représenté en bleu.

Page 9 sur 16

3.4.2 Résultats calculés aux points de calculs - Ecran de h=1.7m

Les résultats calculés aux points récepteurs sont présentés dans le tableau ci-dessous.

Les valeurs calculées en façade des bâtiments ne donnant pas directement sur la RN88 ont été grisées, et mises en italique:

					Niveaux LAng	en dBA				
		hie initiale merlan)	Phase charitier Sans merlon - Sans écran		Phase charitier Sans merlon - Avec &cran		Gain apporté par l'écran par rapport à la situation sans protection en phase chantier		Ecart entre les situations actuelle et phase chantier avec écran	
	Jour	Nuit	Jour	Nuit	Jour	Nuit	Jour	Nuit	Jour	Nut
RO1 RdC	60,5	52,0	60,5	52,0	60,5	51,5	0,0	0,5	0,0	0,5
RO2 RdC	61,0	52,0	60,0	51,5	60,0	51,5	0,0	0,0	-1,0	-0,5
RO3 RdC	60,0	53,0	80,0	53,0	60.0	53,0	0,0	0,0	0,0	0,0
RO4 RdC	59,0	57,0	59,0	51,0	59,0	51,0	0,0	0,0	0,0	0,0
R04 R+1	60,5	53,0	80,5	53,0	60,5	52,5	0,0	0,5	0,0	-0,5
ROS RdC	60,5	53,0	60,5	32,5	80,0	52,5	0,5	0,0	:0,5	-0,5
RO5 R+1	62,5	55,0	62,5	55,0	62,5	55,0	0,0	0,0	0,0	0,0
NUS K+2	63/2	50,5	63,3	30,0	6350	30,0	0,5	0,0	-950	300
ROS RSC	55,0	46,5	55,5	47,0	55,0	46,5	0,5	0,5	0,0	0,0
ROS R+1	56,5	48,0	57,0	48,5	56,5	48,0	0,5	0,5	0,0	0,0
RD7 RdC	56,0	48,5	57,0	49,0	56,0	48,5	1,0	0,5	0,0	0,0
RO7 R+1	59,0	51,5	59,5	51,5	58,5	51,0	1,0	0,5	-0,5	10,5
ROB RUC	57,5	50.5	59,0	51,5	58,0	50,5	1,0	7,0	0,5	0,0
ROB R+1	67,0	53,5	62,0	54,0	61,0	53,5	1,0	0,5	0,0	0,0
ROS ROC	57,0	50,0	58,0	50,5	57,0	50,0	1,0	0,5	0.0	0.0
ROP R+1	60,0	52,5	60,5	53,0	60.0	52.5	0,5	0,5	0,0	0,0
R10 RdC	58,0	50,5	59,5	51,5	58,5	50,5	1,0	1,0	0,5	0,0
R10 R+1	58,5	51,0	60,5	52,5	59,0	57,5	1,5	1,0	0,5	0,5
R11 RHC	59,0	51,0	60,0	50,0	59,0	51,0	1,0	1,0	0,0	0,0
R11R+1	60,0	52,0	87,0	53,0	60,0	52,5	1,0	0,5	0,0	0,5
R12 RdC	62,5	55,5	62,5	58,5	62.0	35,5	0,5	0,0	.0,5	0,0
R12R+1	63,0	56,0	63,5	56,5	63,0	56,0	0,5	0,5	0,0	0,0
RT3 RdC	62.5	55,5	62,5	55,5	620	55,0	0,5	0,5	-0,5	-0,5
R13 R+1	63,5	56,5	54,0	56,5	63,5	56,0	0,5	0,5	0,0	-0,5
R14 RdC	59,5	51,5	0,08	51,5	58,5	50,5	1,5	1,01	1,0	-120
R14 R+1	60,0	51,5	63,5	54,5	60,5	52,0	3,0	2,5	0,5	0,5
R15 RdC	58,5	50,5	57,5	49,5	57,0	49.5	0,5	0,0	-1,5	+1,0
R15R+1	59,5	51,5	58,5	50,5	58,5	50,5	0,0	0,0	-1,0	+1,0
R16 RdC	59,5	51,0	61,5	52,5	59,5	50,5	2,0	2,0	0,0	-0,5
R16 R+1	50,5	51,0	65,0	55,5	81,0	50,0	4,0	9,5	1,5	1,0
R17 RdC	58,5	50,0	61,0	52;0	58,5	50,0	2,5	2,0	0,0	0,0
R17 R+1	59,0	51,0	63,0	54,0	60,0	51,5	3,0	2,5	1,0	0,5
R18 RdC	58,5	50,0	60,5	52,0	58,5	49,5	2,0	2,5	0,0	0,5
R18 R+1	58,0	49,5	63,0	54,0	60,5	51,5	2,5	2,5	2,5	2,0
R19 RdC	59,5	50,5	61,5	52,5	59,5	51,0	2,0	1,5	0,0	0,5
R19 R+1	60,0	51,5	63,5	54,0	61,0	52,0	2,5	2,0	1,0	.0,5
R20 RdC	61,5	52,5	66,0	56,5	62,5	53,5	3,5	3,0	1,0	1,0
R20 R+1	62,0	53,0	68,0	58,0	63,0	54,0	5,0	4,0	1,0	1.0

En phase chantier, la vitesse circulée sur la RN88 est de 90km/h sur le tronçon étudie. Cette vitesse est actuellement de 110km/h, c'est cette vitesse qui est prise en compte dans la modélisation de la topographie initiale avec merlon.

Malgré cette baisse de vitesse, la suppression du merlon génère des hausses du niveau de bruit en façade des habitations les plus exposées pouvant atteindre 5 dBA (R18).

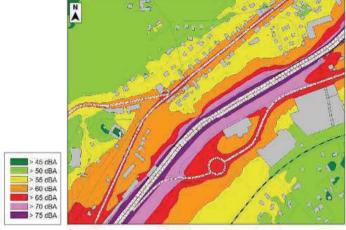
La mise en place d'un écran acoustique de 1,7m de hauteur sur tout le linéaire du merlon actuel permet un gain de l'ordre de 1 à 5 dBA en façade des logements les plus exposés.

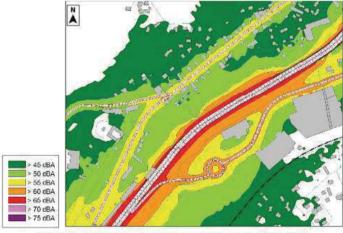
Les valeurs calculées en façade des bâtiments ne donnant pas directement sur la RN88 ont été grisées, et mises en italique.

	Niveaux LAeq en dBA									
	Topographie initiale (avec mertori)		Phose charitier Sans merlon - Sans écran		Phase charitier Sans merlon - Avec &cran		Gain apporté par l'écran par rapport à la situation sans protection en phase chantier		Ecart entre les situatio actuelle et phase chantier avec écran	
	Jour	Nuit	Jour	Nuit	Jour	Nuit	Jour	Nuit	Jour	Nuit
RO1 RdC	60,5	52,0	60,5	52,0	60,0	51,0	0,5	1,0	-0,5	-1,0
RO2 RdC	61,0	52,0	60,0	51,5	0,03	51,5	0,0	0,0	-1,0	-0,5
RO3 RdC	60,0	53,0	80,0	53,0	59,5	52,5	0,5	0,5	-0,5	-0,5
RO4 RHC	59,0	51,0	59,0	51,0	58,5	51,0	0,5	0,0	-0,5	0,0
R04 R+1	60,5	53,0	60,5	53,0	80,5	52,5	0,0	0,5	0,0	-0,5
ROS RdC	60,5	53,0	60,5	52,5	60,0	52,5	0,5	0,0	-0,5	-0,5
RO5 R+1	62,5	55,0	62,5	55,0	62,0	54,5	0,5	0,5	-0,5	-0,5
AUD NEW	03,3	20,0	63,5	30,3	6350	35,0	US	0,5	-050	-0,5
ROS RSC	55,0	46,5	55,5	47,0	55,0	46,5	0,5	0,5	0,0	0,0
ROS R+1	56,5	48,0	57,0	48,5	56,5	49,0	0,5	0,5	0,0	0,0
RD7 RdC	56,0	48,5	57,0	49,0	55,5	48,0	1,5	1,0	-0,5	-0,5
RO7 R+1	59,0	51,5	59,5	51,5	58,5	51,0	1,0	0,5	-0,5	-0,5
ROB RUC	57,5	50,5	59,0	51,5	57,5	50,0	1,5	1,5	0,0	-0,5
ROB R+1	61,0	53,5	62,0	54,0	60,5	53,0	1,5	1,0	-0,5	-0,5
ROP RAC	57,0	50,0	58,0	50,5	57,0	49,5	1,0	1,0	0,0	-0,5
RO9 R+1	60,0	52,5	60,5	53,0	59,5	52,5	1,0	0,5	-0,5	0,0
RIORUC	58,0	50,5	59,5	51,5	57,5	50,0	2,0	1,5	-0,5	-0,5
R10R+1	58,5	51,0	60,5	52,5	58,5	51,0	2,0	1,5	0,0	0,0
RITROC.	59,0	51,0	60,0	50,0	58,0	50,5	2.0	1,5	-1,0	-0,5
R11R+1	60,0	52,0	51,0	53,0	59,5	52,0	1,5	1,0	-0,5	0,0
R12 RHC	62.5	55,5	62.5	55,5	62.0	55,0	0.5	0,5	-0.5	-0.5
R12R+1	63,0	56,0	63,5	56,5	63,0	56,0	0,5	0,5	0,0	0,0
R13-R6C	62,5	55.5	62,5	55,5	62.0	55.0	0.5	0,5	-0.5	-0.5
R13 R+1	63.5	56.5	64,0	56.5	63.0	56.0	1.0	0.5	-0.5	-0.5
R14 RdC	59,5	51,5	60,0	51,5	58,5	50,0	1,5	1,5	-1,0	-1,5
R14 R+1	60,0	51,5	63.5	54.5	60.0	51,5	3,5	3,0	0.0	0.0
R15 RdC	58,5	50,5	57,5	49,5	57,5	49,5	0,0	0,0	-1,0	-1,0
R15R+1	59,5	51,5	58.5	50,5	58,5	50,5	0.0	0,0	-1,0	-1.0
R16 RdC	59,5	51,0	61.5	52,5	58,5	50.0	3,0	2.5	-1.0	-1.0
R16 R+1	50,5	51.0	65.0	55.5	69.6	50,5	5.5	5.0	0,0	0,5
R17 RdC	58,5	50,0	61,0	52,0	58,0	49,5	3,0	2,5	0,5	-0,5
R17 R+1	59,0	51,0	63,0	54,0	59,0	50,5	4,0	3,5	0,0	-0,5
R18 RdC	58,5	50,0	60,5	52,0	58,0	49,5	2,5	2,5	-0,5	-0,5
R18 R+1	58.0	49.5	63,0	54,0	59,5	50.5	3,5	3,5	1,5	1.0
R19 RdC	59,5	50,5	61,5	52,5	59,0	50,5	2,5	2,0	-0,5	0,0
R19 R+1	60,0	51.5	63,5	54,0	60,0	51,0	3,5	3.0	0.0	-0,5
R20 RdC	61,5	52,5	66,0	56,5	62,0	52,5	4.0	4.0	0,5	0,0
R20 R+1	62,0	53.0	68,0	58,0	62,0	53,0	6,0	5,0	0,0	0,0

En phase chantier, la vitesse circulée sur la RN88 est de 90km/h sur le tronçon étudie. Cette vitesse est actuellement de 110km/h, c'est cette vitesse qui est prise en compte dans la modélisation de la topographie initiale avec merton.

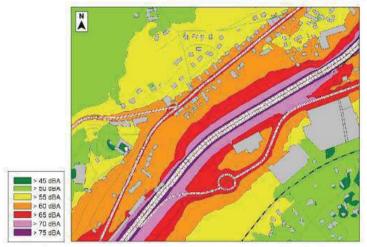
Malgré cette baisse de vitesse, la suppression du merlon génére des hausses du niveau de bruit en façade des habitations les plus exposées pouvant atteindre 5 dBA (R18).


La mise en place d'un ecran acoustique de 2.3m de hauteur sur tout le linéaire du merion actuel permet un gain de l'ordre de 2 à 6 dBA en façade des logements les plus exposés.

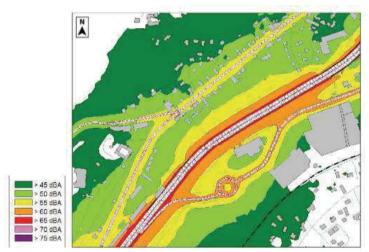

3.5 Cartographies sonores

Les cartographies de bruit sont présentées ci-après et permettent d'évaluer l'ambiance sonore pour chacune des périodes diurne (6-22h) et nocturne (22-6h) sur l'ensemble du périmètre de l'étude:

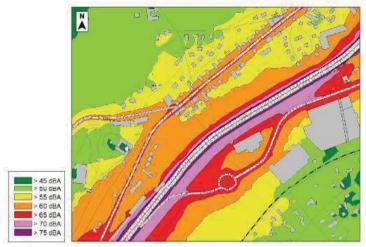
Les cartographies de bruit sont réalisées à une hauteur de 4m de haut.



Cartographie de bruit à 4m au-dessus du sol - Topographie actuelle - Période 6h-22h

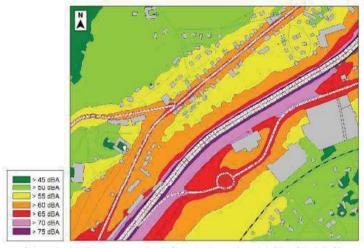


Cartographie de bruit à 4m au-dessus du sol - Topographie actuelle - Période 22h-6h

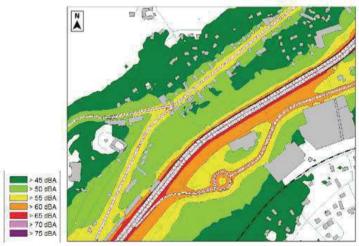

Page II sur 16

Cartagraphie de bruit à 4m au-dessus du sol - Phase chantier sans écran - Période 6h-22h

Cartographie de bruit à 4m au-dessus du sol - Phase chantier sans écran - Période 22h-6h



Cartographie de bruit à 4m au-dessus du sol - Phase chantier avec écran de h-1.7m - Période 6h-22h



Cartographie de bruit à 4m au-dessus du sol - Phase chantier avec écran de h-17m - Période 22h-6h

Page 13 tur 16

Cartographie de bruit à 4rri au-dessus du sol - Phase chantier avec écran de h-2.3m - Période 6h-22h

Cartographie de bruit à 4m au-dessus du sol - Phase chantier avec écran de h-23m - Période 22h-6h

POIB VENATHEC 5AS au capital de 750 000 € Société enregistree au RES Nancy B sous le numéro 423 893 296 - APE 7112B TYS 1880. TYS 1880. TYS 1880.

4 CONCLUSION

Dans le cadre du projet d'aménagement d'un échangeur à Saint-Chamond (42). INGEROP à missionné le bureau d'études VENATHEC afin de réaliser l'étude acoustique de la suppression d'un merton et de la mise en place d'un écran de protection temporaire lors de la phase chantier du projet.

Notons que la suppression du merion existant s'accompagne de la suppression d'une partie des écrans existants de chaque côté du merion.

L'environnement sonore actuel est modifié en phase chantier par

- Une différence de vitesse de circulation qui amène une diminution du bruit émis par l'infrastructure ;
- La suppression du merton qui génère une augmentation du niveau sonore pouvant atteindre 5 dBA en façade des habitations les plus exposées;
- La miso en couvre d'un ocran accustique de 1.7 m de haut sur l'ensemble du linéaire du merion qui permet un gain de l'ordre de:
 - 1 à 5 dBA par rapport à la situation sans merlon pour un écran de 1,7m de hauteur;
 - o 2 à 6 dBA par rapport à la situation sans merlon pour un écran de 2.3m de hauteur :

L'ensemble de ces modifications permettent de retrouver un niveau sonore en phase chantier similaire à célui actuellement présent, avec des différences de l'ordre de 1 à 2 dBA.

ANNEXE 8 : BILAN GAZ A EFFET DE SERRE

RN88

Complément du demi-échangeur de la Varizelle à Saint-Chamond

Bilan GES

PRO

28 mars 2022

Table des matières

1.	List	e des abréviations	5
2.	Élér	nents de langage et définitions	6
7.	Intr	oduction	8
1.	1.	L'évaluation carbone	8
1.	2	Les principes de l'évaluation.	9
1.	3.	Objectifs de l'évaluation	9
1	4.	Outil utilisé pour l'évaluation	10
2.	Mé	thodologie d'évaluation	11
2.	1.	Principe de calcul	11
2.	2.	Les données d'activité	11
2.	3.	Les facteurs d'émissions	11
2	4.	Les axes structurants de l'évaluation	12
	2.4.1.	Le cycle de vie de l'infrastructure	12
	2.4.2.	Les corps de métier	13
	2.4.3.	Les postes d'émissions	13
2.	5.	Les émissions véhiculaires	13
2.	6.	Période d'évaluation	14
2.	7.	Périmètre d'évaluation	15
2.	8.	Frontières de l'évaluation	15
3.	Dor	nnées d'entrée	17
3.	1.	Lo dótail quantitatif ostimatif	17
3.	2.	Les plans du projet	20
3.	3.	L'état initial de l'environnement	20
3	4.	L'étude de trafic	22
3.	5.	Les équipements techniques	22
3.	6.	Les ateliers de production	23
4.	Rés	ultats de l'évaluation	24
4.	1.	Bilan global	24
	4.1.1.	Phase construction (A1-A5)	25
	4.1.2.	Phase utilisation (B1)	26
	4.1.3.	Phase maintenance (B2-B5)	27
			2/55
CI5037	703	Échangeur de la Varizelle à Saint-Chamond Ind. A	

3/55

Ind A

4.1.4.	Phase exploitation	28
4.2	Bilan par poste d'émission.	30
4.2.1.		
4.2.2	Les intrants	30
4.2.3.	Les déchets	31
4.2.4.	Le fret	32
4.2.5.	Les déplacements	32
4.2.6,	Les immobilisations	33
4.2.7.		
5. Ana	lyse et mesures de réduction	35
5.1.	Analyse des émissions majoritaires	35
5.2.	Démarche et axes de réduction	35
5.2.1.	Matériaux à contenu carbone réduit	36
5.2.2.	Revalorisation en filière	38
5.2.3.	Revalorisation sur site	39
6. Con	ndusion	41
7. Ann	nexes	43
Annexe	1 : Engins de chantier	43
Annexe	2 : Ateliers de production	45
Annexe	3 : Métrés des intrants	46
Annexe	4 : Base de données FE	50

CI503703

Échangeur de la Varizelle à Saint-Chamond

Suivi des modifications

Indice	Date	Sommaire des modifications	Rédaction	Vérification	Approbation
A	28/03/2022	Première émission	MR	VT	

1. Liste des abréviations

Abréviation	Désignation
ACV	Analyse de cycle de vie
ADEME	Agence de la transition écologique (anciennement Agence de l'environnement et de la maîtrise de l'énergie)
AE	Activité Environnementale
AME	Scénario "Avec mesures existantes"
COZe	Dioxyde de carbone équivalent
DCE	Danier de consultation des entreprises
DQE	Détail quantitatif estimatif
EEA	European Environment Agency
FDES	Fiche de déclaration environnementale et sanitaire
FE	Facteur d'émission
GES	Gaz à effet de serre
GIEC	Groupe d'experts intergouvernemental sur l'évolution du climat
ICV	Inventaire du cycle de vie
INIES	Base de données de référence des déclarations environnementales et sanitaires des produits, équipements et services du bâtiment vendus en France
ISDI	Installation de stockage de déchets inertes
VL	Véhicule léger
PL	Poids lourds (PTAC > 3,5 tonnes)
SNBC	Stratégie nationale bas carbone
UTCF	Utilisation des terres, leur changement et la forêt

Échangeur de la Varizelle à Saint-Chamond

CI503703

5/55

Ind A

2. Éléments de langage et définitions

Terminologie	Définition
Acteurs du projet	Ensemble des personnes physiques ou morales responsables de la conception, réalisation et exploitation d'un projet d'infrastructure. Parmi ces acteurs, on identifie MOA, MOE, équipes de conception, équipes méthodes et études de prix, équipes d'études socio-économiques, entreprises d'exécution, fournisseurs et autres.
Bas carbone	Matériaux ou techniques permettant de diminuer l'empreinte carbone en comparaixon des colutions dites conventionnelles.
Climat	Conditions météorologiques, sur un temps long propres à une région déterminée. Mesurées en termes de précipitations moyennes et températures de saison.
CO₃e	Équivalent CO ₂ e, permettant de ramener le potentiel de réchauffement global (PRG) des GES à l'unité commune (PRG du dioxyde de carbone)
Contenu carbone	Émissions de GES associées à la consommation d'énergie et les processus chimiques nécessaires à l'extraction, le transport et la fabrication des malériaux de construction et autres produits.
Cycle de vie	Ensemble des phases du projet en commençant par la conception de l'infrastructure, sa construction, son fonctionnement et sa fin de vie.
Élément fonctionnel	Sous-ensembles ou composants qui constituent une infrastructure et qui assurent son fonctionnement (p.ex. une pile de pont, la signalisation verticale, la couche de surface)
Émissions GES	Raccourci pour désigner les émissions de la famille des gaz à effet de serre, définis par le protocole de Kyoto et qui contribuent au changement climatique.
Émissions directes	Émissions prenant place au fieu même où l'activité se réalise (combustion, réactions chimiques des processus industriels, etc.)
Émissions indirectes	fmissions induites par la consommation des ressources ou le traitement des déchets dont l'infrastructure a besoin pour l'onctionner mais qui prennent place à l'extérieur du périmètre de l'activité. La production d'énergie ou le contenu carbone representent des emissions uns indirecres;
Émissions réduites	Lorsqu'il s'agit d'une diminution des émissions directement attribuées au projet d'infrastructure évaluée, la méthodologie d'évaluation pennet de soustraire directement les émissions réduites du hilan GFS initial
Émissions évitées	Une diminiution des émissions GES des usagers rendue possible grâce au projet. Ces émissions ne peuvent pas être retirées du bilan GES mais peuvent justifier l'interêt d'un projet d'infrastructure de par sa capacité à éviter des nouvelles émissions GES.
Émissions vé hiculaires	Émissions GES produites par l'utilisation des véhicules. Elles regroupent les émissions de combustión (directes) ainsi que celles liées à la production des carburants et à la labrication des véhicules (indirectes).
Facteur d'émission	Ratio de émissions des GES par unité d'activité (consommation de ressource, servir es rendus, fonctionnement, etc.)
Gaz-à-effet de serre	Composant gazeux qui absorbe le rayonnement infrarouge (potentiel de rechaufferment global)

| 1503703 | Echangeur de la Varizelle à Saint-Charnond | Ind. A

Incertitudes	Représentées par un pourcentage de variabilité des émissions, issues de l'agrégation des incertitudes inhèrentes aux facteurs d'émission et des estimations des quantités de ressources consommées et des déchets produits.
Inventaire du cycle de vie	Récapitulatif exhaustif des activités et des flux de matière et d'énergie les plus pertinents qui sont nécessaires sur l'ensemble du cycle de vie (de la construction jusqu'à la fin de vie).
Jouvence	Notion assimilée au taux de remplacement qui découle de la durée de vie des éléments fonctionnels et de la période de l'évaluation GES.
Neutralité carbone	Équilibre entre les émissions GES nationales et l'absorption du carbone de l'atmosphère. Désigné aussi comme "zéro émissions nettes"
Période d'évaluation	Période considérée pour l'inventaire des sources d'émission GES du projet suivant une approche de cycle de vie.
Phase du projet	Séquence d'étapes nécessaires pour assurer la réalisation d'un projet en partant de franches de la faction de la f
Poste d'émission	Bien, service ou processus physique nécessaires au cycle de vie des infrastructures et qui sont source d'émissions GES directes ou indirectes.
Situation fil d'eau	Scénario désignant l'évolution la plus vraisemblable de la situation actuelle sans inclure le projet ni son impact.
Scénario projet	Scénario désignation l'évolution de la situation avec la mise en service du projet et qui inclut les changements induits par l'infrastructure.
Scénario "avec mesures existantes"	Un des scénarios de prospective de la SNBC pour l'évolution de la consommation énergétique et les gaz-à-elfet de serre. Ce scénario prend en compte tous les mesures en matière de politique énergétique et GES mis en place jusqu'àu 31 décembre 2022
Stratégie nationale bas- carbone	Feuille de route sectorielle pour la réduction des émissions GES en France visant la neutralité carbone en 2050
Unité fonctionnel	Caractérise les éléments fonctionnels suivant la fonction d'usage qu'ils accomplissent (p.ex. les m^{α} de couche de surface caractérisant la capacité d'une route)

1. Introduction

L'augmentation de la concentration des gaz-à-effet de serre (GES) due aux activités humaines est une des principales causes du changement climatique observé durant les deux derniers siècles. Selon le GIEC, l'industrie et le transport sont le deuxième et le troisième secteur d'activité les plus émetteurs de GES, comptabilisant le 19,5% et le 19% des émissions globales de GES respectivement

Face au défi environnemental, les différents pays ont pris des engagements pour lutter contre le changement climatique. Cette volenté pasce par des mesures visant la réduction des émissions GES dans les différents secteurs économiques. Ainsi, l'Accord de Paris signé après la COP 21 (2015), regroupe les engagements des pays pour réduire les émissions GFS anthropogéniques afin de maintenir à 1,5 °C. l'augmentation de la température globale par rapport aux niveaux d'avant la révolution industrielle.

Concernant la France, elle a fixé des objectifs plus ambitieux pour la réduction des GES. Approuvée en 2015, la loi de transition énergétique pour la croissance verte établit des objectifs de réduction de GES de 40% pour 2030 qui seront poursuivies pour atteindre 75% à l'horizon 2050 (« facteur 4 »). De plus, elle préconise aussi une diminution de 30% de la consommation des énergies fossiles tout en augmentant la part des énergies renouvelables jusqu'à 32% par rapport aux niveaux de 2012.

De plus, l'adoption de la stratégie nationale bas-carbone (SNBC) permet d'orienter les actions d'atténuation du changement climatique. Concernant le secteur du transport, elle établit une réduction des émissions de 28% (par rapport à 2015) à l'horizon 2030, visant la neutralité carbone pour 2050. Ces objectifs seront atteints entre autres, à travers la décarbonatation de l'énergie consommée, l'amélioration des conditions de circulation et la réduction de l'empreinte carbone des infrastructures.

1.1. L'évaluation carbone

Dans un contexte de lutte contre le changement climatique, les exigences environnementales concernant l'empreinte carbone des infrastructures de transport rendent impératives les démarches de maîtrise et suivi des émissions GFS. En ce sens, le bilan des émissions de gaz à effet de serre (GFS) permet d'évaluer la pression que les projets d'infrastructure exercent sur le climat à travers l'estimation du potentiel de réchauffement global (mesuré en t CO2e).

En effet, les projets d'infrastructure émettent des GES dans l'atmosphère de façon directe (combustion) ou indirecte à (consommation d'électricité, traitement des déchets). De plus, ces projets mènent vers des réductions ou des augmentations des émissions GES en comparaison à une situation sans projet. Ainsi, la comptabilité carbone intègre les émissions GES directes et indirectes du projet mais aussi l'impact de ce dernier sur les émissions des usagers en comparaison au fil d'eau.

L'évaluation carbone suit plusieurs méthodes et standards internationaux. Parmi les plus importants, la méthode Bilan Carbone® développée par l'ADEME qui permet d'effectuer la comptabilité des émissions GES liées à la consommation des ressources et à la production des déchets engendrées par les activités des organisations. Ensuite, le standard EN 15978 qui définit chacune des phases du cycle de vie des infrastructures ce qui permet d'inventorier les sources de GES tout le long de la vie utile du projet

8/55 CI503703 Échangeur de la Varizelle à Saint-Chamond Ind A

7/55

1.2. Les principes de l'évaluation

Pour assurer la crédibilité et la reproductibilité de l'évaluation carbone, plusieurs principes guident la réalisation du bilan GES, parmi eux :

- Exhaustivité : il inclut toutes les informations dimensionnantes concernant les activités entrainées par le projet sur l'ensemble de son cycle de vie.
- Relévance : l'évaluation carbone est approfondie et des mesures de réduction sont proposées pour les activités responsables des émissions GES majorantes.
- Consistance : les calculs des émissions sont réalisés en utilisant les mêmes critères et hypothèses ce qui assure la comparabilité des résultats.
- Transparence : les données d'entrée (données d'activité du projet, facteurs d'émission) et hypothèses sont introduites et annexées dans le bilan GES et ses sources citées.
- Prudence : le calcul des émissions GES est prudent quant aux hypothèses et valeurs prises en compte dans l'évaluation en se basant sur les situations le plus vraisemblables.
- Précision : toute évaluation carbone est approximative c'est pourquoi elle inclut les incertitudes associées aux calculs des GES.

1.3. Objectifs de l'évaluation

Le maître d'ouvrage a souhaité réaliser un bilan des émissions de gaz à effet de serre (GFS) du projet en phase conception pour être intégré dans l'étude d'impact. L'objectif est d'évaluer l'empreinte carbone à travers un bilan GES afin de mieux appréhender les émissions engendrées par le projet. En effet, l'évaluation de l'empreinte carbone suivant une approche d'analyse de cycle de vie permet d'éclairer les réflexions sur l'équilibre et les conséquences du projet sur l'environnement.

De plus, cette évaluation contribue à rationaliser les décisions du projet en objectivant les émissions GES attribuables au projet. L'objectif étant de maîtriser son empreinte carbone, elle devra ensuite conduire à des actions concrétes en termes de programmation de réduction des gaz à effet de serre en phase de conception du projet.

L'objectif est aussi d'infléchir les comportements sur les bons ordres de grandeur en mettant en avant les postes d'émission les plus importants. La réalisation du bilan GES du projet a pour but de fournir aux acteurs et décideurs des éléments de sensibilisation et des pistes d'action afin de réduire la pression sur le clima.

De plus, l'évaluation GES permet de signifier l'impact du projet à l'ensemble des parties prenantes et de les engager dans la démarche de maîtrise et suivi de l'empreinte carbone. Lors des phases utérieures, cette évaluation permettra de faire évoluer les éléments de conception pour contribuer à l'atteinte des objectifs de réduction des GES sur lesquels les différentes parties prenantes se seront engagées.

Du point de vue réglementaire, le décret n°2017-725 du 3 mai 2017 stipule que les émissions de GES doïvent être évaluées pour les projets publics car le niveau de soutien financier accordé à ces derniers « intêgre, systématiquement et parmi d'autres critères, le critère de contribution à la réduction des émissions de gaz à effet de serre ». Il définit également les principes et modalités de calcul des émissions GES: l'approche du cycle vie de l'évaluation, le périmètre, les sources des données à exploiter, etc. Ainsi, le présent document apporte des éléments de réponse aux exigences de ce décret.

INGÉROP

1.4. Outil utilisé pour l'évaluation

Le Bilan GES est réalisé avec l'outil InfraCost développé par Ingérop sur la base de la méthodologie de l'ADEME: Bilan Carbone® Version 8.5. Cet outil permet de décomposer les différentes sources d'émission d'un projet par catégorie suivant une logique de cycle vie. L'outil s'appuie sur des facteurs d'émission issus des différentes bases de données qui renseignent le taux d'émission des GES lors de la fabrication des intrants, leur mise en œuvre, le fret, les déplacements, etc.

Afin d'assurer la crédibilité et la reproductibilité de l'évaluation carbone, InfraCost respecte les six principes qui guident la réalisation des bilans GES : exhaustivité, pertinence, consistance, transparence, prudence et précision.

Figure 1 : Logo certification de la conformité à la méthode Bilan Carbone®

CI503703 Échangeur de la Varizelle à Saint-Channond Ind. A

9/55

2. Méthodologie d'évaluation

2.1. Principe de calcul

Le principe de calcul utilisé est basé sur une méthode d'estimation indirecte des GES engendrés par les activités évaluées (pas de mocure directe). En effet, les activités (quantifiées suivant l'unité choicie) combinées à leurs facteurs d'émission (kg COze/unité) permettent d'estimer les GES émis. Le principe de calcule de calcule et montré dans la Figure 2.

Figure 2 : Principe de calcul des émissions GES d'un projet d'infrastructure

2.2. Les données d'activité

Les données d'activité comprennent l'ensemble des consommations de ressources telles que les matériaux, l'énergie, mais aussi la production de déchets. Ces informations sont établies à partir des estimations, projections et relevés des activités menées dans le périmètre spatio-temporel défini pour l'évaluation environnementale de l'infrastructure.

Ces données sont issues des informations contenues dans les plans du projet, les détails quantitatifs estimatifs, la consommation énergétique des équipements ainsi que d'autres informations et hypothèses renseignées par les équipes de conception.

2.3. Les facteurs d'émissions

Les facteurs d'émissions, ils attribuent un ratio d'émissions GES par unité d'activité. Le calcul des facteurs d'émissions sont réalisés suivant deux approches :

- l'analyse du cycle de vie, consistant à retracer l'ensemble des émissions produites (kg CO>e/U) lors de l'extraction des matières premières, la fabrication et le transport des produits utilisés pour la réalisation et fonctionnement de l'infrastructure;
- l'approche macroéconomique, où les émissions sont calculées sur la base des matrices économiques interconnectant les différents secteurs d'activité (kg CO2e/€_{VA} issus du Bilan Carbone@organisation).

Ils sont majoritairement issus de la base ADEME mais peuvent également être complétés par des bases externes lorsque les informations manquent (Base INIES, DIOGENE, Ecoinvent ou directement les FDES des fournisseurs). Les FE employés dans cette évaluation sont présentés dans l'Annexe 4.

Dans le cas où une activité en particulier n'est pas répertoriée dans les bases de données, un FE est construit en utilisant les FE des constituants principaux (p. ex. pour la fourniture d'une armoire en acier,

il est considéré le poids de l'armoire et le FE de l'acier). La construction des FE peut aussi mener vers une analyse de cycle de vie lorsque l'activité associée est majorante.

2.4. Les axes structurants de l'évaluation

En plus de la méthode de calcul Bilan Carbone®, l'évaluation des GES suit une approche ascendante (bottom-up), inspirée de l'analyse du cycle de vie (ACV). En effet, il s'agit d'un exercice d'exhaustivité visant à modéliser de la façon la plus représentative possible l'ensemble de flux de matière et d'énergie induits par les activités qui prennent place dans le périmètre d'évaluation de l'infrastructure.

La modélisation des flux engendrés par une activité prend la forme d'un inventaire de cycle de vie qui récapitule l'ensemble des consommations et des sous-produits générés. Ces inventaires sont structurés suivant trois axes principaux : le cycle de vie de l'infrastructure, les éléments fonctionnels (résultats des travaux) et les postes d'émissions.

2.4.1. Le cycle de vie de l'infrastructure

Les phases du cycle de vie considérés dans l'évaluation GES du projet sont

- la production des intrants (A1-A3), ou « contenu carbone »
- la mise en œuvre des intrants (A4-A5), ce qui inclut l'énergie consommée lors des travaux, le fret des matériaux ainsi que les déchets engendrés.
- le fonctionnement comprenant
 - b l'utilisation (B1), correspondant au différentiel des émissions des usagers de l'infrastructure par rapport au scénario de référence, en tenant compte de l'évolution de la demande induite et des conditions de service modifiées par l'infrastructure.
 - la maintenance (B2-B5), comportant les opérations de maintenance régulière et les travaux de rénovation selon la durée de vie des éléments fonctionnels du projet.
 - l'exploitation (B6), englobant l'énergie consommée par les équipements permettant l'exploitation des équipements de l'infrastructure.
- la fin de vie (C1-C4), comprenant les travaux de démolifion totale ou partielle, le dégagement des emprises et la remise en état des emprises de l'infrastructure.

Tableau 1 : Phases du cycle de vie d'un projet d'infrastructure basées sur la FN 15978.

Pr	Production Construction			For	ctionn	ement		Fin de vie					
Α1	A2	АЗ	A4	A5	B1	82	B3	B4	B5	C1	(2	(3	C4
Transport vers l'usine Mattères premières	Transport vers l'u	Manufacture	Transport au d	Mise en œuvre	Utilisation	Maintenance	Réparations	Remplacement	Rénovation	Demalition	Transport vers likere	Traitement	Elimination
		antier		В6	Consommation d'énergie				ge				
					B7	Consor	nmatio	n d'eau					
				BB	Autres	conson	imation	15					

CI503703 Échangeur de la Varizelle à Saint-Charnond

Ind A

2.4.2. Les corps de métier

Afin de faciliter l'évaluation de l'empreinte carbone, la préconisation des mesures de réduction et le suivi des émissions GES du projet étudié, l'évaluation carbone est aussi structurée autour de la nature des travaux réalisés par corps de métier.

En effet, chaque corps de métier assure la mise en œuvre des éléments constituants l'infrastructure. Par exemple, la signalisation routière est constituée de plusieurs éléments tels que le marquage au sol, les panneaux de signalisation statique et dynamique. Chacun de ces éléments requièrent des travaux pour être mis en place et entretenus ainsi que de l'énergie pour être exploités (électricité dans le cas de la SLT et les PMV par exemple).

De plus, chaque élément a une durée de vie déterminée après laquelle il doit être rénové ou refait. Ainsi, à chaque élément fonctionnel lui est associée une jouvence, c'est-à-dire, un chiffre correspondant au nombre de fois que cet élément est remplacé dans la période étudiée (p. ex. le marquage au sol dont la duree de vie est de 10 ans, pour une periode evaluation de 30 ans la jouvence attribuée est de 3)

Chaque élément est caractèrisé par une **unité fonctionnelle** définie suivant la fonction d'usage accomplie par l'élément en question. Par exemple, dans le cas d'une glissière, l'unité fonctionnelle relevue est le mil.

2.4.3. Les postes d'émissions

Les postes d'émissions représentent les flux principaux engendrés par le projet évalué. Les postes d'émission retenus dans le cadre de cette évaluation sont :

- les intrants, matériaux, dispositifs et appareils intégrés aux éléments fonctionnels de l'infrastructure :
- l'énergie, d'une part celle utilisée lors des travaux de construction et maintenance et d'autre part celle consommée par l'exploitation et l'utilisation de l'infrastructure;
- les déchets, engendrés par les travaux préparatoires (démolition, dégagement des emprises et terrassement), les travaux de mise en œuvre (chutes et emballages) et les installations de chantier (base de vie);
- le fret, pour le transport dans les emprises du projet (interne), l'amené des intrants et des engins (entrant) et l'évacuation des déchets (sortant);
- les déplacements, correspondant aux trajets effectués par les employés lors des travaux et pour le fonctionnement de l'infrastructure;
- les immobilisations, correspondant à l'amorfissement du matériel utilisé pendant les travaux tels que les engins de chantier ou les installations provisoires (base de vie);
- le changement d'occupation du sol, qui induit une variation dans le stock carbone et la capacité de séguestration des sols.

2.5. Les émissions véhiculaires

CI503703

À différence des autres phases, la phase d'utilisation (B1) est particulière vis-à-vis du périmètre d'évaluation. En effet, l'impact induit par l'infrastructure ne se limite pas aux voiries crées mais a aussi des répercutions sur la circulation dans d'autres axes routiers adjacents.

Puisque l'objectif est aussi d'évaluer les émissions GES induites par le projet d'infrastructure, son impact en phase d'utilisation est estimé à partir de la variation des déplacements projetés des usagers

Échangeur de la Varizelle à Saint-Chamond Ind. A

par rapport à une situation de référence. Cette variation entre les deux scenarii résulte des modifications apportées par le projet sur le réseau de transport. Parmi ces modifications on peut citer : la diminution des distances parcourues, la variation des vitesses de circulation et la réduction des phénomènes de congestion.

Ainsi, la méthode d'évaluation de l'empreinte carbone en phase d'utilisation consiste d'abord à estimer les émissions GES des véhicules au sein du périmètre impacté par le projet suivant les scenarii référence (fil de l'eau) et projet. Ces scenarii sont construits à partir des résultats obtenus lors de la modélisation du réseau de transport et qui permettent de quantifier les impacts dans la circulation.

Deux approches sont utilisées afin d'estimer les émissions GES des véhicules. La première est basée sur le scénario AME de la SNB. Elle permet le calcul des émissions GES directes à partir des facteurs de consommation (FC) de carburant (en g/véhkm) d'un parc véhiculaire (VL et PL) projeté jusqu'à 2050. Ainsi, ces FC prennent en compte l'évolution de la consommation kilométrique par type de motorisation (diesel essence, H2, électrique et GNL).

La seconde approche consiste à utiliser la méthode développée par l'ADEME qui sert à cakuler les émissions liées aux déplacements routiers. Cette méthode utilise des FE moyens qui prennent en compte les émissions liées à la fabrication des véhicules, l'approvisionnement de carburant et la combustion constatés en France. Puisque le parc moyen SNBC permet un cakul plus précis des émissions directes, seuls les FE de l'ADEME concernant la fabrication des véhicules sont utilisés pour complèter l'estimation de l'ensemble des émissions véhiculaires de GES.

Émissions de fabrication
Manufacture de fabrication
Appundation of comment
Su comment

Emissions amont
Appundation of comment
Su comment

Emissions d'écluppement
COS, CH4, Novi

Figure 3: Représentation des émissions indirectes et directes produites par l'utilisation des véhicules

2.6. Période d'évaluation

La période d'évaluation correspond à la durée retenue pour la modélisation des flux d'énergie et matière engendrés par le cycle de vie de l'infrastructure. Elle concerne notamment, la durée de la phase de fonctionnement du projet ainsi que la quantité de travaux de maintenance.

Pour cette évaluation, il a été décidé de prendre en compte une durée conforme au volet air et santé du fait du fien entre de ces deux études, soit 20 ans après la mise en service. Pour cette période d'évaluation, les émissions abordées sont celles liées aux phases de construction, d'utilisation, d'exploitation et de maintenance. Quant à la fin de vie du projet, elle n'est pas prise en compte car le projet n'a pas pour vocation d'être démantelé dans le scénario prospectif de l'évaluation carbone.

CI503703 Échangeur de la Varizelle à Saint-Chamond Ind. A

15/55

Ind. A

Concernant les travaux de maintenance, leur fréquence dépend de la durée de vie moyenne des éléments forctionnels (voir Tableau 3). L'attribution des travaux de maintenance implique qu'ils sont étalés proportionnellement sur toute la période d'évaluation afin de garder le même niveau de service. Ainsi, pour un élément fonctionnel dont la durée de vie est de 20 ans et sur une période d'évaluation de 50 ans. l'évaluation carbone considère les émissions GES engendrées par 2.5 travaux de renouvellement.

2.7. Périmètre d'évaluation

L'évaluation considère deux périmètres. Le premier concerne le périmètre des travaux, limité aux emprises de l'échangeur de la Varizelle et des aménagements routiers annexes (parking, aménagements paysagers, bassins de rétention). Ce périmètre est élargi pour intégrer les surfaces concernées par les mesures de compensation, dont les émissions sont aussi abordées par cette étude.

Le second est défini par l'aire d'influence du projet sur les usagers. Ce périmètre permet de quantifier l'impact du projet sur les émissions des usagers (émissions véhiculaires) par rapport à la situation fil d'eau. L'objectif est de prendre en compte l'impact du projet sur la circulation afin d'évaluer les effets sur la consommation énergétique et en matière d'émissions GES. Ce périmètre s'apparente à celui d'une évaluation socio-économique. La Figure 4 montre le réseau routier concerné par l'étude de trafic modélisant l'impact du projet.

2.8. Frontières de l'évaluation

CI503703

Les frontières du système modélisé par les inventaires du cycle de vie des éléments fonctionnels de l'infrastructure concernent :

Échangeur de la Varizelle à Saint-Chamond

 Le contenu carbone: l'évaluation GES part des facteurs d'émissions des matériaux prêts à l'emploi issus des bases de données ou transmis par les fabricants. Ainsi, l'évaluation n'a pas pour vocation de modéliser les émissions des processus industriels de fabrication.

- Le traitement des déchets : de façon analogue au contenu carbone, le système ne modélise pas les émissions engendrées par le traitement des déchets mais utilise directement les facteurs d'émission associés.
- Le recyclage des matériaux : il intègre les facteurs d'émissions réduits des matériaux incorporant des taux de recyclage. Cependant, les facteurs d'émissions génériques n'intègrent pas des hypothèses de calcul particulières au projet.
- Les employés : seuls leurs déplacements (trajets domicile-travail) sont intégrés dans le système, d'autres consommations engendrées ne sont pas prises en compte.
- Le fret : les émissions induites par l'impact sur la circulation du fret engendré par les travaux de construction et maintenance ne sont pas pris en compte. Seules les émissions GES des carburants et l'amortissement des véhicules de transport sont comptabilisés

16/55
CI503703 Échangeur de la Varizelle à Saint-Chamond Ind. A

3. Données d'entrée

3.1. Le détail quantitatif estimatif

À partir du détail quantitatif estimatif (**Tableau 2**) du projet il a été possible de modéliser les activités qui prennent place tout le long du cycle de vie du projet. Ce quantitatif a été réalisé à partir des estimations disponibles au stade AVP. Il est donc vraisemblable que ces quantités évoluent au fur et à mesure de l'avancement des études de conception.

Chacun des travaux renseignés dans le DQE a fait l'objet d'une décomposition afin de constituer les inventaires de cycle de vie. Ceux-ci permettent d'établir les flux de matériaux et d'énergie et de les associer aux FE des bases de données exploitées, notamment lorsqu'il s'agit des travaux impliquant différentes activités (p.e. le bétonnage d'une pille : surface de coffrage en m², quantité de béton mis en place en m³ puis converti en tonnes pour le calcul du frei).

De la même manière, les travaux chiffrés au forfait sont aussi décomposés à partir des informations renseignées par les équipes techniques concernées. L'ensemble d'éléments fonctionnels qui constituent le projet est présenté dans le **Tableau 3** et les détails des métrés dans l'**Annexe 3**.

Tableau 2 : Extrait du détail estimatif des travaux du projet d'échangeur de Varizelle

Index	DÉFINITION DES PRIX
1	ÉTUDES ET DIRECTION TRAVAUX
1.1	MOA - Pilotage d'opération
1.2	Études techniques
II	ACQUISITIONS FONCIÈRES et FRAIS ANNEXES
II.1	Acquisitions de terrains
II.2	Acquisition de bătiments dans les emprises
11.3	Remembrement at travaux connexes
III	TRAVAUX
III.1	Dégagement des emprises
III.2	Terrassements et couche de forme
III.3	Assainissement et hydraulique
III.3bis	Rescindements
III.4	Chaussée
III.5	Équipement d'exploitation et de sécurité
III.6	Aménagements liés à l'environnement
III.8	Frais de surveillance des travaux
III.9	Ouvrages d'art
III.11	VRD

Échangeur de la Varizelle à Saint-Chamond

CI503703

17/55

Ind. A

Tableau 3 : Éléments abordés dans l'évaluation GES, unités fonctionnelles et hypothèses de durée de vie

Métier	E.F.	Intitulé	U.F.	Quantité	Durée de vie
Aménagements	Espaces verts	Mise en œuvre TV	m2	16 214	un et victorialises
paysagers		Plantation arbres, arbustes et gazon	m2	16 214	
		Plantation espèces, compensation	m2	20 840	
	Merion végétalisé	Déblais meubles en merlon	m3	3 873	
	Mesures de compensation	Terrassement, mesures compensatoires	m2	2 300	
	Zone d'infiltration	Aménagement piscicole	m2	300	
Bâtiments et	Parking et annexes	Garage technique	m2	266	50
annexes		Parking de la Varizelle	m2	734	20
Chaussées et	Couche d'assise	Couche d'assise GNT	m2	7 203	
voirie	couche de base	Couche de base GB3	m4	11614	20
	Couche de surface	Couche de toulement BBSG	m2	12 028	10
	Trottoirs, voies douces	Bordures, bordurettes	ml	679	50
		Voiries douces en BBSG	m2	1 842	20
Équipements	Clóturage	Clotures et portails	ml	1 0 10	50
	Dispositifs anti- nuisance	Écran acoustique, brise vue	ml	140	50
	Dispositifs de retenue	Garde-corps métalliques	ml	206	50
		Glissière GBA	ml	1 490	20
		Glissière métallique et atténuateur	mf	76	20
	fclairage	Éclairage public	ml	435	20
	Équipement d'exploitation	Station de comptage	u	1,00	5
	Mobilier urbain	Mobilier et équipement urbain	k4	15	10
Études et contrôles	Ftudes d'ingénierie	Montant des études	kf	1266	
Génie civil	Assainissement	Caniveaux divers	mI	1 439	
		Collecteurs hors ouvrage	ml	674	
		Éléments linéaires divers	mt	320	
		Fossés enherbés	mI	458	
		Regards, grilles et têtes de buse	u	44	50
	Ouvrage hydraulique	OH préfabriqué de la Magie	mI	6,10	
		OH prélabrique du Janon	ml	35	
		CHI préfabrique du Ricolin	mT	30	
	Ouvrages de rétention	Bassin rétention 1	m2	290	
	et traitement	Bassin rétention 2	m2	900	
	Ouvrages de	Parois clouée	m2	720	50
	souténement	Soutenement renforce, bretelles	m2	1 130	50
	Ouvrages divers	Reconstruction mur de clôture	ml	1 500	40
Installations temporaires	Installation de chantier et repli	Creation et repli base de vie	u	3,00	1
S.	Signalisation temporaire	Exploitation sous charitier	kŧ	267	10

CI503703 | Échangeur de la Vancelle à Saint-Channond | Ind. A

Ouvrages d'art	Appuis, joints de chaussée	Appareils d'appui et amortisseurs	и	60	30
	Dalles et poutres	Dalle de transition	m3	38	100
	Fondations et	Fondations filantes C0 et C3	m3	140	
	soubassement	Fondations filantes P1 et P2	m3	54	
		Pieux D=1000mm	ml	150	
		Pieux D=1200mm	ml	70	
	Murs et culées	Culée C0	m3	49	100
	NIA-CHOOP STATE OF STATE	Culée C3	m3	45	100
	Superstructure	Étanchéité feuilles bitume	m2	679	30
		Tablier HEB550	m2	679	100
	Voiles et piles	Chevètres P1 et P2	m3	19	100
		Pile P1	m3	34	100
		Pile P2	m3	23	100
Signalisation	Signalisation horizontale	Marquage au sol	ml	3 551	5
	Signalisation verticale	Balisage divers	u	5,00	10
		Panneaux de police	u	99	10
Terrassements	Fouilles et remblais	Déblais, remblais P1 et C0	m3	678	
	techniques	Purge et substitution	m3	1 000	
	Terrassement de	Déblayage à ciel nuvert	m3	23 672	
	surface	Remblayage a ciel ouvert	m3	54 176	
	Terrassement sous blindage	Déblayage sous blindage P2 et C3	m3	218	
Travaux	Dégagement	Abatage hailes	ml	55	
préparatoires	d'emprises	Déboisement	ha	1,31	
		Débroussaillage	ba	0,77	
		Décapage terre végétale	m2	5 9 1 4	
		Diagnostic archéologiques	k€	8,48	
	Démolition	Décapage de chaussée et étanchéité	m2	1949	
		Demolition bâtiment	m3	6 300	
		Démolition chaussée	m2	628	
		Demolition de trouvirs	1112	201	
		Démolition glissière béton	mf	434	
		Démolition mur de souténement	mt	403	
		Démolition nuvrages divers	kf	38	
		Dépose bordures, cunettes, descentes	ml	362	
		Rabotage de chaussée	m2	1625	
		Sciage chaussée et engravure	ml	772	
	Dépose d'éléments	Déplacement de réseaux	ml	100	
		Dépose de canalisations	ml	100	i
		Dépose de clótures	ml	72	
		Dépose panneaux existants	11	18	
UTCF	Changement d'affectation du sol	Changement d'occupation, emprise projet	ha	4,60	

Échangeur de la Varizelle à Saint-Chamond

19/55

Ind A

3.2. Les plans du projet

En complément aux quantités renseignées dans le DQE, l'évaluation carbone s'appuie sur les plans des ouvrages, les élévations et les notices explicatives. Ces pièces perméttent notamment, de décomposer les travaux forfaitaires. Un extraît du plan général de l'aménagement de l'échangeur et une vue longitudinale passage supérieur à réaliser sont montrés dans la **Figure 5** et la **Figure 6**.

Figure 5 : Extrait des plans du passage supérieur de l'échangeur de la Varizelle

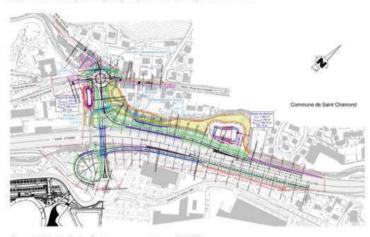
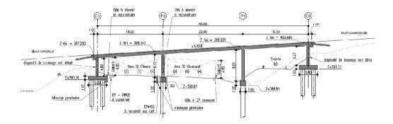



Figure 6 : Vue longitudinale du passage supérieur sur la RN88

3.3. L'état initial de l'environnement

L'inventaire des écologues et les emprises du projet (en distinguant les zones par type d'occupation du sol) ont été utilisés pour évaluer l'impact sur l'occupation du sol par le projet. Le croisement de ces informations géoréférencées a permis d'estimer les surfaces impactées. Les emprises concernées par les

Cl503703 Echangeur de la Varizelle à Saint-Chamond Ind. A

changements d'affectation du sol sont montrées dans la Figure 7. Le calcul des surfaces en m² est récapitulé dans le Tableau 4.

Figure 7 : Cartographie du changement d'affectation des sols

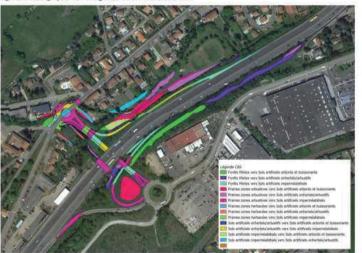


Tableau 4 : Surfaces impactés par le changement d'affectation des sols

Échangeur de la Varizelle à Saint-Chamond

CI503703

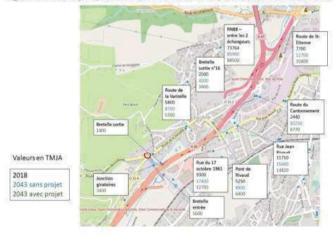
Changement d'affectation des sols	Surface (m2
Forêts Mixtes vers Sols artificiels arborés et buissonants	1 866
Forêts Mixtes vers Sols artificiels enherbés/arbustifs	1 900
Forêts Mixtes vers Sols artificiels imperméabilisés	6.169
Prairies zones arbustives vers Sols artificiels arborés et bulssonants	3 460
Prairies zones arbustīves vers Sols artificiels enherbés/arbustīfs	3 112
Prairies zones arbustives vers Sols artificiels imperméabilisés	24 696
Prairies zones herbacées vers Sols artificiels arborés et buissonants	261
Praîries zones herbacées vers Sols artificiels enherbés/arbustifs	193
Prairies zones herbacées vers Sols artificiels imperméabilisés	732
Sols artificiels enherbés/arbustifs vers Sols artificiels arborés et buissonants	66
Sols artificiels enherbés/arbustifs vers Sols artificiels imperméabilisés	2 701
So ls artificiels imperméabilisés vers Sols artificiels enherbés/arbustifs	883

21/55

Ind A

3.4. L'étude de trafic

L'évaluation des émissions produites par la circulation routière des usagers est faite sur la base de l'étude trafic exploitée par l'évaluation du volet air et santé. Ainsi, elle partage les mêmes hypothèses de calcul, la méthodologie de traitement de données et le périmètre d'évaluation.


Cette étude a pour objectif d'évaluer l'impact du projet dans les conditions de trafic en termes de TMJA et du linéaire des brins modélisés. Elle a été menée pour le scénario de référence et projet pour la période 2025-2045 et recouvre aussi bien les emprises du projet que le réseau routier secondaire.

Les principaux résultats retenus pour cette évaluation concernent les TMJA par brin du réseau routier modélisé. Les TMJA permettent par la suite de calculer les distances parcourues (en véh.km) par année et par type de véhicule (VL et PL) pour les scenarii de référence et projet. Les résultats sont récapitulés dans le **Tableau 5**.

Tableau 5 : Distances parcourues en veh.km parcourus pour le scenario de reference et projet

véhícule	véh.km_réf	véh.km_pro	diff_abs	diff_rel
VL	1.298 120 300	1 265 519 097	-32 601 204	-2,5%
PL	105 076 897	106 722 848	1 645 952	1,6%

Figure 8 : Périmètre et principaux résultats de l'étude trafic effectué pour l'évaluation du volet air et santé

3.5. Les équipements techniques

Les consommations électriques des équipements techniques sont estimées à partir de leur puissance électrique et des hypothéses de fonctionnement. A la puissance électrique nécessaire, un temps d'utilisation annuel est attribué à chacun des équipements en fonction de leur usage. Le produit de ces données permet de calculer l'électricité consommée en kWh.

CIS 03703 Echangeur de la Varizelle à Saint-Chamond Ind. A

À ce stade de l'étude, les informations concernant le bilan puissance des équipements ne sont pas encore disponibles. Ainsi, les consommations sont basées sur les hypothèses de puissance électrique et de temps de fonctionnement présentées dans le **Tableau** 6.

Tableau 6 : Puissance des éguipements électriques et leur consommation journalière

Échangeur de la Varizelle à Saint-Chamond

Dispositifs	Qté	P (W/u)	P (W)	Fonctionnement (h/jour)	Consommation (kWh/jour)
Éclairage routier	63	54	3 402	10	34,02
Boucles de comptage	10	2,7	27	24	0,65
Station de recueil	1	250	250	24	6,00
Écrans d'affichage	- 2	147	294	24	7,06

3.6. Les ateliers de production

CI503703

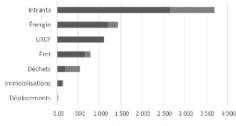
Des ateliers de travaux sont définis par type de métier. La composition des ateliers est définie à parfir des informations issues de nos équipes techniques. Les engins de chantier utilisés et leur caractéristiques techniques sont listés dans l'Annexe 1.

En plus de la puissance des engins le pourcentage d'utilisation des engins permet de cakuler la corsommation horaire de carburant en appliquant la méthodologie FMFP - CORINAIR (FFA) « air poliulant emission inventory guidebook 2016 - 1.44 - Non-road mobile sources and machinery ». En plus de ces informations, chaque atelier a une cadence de production associée, ce qui permet d'estimer la durée d'utilisation et la consommation finale de carburant. L'Annexe 2 présente en détail la description des ateliers employés.

23/55

Ind A

4. Résultats de l'évaluation


4.1. Bilan global

Le bilan global des émissions directes et indirectes est de **7 732 t CO**2e. (hors émissions liées aux usagers). L'incertitude totale est estimée à 692 t CO₂e, soit 9%. La décomposition des émissions par poste d'émission est montrée dans la **Figure 9**. Les émissions sont aussi découpées par phase du cycle de vie. Afin de faciliter l'affichage des résultats, les émissions liées aux usagers ne sont pas incluses dans ce graphique.

Figure 9 : Émissions GFS globales du projet par poste émetteur (hois usagers)

RN88 Varizelle, BGES par poste

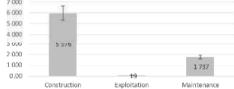
Émissions GES, phase A1-B6 (t COze)

■ Construction ■ Maintenance ■ Exploitation

Inv. E1	Construction	Maintenance	Exploitation
Intrants	2 663	1 024	0,00
Énergie	1203	214	19
UTCF	1111	0,00	0,00
Fret	655	136	0,00
Déchets	191	350	0,00
Immo bilisations	133	8,37	0,00
Déplacements	21	4,40	0,00

Il est à noter que les émissions liées aux déplacements des usagers sur la période d'évaluation sont égales à 236 9541 CO₂e. Ces émissions ne sont pas directement attribuables à l'infrastructure. Cependant elles ont été estimées afin de pouvoir les comparer avec les émissions du scénario de référence afin de mesurer l'impact du projet.

24/55
CIS03703 Échangeur de la Varizelle à Saint-Chamond Ind. A


25/55

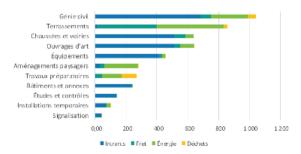
Une première observation des postes rend compte de l'importance de la part des émissions liées aux travaux de construction et maintenance. En effet, ces émissions représentent 99 % du total des émissions du projet (hors usagers). La répartition des émissions parmi les différentes phases du projet est montrée dans la Figure 10.

Figure 10 : Émissions GES totales par phase du cycle de vie

RN88 Varizelle, BGES par phase

Émissions GES, phase A1-B6 (t CO₂e)

4.1.1. Phase construction (A1-A5)


Concernant la phase construction (A1-A5) les émissions ont été traitées par corps de métier, puis par poste d'émissions. Le total des émissions obtenues pour cette phase est de 5 976 t CO2e avec une incertitude de 11%. La décomposition de ces émissions parmi les 4 postes principaux est présentée dans la Figure 11.

Quelques remarques sont à prendre en compte dans cette évaluation. Tout d'abord, les travaux de dépose de l'existant et de dégagement des emprises sont comptabilisés dans les travaux préparatoires. Ces émissions sont prises en compte dans la phase de construction car elles sont nécessaires à la préparation des emprises du projet avant le début des travaux de construction.

Figure 11 : Décomposition des émissions GES en phase construction par corps de métier et par poste d'émission

RN88 Varizelle, BGES phase Construction

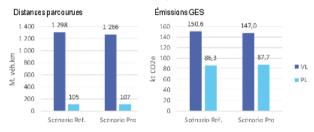
Émissions GES par métier et par poste (t CO2e)

CI503703 Échangeur de la Varizelle à Saint-Chamond Ind. A

Métier	Intrants	Fret	Énergie	Déchets	
Génie dvil	684	67	240	49	
Terrassements	18	381	433	28	
Chaussées et voiries	511	75	53		
Ouvrages d'art	512	38	87	0,26	
Équipements	418	:15	22	4,27	
Aménagements paysagers	29	30	217	5,74	
Travaux préparatoires	8,03	38	125	99	
Bâtiments et annexes	236	4,28	1,21		
Études et contrôles	140				
Installations temporaires	68	6,85	23	4,13	
Signalization	40	1,00	1,40		

En plus des travaux de préparation, l'installation du chantier ainsi que les opérations de repli sont comptabilisées dans les installations temporaires. Il est rappelé que les déchets générés par la base vie y sont intégrés car ils font l'objet d'un stockage provisoire dans les bennes déchet se trouvant à proximité de la base vie.

4.1.2. Phase utilisation (B1)


Comme mentionné précédemment (cf. Les émissions véhiculaires) les émissions des usagers ne correspondent pas uniquement aux déplacements effectués dans les emprises du projet. Le périmètre choisi correspond à l'aire d'influence du projet afin d'estimer ses incidences sur la consommation énergétique, et par conséquent des émissions en GES pour l'ensemble des usagers.

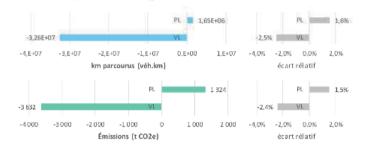
La première étape de l'estimation a consisté à évaluer les déplacements (en M véh.km) et les véhiculaires (en kT CO₂e) pour les scenarii de référence et projet à l'horizon 2013. Ces valeurs ont été estimées pour les véhicules légers (VI) ainsi que pour les poids (PI). La comparaison entre les résultats obtenus pour les deux scenarii est montrée dans la Figure 12.

Figure 12 : Comparaison des déplacements et des émissions entre le scenarii de référence et projet

RN88 Varizelle, Bilan GES phase utilisation

Émissions GES B1, comparaison scenarii Réfet Projet

26/55
Cl503703 Échangeur de la Varizelle à Saint-Chamond Ind. A



27/55

Puis que l'objectif de l'évaluation est de quantifier l'impact du projet en matière carbone, les émissions GES qui lui sont attribuées correspondent à la différence des émissions entre les scénarii de référence et projet. Ainsi, la différence des kilométres parcourus et des émissions GES entre les deux scenarii est montrée dans la **Figure 13**. Ces valeurs sont décomposées par type de véhicule (VL, PL) et leurs variations (écart relatif) sont calculées par rapport au scénario de référence.

Figure 13 : Différence des déplacements et des émissions suivant les scenarii et écarts relatifs

RN88 Varizelle, Bilan GES phase utilisation Émissions GES B1, différence scenarii Projet-Réf

Concernant les résultats de l'évaluation pour le scénario projet, les déplacements des VI et des PI dans le périmètre d'évaluation sont de 1 266 et 107 M véh.km respectivement. Ces valeurs représentent une variation absolue d'environ –32,6 et +1,65 M véh.km, ce qui correspond à une variation relative de +1,6 et -2,5% par rapport au scénario de référence.

Quant aux émissions GES, les valeurs obtenues pour les VI et les PI suivant le scénario projet sont respectivement de 147 et 87.7 kT $CO_{2}e$. Les émissions GES ainsi calculées représentent une variation absolue de -3 632 et +1 324 t $CO_{2}e$, ce qui correspond à une variation relative de +1.5 et -2.4% par rapportau scénario de référence.

Dans le cas des émissions GES, l'écart relatif est plus important car l'étude trafic réalisée montre que ce projet permet non seulement de réduire les détours mais aussi de fluidifier la circulation routière. Cela permet d'augmenter les vitesses de circulation et de réduire les facteurs de consommation (en L/km). Ainsi, l'amélioration des conditions de circulation représente une réduction totale d'environ2 308 t CO₂e, correspondant à 0,97% des émissions des usagers calculées pour le scénario de référence.

4.1.3. Phase maintenance (B2-B5)

S'agissant des émissions GES concernant la phase de maintenance, l'estimation du total des émissions s'élève à 1737 t.CO₂e, avec une incertitude de 10%. La décomposition des émissions par corps de mètier est présentée dans la Figure 14. L'évaluation des émissions liées aux travaux de maintenance respecte la même méthodologie que celle utilisée pour la phase construction. En effet, certains travaux se font de facon répétitive en fonction des jouvences définies pour ce projet.

Il est à noter que les émissions GES estimées dans cette phase ne prennent pas en compte la réduction des travaux de maintenance sur le réseau secondaire due à la diminution des kilomètres parcourus apportée par le projet sur ces axes.

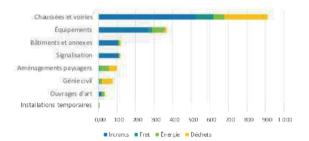

CI503703 Échangeur de la Varizelle à Saint-Chamond Ind. A

Figure 14 - Décomposition des émissions GES correspondantes à la phase de maintenance

RN88 Varizelle, BGES phase Maintenance

Émissions GES par métier et par poste (t CO 2e)

Métier	Intrants	Fret	Énergie	Déchets
Chaussées et voiries	525	95	61	230
Équipements	269	17	70	12
Bâtiments et annexes	104	5,91	3,66	7,19
Signalisation	108	1,82	4,44	0,45
Aménagements paysagers	0,78	8,23	47	42
Génie dvil	0,51	6,54	11	58
Ouvrages d'art	16	0,84	14	0,12
Installations temporaires	80,0		1,77	

Cependant, en plus des travaux de mise en œuvre, la réfection des structures et des équipements requiert des travaux de démolition et de dépose de l'existant. Ces travaux ont été définis et des ateliers de travaux leur sont associés. Le traitement des déchets est aussi intégré dans les calculs. À ce point de l'évaluation, aucune hypothèse de recyclage n'a pas été intégrée. Elles feront l'objet d'une analyse ultérieure dans la partie 5 de ce rapport.

4.1.4. Phase exploitation

Les émissions en phase d'exploitation du projet ne concernent que celles issues des consommations énergétiques des équipements installés. En effet, il est considéré que les infrastructures du projet r'engendrent pas une variation significative des opérations de gestion des voies publiques à part les consommations énergétiques propres aux équipements du projet.

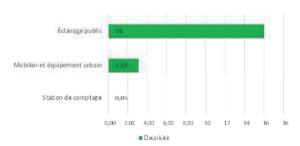
Pour rappel, les équipements d'exploitation pris en compte concernent les différents dispositifs d'éclairage public et d'affichage ainsi que de comptage véhiculaire. Les résultats de puissance électrique et de consommation annuelle ont été présentés dans le **Tableau 6**.

D'après les résultats obtenus, la consommation énergétique annuelle de l'ensemble d'équipements est d'environ 15 MWh. À la fin de la période d'évaluation de 20 ans, la consommation finale devrait

 28/55

 CI503703
 Échangeur de la Varizelle à Saint-Chamond
 Ind. A

atteindre 301 MWh et les émissions engendrées 19,1 t CO2e. La Figure 15 montre la répartition des émissions pour les équipements.


Figure 15 : Répartition des émissions GES correspondant à la consommation des équipements techniques

RN88 Varizelle, BGES phase Exploitation

Émissions GES par métier et par poste (t CO2e)

CI503703

Échangeur de la Varizelle à Saint-Chamond

29/55

Ind A

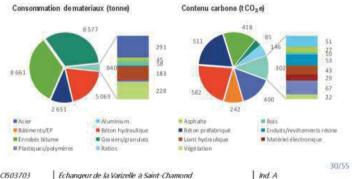
4.2. Bilan par poste d'émission

4.2.1. L'énergie

La consommation de carburant et d'électricité ainsi que les émissions GES par phase du cycle de vie sont présentées dans la Figure 16.

Figure 16 : Consommation de carburant et d'électricité des engins et des installations de chantier.

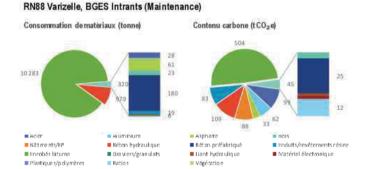
RN88 Varizelle, consommation et BGES Énergie


4.2.2. Les intrants

Le bilan des intrants du projet concerne les matériaux de construction ainsi que les équipements. À partir des bases de données constituées pour l'évaluation du projet, la masse par unité fonctionnelle et les FE de production de chaque matériau/équipement permet de quantifier les flux de masse (tonnes) et le contenu carbone (t COze) par type de matériaux.

Les répartitions des masses et du contenu carbone par type de matériau et par phase du projet sont présentées dans la Figure 17 et Figure 18. Leur comparaison permet d'apprécier l'impact carbone de chaque matériau employé dans la phase de construction.

Figure 17 : Répartition des flux de masse et du contenu carbone par type de matériau en phase construction


RN88 Varizelle, BGES Intrants (Construction)

Échangeur de la Varizelle à Saint-Chamond CI503703

Figure 18 : Répartition des flux de masse et du contenu carbone par type de matériau en phase maintenance

4.2.3. Les déchets

Le bilan des déchets issus des travaux préparatoires ainsi que des travaux de construction et de maintenance est structuré selon les désignations de l'ADFMF. Deux précisions sont à noter : les déchets végétaux correspondent à la catégorie de *Déchets fermentescibles combustibles* tandis que les déchets inertes correspondent aux déchets *Divers non combustible et non fermentescible*.

Les FF des traitements de déchets considérés sont l'incinération (déchets végétaux), la mise en CFT (les déblais, la décharge de démolition) et le mix moyen des filières de traitement en France métropolitaine pour les autres déchets. Tous les FF sont proposés par l'ADEMF. Suivant la même logique du bilan des intrants, les déchets sont présentés dans la **Figure 19** et en termes de masse et des émissions liées au traitement de cos derniers.

Figure 19 : Répartition des flux de masse et des émissions de traitement par déchet pour la phase construction

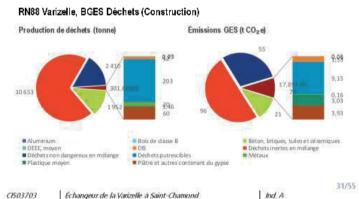
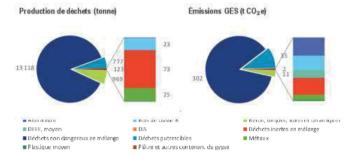



Figure 20 : Répartition des flux de masse et des émissions de traitement par déchet pour la phase maintenance

RN88 Varizelle, BGES Déchets (Maintenance)

4.2.4. Le fret

Le calcul des émissions du fret routier a été fait selon trois typologies de transport :

- le fret entrant : transport au chantier des intrants et des immobilisations ;
- le fret sortant : évacuation des déchets ;
- le fret înterne : stockage provisoire à proximité des déchets et de la terre végétale ;

Figure 21 : Décomposition du fret routier en fret intrant, sortant et interne en phase construction

RN88 Varizelle, BGES Fret

Émissions GES par phase (t COze)

4.2.5. Les déplacements

À partir des ateliers de production définis il a été calculé le nombre total d'heures de main d'œuvre nècessaire et ainsi les nombre de déplacements du personnel en phase construction, et maintenance. Quant aux déplacements en phase exploitation ils ont été évalués sur la période d'évaluation soit 50 ans.

37/55
CI503703 Échangeur de la Varizelle à Saint-Chamond Ind. A

La répartition des émissions GES des déplacements du personnel par phase est montrée dans la Figure 22.

Figure 22 : Répartition des émissions liées aux déplacements du personnel par phase du projet

RN88 Varizelle, BGES Déplacements

Émissions GES par phase (t CO2e)

4.2.6. Les immobilisations

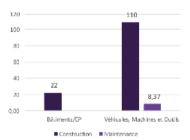

L'amortissement des émissions GFS liées à la fabrication des engins de chantier est réalisé selon la méthodologie décrite dans la section 3.7.1 a décomposition des émissions est établie suivant la durée des immobilisations en phase construction et maintenance. La Figure 23 présente la répartition des émissions GES liées à l'usage des engins de chantier et des cantonnements.

Figure 23 : Répartition des émissions de GES des immobilisations en phase construction

RN88 Varizelle, BGES Immobilisations

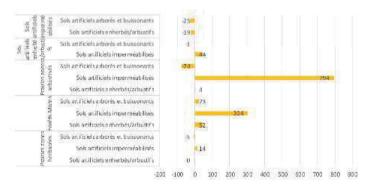
Émissions GES par phase (t CO₂ e)

CI503703

Échangeur de la Varizelle à Saint-Chamond

33/55

Ind A


4.2.7. Le changement d'affectation du sol

À partir des surfaces présentées dans le Tableau 4 de changement d'affectation du sol, les émissions liées à la réduction de la capacité de captation de carbone du sol ou à sa décarbonatation sont montrées dans la Figure 24.

Figure 24 : Emissions GES liées au changement d'affectation du sol

RN88 Varizelle, BGES UTCF

Émissions GES par type de changement d'affectation de sol (t CO2e)

CI503703 Échangeur de la Varizelle à Saint-Chamond Ind. A

5. Analyse et mesures de réduction

5.1. Analyse des émissions majoritaires

À l'issue du bilan GES effectué pour les différentes phases du cycle de vie de l'infrastructure, les éléments les plus émetteurs du projet ont été identifiés. En prenant en compte les émissions de ces postes ainsi que leur potentiel de réduction de GES, six corps de métiers ont été retenus pour effectuer une analyse détaillée. Cette analyse vise à apporter les sous-détails des émissions calculées afin de proposer des mesures de reduction.

Les mesures de réduction sont accompagnées d'une estimation du potentiel de réduction calculée pour chacun de ces corps de métier. À ce stade de l'étude ces calculs incorporent des fortes incertitudes et les émissions réduites calculées correspondent au gisement d'économies carbone. Il est à noter que la notion de gisement prend en compte le total des économies possibles à faire.

Cependant, l'exploitation de tout ou partie de ce gisement nécessite la validation d'un certain nombre d'hypothèses qui peuvent évoluer suivant l'avancement des études dans la phase de conception. Ainsi, les résultats présentés ne sont pas définitifs et constituent une première estimation qui sera affinée, approfondie et complémentée avec le reste de mesures comprises dans le dossier environnemental.

5.2. Démarche et axes de réduction

CI503703

La maîtrise de l'empreinte carbone est une démarche d'amélioration continue qui doit être menée tout le long des étapes du projet Ainsi, il est important que la démarche de réduction de l'empreinte carbone soit mise en place dès les premières phases de conception. L'intégration du critère carbone en amont des choix dimensionnants permet d'identifier et d'exploiter les alternatives à impact réduit.

Les mesures de réduction des émissions GES suivent deux axes principaux. Le premier consiste à privilégier les matériaux à contenu carbone bas. En effet, du fait de leur énergie grise, les intrants sont souvent le poste GES majoritaire des projets d'infrastructures. Ainsi, les matériaux constituent le principal tevier de réduction des émissions GES. Le recours à des matériaux recyclés et alternatifs permettent de réduire de façon substantielle l'impact du projet. En plus, privilégier l'approvisionnement local des fournitures diminue la quantité de fret nécessaire et donc l'empreinte carbone globale.

Le second axe consiste à revaloriser et réutiliser les déchets produits par le projet. En effet, une partie importante des déchets des travaux de construction et maintenance des infrastructures peuvent être revalorisés sur site. Tel est le cas des gravats de démolition réutilisables dans les fondations mais aussi des matériaux recyclables triés et envoyés vers les filières correspondantes. En plus de la quantité des déchets à traiter, le fret d'évacuation est aussi réduit améliorant, ainsi le bilan GES de l'opération.

Ensuite, la démarche de maîtrise de l'empreinte carbone devra inclure un suivi des GES le long des étapes du projet assurant ainsi le respect des objectifs carbone qui font partie des engagements du MOA auprès des différentes parties prenantes. Enfin, le suivi assurera la compréhension et l'engagement des acteurs de la chaîne valeur dans la démarche de réduction des GES du projet.

Échangeur de la Varizelle à Saint-Chamond

35/55

35/59

Ind A

5.2.1. Matériaux à contenu carbone réduit

Dans cette section sont abordées les mesures de réduction correspondant à l'utilisation des matériaux bas carbone dans les différentes corps de métier. En plus de privilégier les matériaux bascarbone, la démarche d'approvisionnement devra privilégier les fournitures auprès des entreprises locales afin de réduire les émissions du fret de livraison.

Concernant les corps de métier analysés, ils correspondent à des travaux dans lesquels le choix des matériaux alternatifs et recyclés est plausible vis-à-vis des contraintes techniques et des options bascarbone existantes dans le marché.

D'autre part, les matériaux retenus pour l'analyse correspondent à ceux pour lesquels des alternatives connues existent et sont commercialisées. En ce sens, les fournitures telles que les équipements electroniques ou les enduits et revêtements ne sont pas pris en compte. Le **Tableau 7** récapitule l'ensemble des corps de métier et de matériaux faisant l'objet de mesures de réduction.

Tableau 7 : Récapitulatif des corps de métier, de la quantité et du contenu carbone des matériaux analysés

Inv. E2	Métier	Masse (tonne)	GES (t CO2e)
Acier	Equipements	77	269
	Génie civil	97	8.8
	Ouvrages d'art	136	121
	Signalisation	3,72	10
	Terrassements	5,84	9,81
Aluminium	Équipements	1,06	80
	Signalisation	2,18	12
Béton hydraulique	Chaussées et voiries	179	16
	Équipements	2 235	251
	Génie civit	1 052	112
	Ouvrages d'art	2.536	309
	Signalisation	46	3,68
Béton préfabriqué	Chaussées et voiries	78	16
	Equipements	304	¥
	Géme civil	2 298	427
	Ouvrages d'art	109	45
	Signalisation	0,75	0,09
Enrobés bitume	Bâtiments et annexes	621	3.0
	Chaussées et voiries	18 269	386
Graviers/granulats	Chaussées et voiries	4.343	- 60
	Génie civil	1 841	5,36
	Terrassements	2.008	8,00
Plastiques/polymères	Chaussées et voiries	2,38	9,83
	Equipements	2,13	8,22
	Génie civil	4,13	9,27
	Ouvrages d'art	0,73	1,49
	Signalisation	0,06	0,12

CI503703 Echangeur de la Varizelle à Saint-Channond Ind. A

Le premier des matériaux abordé par l'analyse est le béton. En effet, sur l'ensemble du cycle de vie, les métiers retenus consomment un total de 8 837 tonnes, ce qui représente environ 1 222 t CO₂e. Dans ce cas, la mesure préconisée consiste à privilégier le béton bas-carbone en ciment à base de laitier de haut fourneau, ce qui réduit l'utilisation de clinker dont l'énergie grise est nettement plus élevée.

L'évaluation de cette mesure est faite en remplaçant le facteur d'émission ciment CEM II utilisé dans les bétons conventionnelles par celui du <u>ciment incorporant du laitier</u> (CEM III/A et H-UKR, voir **Tableau** 8). Un dosage moyen de 300 kg/m3 de béton est utilisé. Le gisement de réduction attendu pour cette mesure devrait atteindre les 409 t CO₂e.

Concernant les travaux de chaussée, les enrobés bitume est le matériau le plus utilisé avec environ 18 890 tonnes sur l'ensemble du cycle de vie. Pour réduire son empreinte carbone, l'utilisation de <u>béton bitumineux incorporant des taux de recyclage</u> est préconisée. Sur la base des retours d'expérience, le taux de recyclage des enrobés commercialisés peut atteindre 30%. Suivant cette hypothèse, cette mesure permettrait d'économiser jusqu'à 66 t CO₂e.

Ensuite, les équipements et la signalisation du projet sont les postes les plus consommateurs de métaux, environ 319 tonnes d'acier et 3,2 tonnes et aluminium. Dans ce cas, la mesure de réduction consiste à privilégier les équipements (panneaux, poteaux, etc.) en métal recyclé. En effet, le choix des métaux recyclés représente un fort levier de réduction des GES sans pour autant nécessiter une réévaluation technique préalable. L'évaluation des réductions est faite à partir de la différence entre les FE pour les métaux neufs et les FE pour ceux issus du recyclage. D'après les estimations présentées dans le **Tableau 8**, la réduction de GES pourrait atteindre le 246 t CO₂e.

En plus des métaux, le projet nécessite de matières plastiques. Les postes les plus importants d'utilisation de plastique sont ceux des gaines en PVC et Membrane en PEHD qui comptent un total de 5,6 tonnes, ce qui représente 11 t CO₂e. La démarche de réduction devra privilégire les fabricants incorporant des plastiques recyclès. Cela permettraît de réduire de 9 t CO₂e le bilan GES du projet

Tableau 8 : Détails de calcul des mesures de réduction préconisées concernant les matériaux

Échangeur de la Varizelle à Saint-Chamond

CI503703

Inv. E3	Quantité	U. F.	F.E. (kg CO2e)	GES (t CO2e)	Nature
Aluminium [neuf]	3,23	tonne	9 827	32	Réduites
Aluminium [recyclé]	3,23	tonne	562	1,82	Megares
Acier ou fer blanc [neuf]	123	tonne	2211	271	Réduites
Acier ou fer blanc [recyclé]	123	tonne	938	115	Mesures
Acjere HA, armaturee passives	197	tonne	607	119	Récluitos
Aciers HAXcarb [ArcelorMittal]	197	tonne	300	59	Mesures
Ciment CEM II	1 128	tonne	736	830	Réduites
Ciment CEM IIVA	765	tonne	461	353	Mesures
L'iant minéral à base de laitier H-UKR	363	tonne	188	68	Mesures
Enrobés bitumineux	2 371	m3	125	297	Réduites
Enrobés bitumineux avec 30% REC	2 371	me3	98	231	Megures
Plastique, PVC [neuf]	2,13	tonne	1870	3,98	Réduite:
Plastique, PVC [recyclé]	2,13	tonue	403	0,86	Megires
Plastique, PET [neuf]	0,00	tonne	3.270	8,08	Réduites
Plastique, PET [recydé]	0,00	tonne	202	0,00	Mesures
Plastique, PEHD [neuf]	3,50	tonne	1.920	6,71	Réduites
Plastique, PEHD [recyclé]	3,50	tonne	202	0,71	Mesures

20122

Ind A

5.2.2. Revalorisation en filière

Cette section est dédiée à l'analyse des mesures de réduction concernant la réutilisation sur site des déchets et la revalorisation de ceux qui sont évacués. En plus, une variante technique concernant le traitement des sols est aussi évaluée. En plus de déchets, les mesures évaluées modifient les distances et les volumes transportés. Le **Tableau 9** montre la liste de corps de métier abordés, les quantités de déchets et de fret produit ainsi que les émissions GES associées.

Tableau 9 : Récapitulatif des corps de métier, des déchets, du fret d'évacuation et des émissions GES

Inv. E3	Métier	U.F.	Qté.	GES (t CO2e
Aluminium [moyenne]	Equipements	tonne	0,53	0,30
	Signalisation	tonne	0,73	0,41
	Travaux préparatoires	tonne	0,05	0,03
Articulé, 40 à 44 T diesel	Chaussees et voiries	tonne.km	406 241	0,61
routier, / % de biodiese)	Equipements	tonne.km	120 176	0,09
	Génie civil	tonne.km	315 203	0,48
	Ouvrages d'art	tonne.km	1.249	0,00
	Signalisation	tonne.km	87	0,00
	Terrassements	tonne.km	97 910	0,15
	Travaux préparatoires	tonne.km	231349	0,35
Béton, briques, tuiles et céramiques [hors recyclage]	Equipements	tonne	963	11
	Génie civil	tonne	0,00	0,00
	Ouvrages d'art	tonne	29	0,32
	Travaux préparatoires	tonne	1929	21
Bois de classe B [hors	Équipements	tonne	23	0,53
recyclage]	Travaux préparatoires	tonne	2,77	0,06
Déchets inertes en	Chaussées et voiries	tonne	73	0,66
mélange (Gravats) [hors	Équipements	tonne	475	4,27
recyclage]	Génie civil	tonne	5 491	49
	Terrassements	tonne	2 000	18
	Travaux préparatoires	tonne	1591	14
Déchets non dangereux	Chaussées et voiries	tonne	9.972	229
en mélange (DIB) [hors	Génie civil	tonne	2.261	52
recyclage]	Ouvrages d'art	Innne	2,44	0,06
	Terrassements	tonne	448	10
	Travaux préparatoires	tonne	1.963	45
Déchets putrescibles	Génie civil	tonne	128	5,78
[incinération]	Travaux préparatoires	tonne	203	9,15
DEEE, moyen (par défaut) [moyenne]	Equipements	tonne	0,16	0,32
DIS [stockage]	Travaux préparatoires	tonne	12	1,53
Métaux [hors recyclage]	Equipements	tonne	24	0,19
	Signalisation	tonne	0,99	0,01
	Travaux préparatoires	tonne	20	0,16
Plastique moyen	Signalisation	tonne	8,04	.0,04
[moyenne]	Travaux préparatoires	tonne	3,46	3,03
Plâtre et autres contenant du gypse [hors recyclage]		tonne	60	3,93

CI503703 Echangeur de la Vanzelle à Saint-Channond Ind. A

Les corps de métier retenus correspondent à ceux dont les déchets produits peuvent être revalorisés lors des travaux de construction et de maintenance. Ainsi, la génération des déchets et sa réutilisation correspondent à la même période de travaux. Afin de montrer la totalité du gisement de réduction, les matériaux revalorisables sont comptabilisés dans sa totalité. Cependant, il est possible qu'une partie des déchets considérés ne puissent pas être revalorisés.

Le premier poste analysé est célui des déchets verts. Les travaux de dégagement d'emprises (déboisement, débroussaillage) produisent 203 tonnes. Les déchets verts ainsi engendrés peuvent faire l'objet d'une valorisation thermique en cogénération par exemple.

Pour les déchets verts, les émission GES évitées sont calculées en prenant un PCI de 4 600 kWh/tonne de déchet et un rendement électrique et thermique de 35 et 53% respectivement. Du fait de sa proximité, le réseau de chaleur de la ville de Saint-Chamond est retenu. A déaut d'informations plus précises, la distance d'évacuation prise en compte lors de l'évaluation reste inchangée. Au total, les émissions évitées pour l'électricité et le réseau de vapeur et chaleur sont de 20 et 24 t COse respectivement.

Ensuite, les déchets produits par les travaux de réfection des chaussées et la dépose des équipements (y compris glissière existante) et signalisation sont aussi intégrés. Concernant les gravats d'enrobés bitumineux, l'évacuation vers des centrales à enrobé pour être incorporés dans la formulation d'enrobés recyclés est à privilégier. Bien qu'à ce stade de l'étude les distances d'évacuation exactes restent incompues, il est possible de réduire les émissions GES du traitement des déchets.

De la même façon, l'évacuation vers des filières de recyclage des déchets métalliques (équipements et signalisation) diminue le bilan GFS du projet. Ainsi, grâce au recyclage de ces déchets, il est possible de réduire les émissions GFS de 240 t CO₂e et d'en éviter 152 t CO₂e (voir Tableau 10).

Inv. E3	Quantité	U.F.	F.E. (kg CO2e)	GES (t CO2e)	Nature
Aluminium [moyenne]	1,31	torine	562	0,73	Réduites
Aluminium	1.31	tonne	-7 803	10	Evitees
Métaux [hors recyclage]	44	tonne	8,00	0,36	Béduites
Métaux ferreux	44	tonne	-2211	98	Évitées
Déchets non dangereux en mélange (DIB) [hors recyclage]	9 972	tonne	23	229	Réduites
Déchets putrescibles [incinération]	203	tonne	45	9,15.	Réduites
69, Lyon, Réseau Lyon 2018	495 638	kWh	0,05	24	Évitées
2020 - mix moyen	327 308	kWh	0,06	20	Évitées

Tableau 10 : Détails de calcul des mesures concernant la revalorisation des déchets

5.2.3. Revalorisation sur site

CI503703

Concernant les travaux de terrassement, ils produisent un total de 7 477 tonnes de déblais en phase construction. Ces déblais pour raient être réutilisés en tant que remblais pour les couches de forme des nouvelles voiries et ainsi réduire le besoin de matériaux d'apport. La mesure préconisée pour revaloriser ces déchets consiste à les incorporer dans les couches de fondation aprés traitement de stabilisation.

L'application de cette mesure permettrait de réduire :

- Les émissions liées aux opérations de mise en dépôt et de fonctionnement des ISDI.
- Les émissions issues de la production des granulats

Échangeur de la Varizelle à Saint-Chamond

 Le fret d'évacuation des déchets et d'apport des matériaux. Cependant, une part de ce fret est conservée car attribuée au transport interne pour le stockage provisoire sur place.

39/55

Ind A

Afin de calculer les émissions produites par le traitement de stabilisation, l'évaluation GES prend en compte le phasage et hypothèses suivantes :

- un traitement des terres à une teneur de 2% en fiant hydraulique,
- fret interne pour mise en dépôt provisoire sur 10 km,
- consommation en carburant pour malaxage de 42 litre/h avec un rendement de 400 tonne/h,
- consommation en carburant pour manutention des déblais de 0.6 litre/m3.

Aínsi, les émissions nécessaires à la stabilisation des déblais représentent 44 t CO₂e pour une réduction de 116 t CO₂e. Au total, cette mesure représenterait une économie nette de 72 t CO₂e par rapport aux émissions du bilan initial.

Tableau 11 Détails de calcul des mesures concernant la revalorisation des déblais sur site

Inv. E3	Quantité	U.F.	F.E. (kg CO2e)	GES († CO2e)	Nature
Déchets inertes en mélange (Gravats) [hors recyclage]	7 477	tonne	9,00	67	Réduites
Granulats [sortie carrière]	7 477	torine	4,00	30	Réduites
Articulé, 40 à 44 T diesel routier, 7 % de biodiesel	299 07 1	torine.kin	0,06	18	Réduites
Articulé, 40 à 44 T diesel routier, 7 % de biodiesel	74 768	torine.kiri	0,06	4,58	Mesures
Liant minéral à base de laitier H-UKR	150	torine	188	28	Mesures
Gazole non routier	785	litre	3,17	2,48	Mesures
Gazole non routier	2 639	litre	3,17	8,35	Mesures

De façon similaire, les travaux de démolition ouvrages en béton existants produisent 1 962 tonnes de gravals qui pourraient aussi être valorisés et réduire les besoins en matériaux d'apport. Pour ce faire, la mesure préconisée consiste à effectuer un concassage des gravals de béton pour son incorporation dans les couches de fondation.

Ce concassage peut être soit réalisé sur site ou bien dans un centre spécialisé en appliquant le principe du double fret. Compte tenu des volumes estimés, la solution du double fret serait la mieux adaptée. Ainsi, le calcul du gisement d'économies prend en compte les hypothèses suivantes :

- distance de double fret de 40 km (dont l'aller est déjà comptabilisé dans le fret d'évacuation)
- consommation en carburant pour concassage de 83 litre/h avec un rendement de 300 tonne/h
- consommation en carburant pour manutention de 0.6 litre/m3

D'après les calculs présentés dans le Tableau 12, les émissions liées au double fret devraient représenter 8,7 t CO₂e mais permettraient de réduire 50 t CO₂e, soit une économie nette de 41 t CO₂e.

Tableau 12 : Détails de calcul des mesures concernant la revalorisation des gravats de démolition sur site

Inv. E3	Quantité	U.F.	F.E. (kg CO2e)	GES (t CO2e)	Nature	
Béton, briques, tuiles et céramiques [hors recyclage]	1 952	Lonne	11	21	Reduites	
Gazole non routler	540	litre	3,17	1,71	Mesures	
Gazole non routier	689	fitre	3,17	2,18	Mesures	
Articulé, 40 à 44 T diesel routier, 7 % de biodiesel	78 091	tonne.km	0,06	4,78	Mesures	
Grave, non traitée	1 952	tonne	15	28	Réduites	

40/55

CI503703 Échangeur de la Varizelle à Saint-Charnond

Ind A

6. Conclusion

Le bilan global initial des émissions de GES hors usagers est évalué à **7 732 t CO2e**, avec une incertitude de 692 t CO2e, soit 9% des émissions estimées. Une première démarche de réduction a permis d'identifier des gisements d'économie carbone et sont rappelés ci-dessous:

Matériaux bas-carbone : 730 t COse

Valorisation des déchets en filière : 240 t CO₂e

Valorisation des déchets sur site : 113 t COse

Soit au total 1 083 t CO₂e qui pourraient être réduites grâce à des mesures d'utilisation de matériaux bas-carbone et incluant des taux de recyclage et la valorisation des déchets en filière de traitement. En retranchant ces gisements aux émissions estimées, le coût carbone du projet pourrait être ramené aux 6 648 t CO₂e sur l'ensemble du cycle de vie.

Concernant les usagers, le projet impliquerait une réduction de 2 308 t CO₂e sur 20 ans du fait de la diminution des distances parcourues et des modifications des vitesses de circulation. Selon l'étude de trafic utilisée pour l'élaboration de ce bilan GES, le projet induirait une augmentation de PL mais une réduction plus importante des VL. En plus des usagers, les mesures préconisées concernant le recyclage de l'accier et l'aluminium ainsi que la revalorisation des déchets verts permettraient d'éviter 152 t CO₂e supplémentaires.

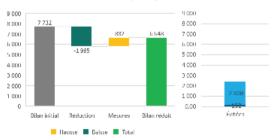

Les émissions du bilan initial et les variations apportées par les mesures de réduction sont montrées dans la **Figure 25**. En plus des variations, cette figure permet de comparer le bilan réduit des émissions du projet avec les émissions évitées.

Figure 25 : Variation des émissions GES du bilan initial en appliquant les mesures de réduction (émissions directes et réduites).

RN88 Varizelle, Récapitulatif du bilan GES

Émissions directes, réduites et évitées (t CO₂e)

CI503703

Échangeur de la Varizelle à Saint-Chamond

41/55

Ind A

Afin d'assurer au projet une empreinte carbone réduite, il est primordial que les DCE et les études à venir soient rédigés en ce sens. Des objectifs carbone doivent être précisés avec la mise en place de pénalités s'ils ne sont pas atteints. La réponse des entreprises travaux au marché doit être assortie d'une première estimation des émissions de GES avec des pistes de réduction.

L'entreprise devra s'engager à fournir les facteurs d'émission par unité fonctionnel pour garantir la transparence de leur bilan. Dans le cas où les FE ne seraient pas disponibles, l'entreprise pourra les fournir en cours de travaux après avoir consulté ses sous-traitant.

En phase de travaux, les entreprises doivent réaliser un suivi de leurs émissions au cours du chantier et évaluer leurs propositions de travaux sous l'angle de la comptabilité carbone avant mise en œuvre. En plus de l'attention portée au contenu carbone des matériaux, ce suivi devra tenir compte des consommations d'énergie, du fret constaté dans les bons de livraison, des déchets produits et des déplacements du personnel.

Au même titre qu'un auivi environnementale ou budgétaire, un contrôle de la part de la MOA ou MOF doit être réalisé tout au long la vie du projet afin d'assurer le suivi des objectifs en termes des émissions de GFS. En respectant une démarche d'amélioration continue, l'étude des pistes d'amélioration ainsi que l'approfondissement des mesures de réductions proposées dans ce rapport sera poursuivie au fur et à mesure de l'avancement des études de conception du projet.

42/55
CI503703 Échangeur de la Varizelle à Saint-Chamond Ind. A

7. Annexes

CI503703

Annexe 1 : Engins de chantier

Annexe 1 - Caractéristiques des engins de chantier employées

Matériel	Carburant	Puissance (kW)	Charge moteur	Poids (t)	Distance (km)	Q (litre/h)	Hulle (litre/h)
Bulldozer CAT D5	Gazole	103	55%	19	300	17	0,70
Camion benne 12T	Gazole	162	55%	32	100	26	0,70
Camion benne 40T	Gazole	300	55%	32	100	49	0,70
Camion bras EB GC	Gazole	235	55%	16	150	38	0,70
Camion citerne 5000 L	Gazole	60	55%	35	50	10	0,35
Camion nacelle à bras articulé	Gazole	90	55%	3,00	150	15	0,70
Centrale de malaxage	Gazole	120	55%	10	300	20	0,70
Chargeuse sur pneus	Gazole	120	55%	35	100	20	0,70
Chariot de forage HCR 1000EDS II	Gazole	168	55%	12	300	27	0,70
Compacteur	Gazole	120	55%	12	300	20	0,70
Compacteur à pneu	Gazole	75	55%	5,00	300	12	0,70
Compreseur 22000L	Gazole	220	55%	6,80	150	36	0,70
Compresseur 5 m3/min	Gazole	32	100%	1,00	100	9,95	0,35
DUMPER 600 L. FRONTA	Gazole	17	100%	1,40	100	5,45	0,35
Débroussailleuse	Essence	1,50	100%	0,01	100	1,29	0,00
Extrudeuse béton	Gazole	115	55%	15	150	19	0,70
Finisher	Gazole	150	55%	18	300	24	0,70
GRACO LINELAZER-™ V 250DC	Essence	8,80	100%	0,35	150	7,59	0,00
Galotrax/Tracteur forestier	Gazole	235	55%	11	300	38	0,70
Grenailleuse autoportée S320RD	Gazole	19	100%	0,90	150	5,93	0,35
Grue automotrice 25T	Gazole	156	55%	25	150	25	0,70
Hélicoptère	Essence	4,00	100%	0,07	50	3,45	0,00
Machine à projeter béton	Gazole	18	100%	42	500	5,65	0,70
Manuscopique	Gazole	75	55%	8,00	150	12	0,70
Marteau PAJOT 2800 kg	Pneumatiqu e	0,00	100%	2,80	150	0,00	0,00
Marteau piqueur	Essence	1,86	100%	0,02	100	1,61	0,00
Mini-pelleteuse Komatsu PC55MR-5	Gazole	35	55%	5,50	100	5,99	0,35
Motoculteur	Essence	10	100%	0,15	150	8,63	0,00
Motoniveleuse	Gazole	141	55%	17	300	23	0,70

Échangeur de la Varizelle à Saint-Chamond

43/55

Ind A

Pelle de forage LB 28- 320	Gazole	390	55%	51	300	64	0,70
Pelle sur pneus (CAT M315F)	Gazole	112	55%	23	100	19	0,70
Pelle à chenilles (CAT 320 EL)	Gazole	121	55%	23	300	20	0,70
Pelle à chenilles (brise- roche)	Gazole	74	55%	16	300	13	0,35
Poste d'oxycoupage (oxyacétylénique)	Acétyléne- Oxygène	0,00	100%	1,00	300	0,00	0,00
Raboteuse W100 ET CFI	Gazole	257	55%	18	300	42	0,70
Rouleau léger plantation	Essence	6,00	100%	0,10	150	5,18	0.00
Répandeuse	Gazole	240	55%	18	300	39	0,70
Rétrochargeuse sur pneus	Gazole	70	55%	16	100	12	0,70
Scie chaussée FS400LV	Essence	8,00	100%	0,10	100	6,90	0,00
Sonnete H 90 R 2000	Gazole	15	100%	1,50	250	4,81	0,35
Tondeuse	Essence	6,00	100%	0,10	100	5,18	0,00
Toupie á béton	Gazole	294	55%	25	0,00	48	0,70
Tronconneuse	Essence	1,45	100%	0,01	100	0,96	0.00

CI503703 Échangeur de la Varizelle à Saint-Chamond Ind. A

45/55

Annexe 2: Ateliers de production

Annexe 2 - Cadences, consommations et facteurs d'amissions des ateliers de production utilisés

Bétonnage en hauteur 4 0.12 m3 0.00 55 1,40 Aleifer de levage base ve 5 7,00 jour 0,00 19 0,70 Bétonnage horizontal 4 0,08 m3 3,50 48 1,40 Déblayage (ciel duvert) 3 0,07 m3 0,00 12 0,70 Bétonnage vertical 4 0,08 m3 0,00 12 0,70 Marquage au sol 2 0,01 m2 0,00 5,90 0,35 Coffrage surface (en hauteur) 4 0,03 m2 0,00 19 0,70 Pose plocs beton priera 4 0,70 u 0,00 19 0,70 Coffrage partrace (en hauteur) 4 0,05 m1 0,00 19 0,70 Coffrage partrace (en hauteur) 4 0,05 m1 0,00 19 0,70 Démotition active de l'auteur d'auteur d'auteur d'auteur d'auteur d'auteur d'auteur d'auteur d'	Activité	Ouvrie	TU (h)	U.F.	Q essence (L/h)	Q gazole (L/h)	Q huile (Lih)
Bétonnage horizontal 4 0,08 m3 3,50 48 1,40 Déblayage (del ouvert) 3 0,07 m3 0,00 12 0,70 Bétonnage vertical 4 0,08 m3 0,00 48 1,40 Marquage au sol 2 0,00 I 7,60 0,00 0,00 Coffrage surface (enhauteur) 4 0,03 m2 0,00 19 0,70 Pose blocs beton prera 4 0,10 u 0,00 19 0,70 Coffrage surface (enhauteur) 4 0,05 m1 0,00 19 0,70 Démotition betiennents au surface (enhauteur) 4 0,05 m1 0,00 19 0,70 Démotition haussée 4 0,03 m2 0,00 19 0,70 Démotition entrobés 4 0,01 m2 0,00 13 0,35 Dépose équipements Inhéries 4 0,10 m1 0,00 19 0,70	Bétonnage en hauteur	4	0,12	m3		55	1,40
Deblayage (diel ouvert) 3 0.07 m3 0.00 12 0,70 Bétonnage vertical 4 0.08 m3 0.00 48 1,40 Marquage au sol 2 0,00 I 7,60 0,00 0,00 Gernaflage marquage au sol 2 0,01 m2 0,00 19 0,70 Coffrage surface (en hauteur) 4 0,03 m2 0,00 19 0,70 Coffrage linéaire (en hauteur) 4 0,05 mI 0,00 19 0,70 Démoffion chaussée 4 0,05 mI 0,00 19 0,70 Démoffion chaussée 4 0,01 m2 0,00 31 1,05 Démoffion enrobés 4 0,01 m2 0,00 13 0,35 Démoffion enrobés 4 0,01 m2 0,00 13 0,35 Dépose équipements linéaires 4 0,10 mI 0,00 19 0,70 B	Atelier de levage base vie	5	7.00	jour	0,00	19	0,70
Bétonnage vertical 4 0,08 m3 0,00 48 1,40	Bétonnage horizontal	4	0.08	m3	3,50	48	1,40
Marquage au sol 2 0,00 I 7,60 0,00 0,00 Grenalilage mar quage au sol 2 0,01 m2 0,00 5,90 0,35 Coffrage surface (en hauteur) 4 0,03 m2 0,00 19 0,70 Pose biors pretra 4 0,10 u 0,00 19 0,70 Démotition manuelle 1 0,90 m3 1,60 0,00 0,00 Démotition chaussée 4 0,03 m2 0,00 31 1,05 Démotition entrobés 4 0,03 m2 0,00 13 0,35 Démotition entrobés 4 0,01 m2 0,00 13 0,35 Dépose manuelle équipements 4 0,01 m1 0,00 19 0,70 Dépose manuelle équipements 2 0,25 u 0,00 12 0,70 Bindage palplanche 2 1,90 tonne 0,00 37 1,40 <t< td=""><td>Déblayage (del ouvert)</td><td>3</td><td>0.07</td><td>m3</td><td>0,00</td><td>12</td><td>0,70</td></t<>	Déblayage (del ouvert)	3	0.07	m3	0,00	12	0,70
Grenaliage mar quage au sol 2 0,01 m2 0,00 5,90 0,35 Coffrage surface (en hauteur) 4 0,03 m2 0,00 19 0,70 Pose bious perra 4 0,10 u 0,00 19 0,70 Coffrage linéaire (en hauteur) 4 0,05 ml 0,00 19 0,70 Démoftion manuelle 1 0,90 m3 1,60 0,00 0,00 Démoftion chaussée 4 0,03 m2 0,00 31 1,05 Démoftion enrobés 4 0,01 m2 0,00 13 0,35 Démoftion enrobés 4 0,01 m2 0,00 13 0,35 Dépose équipements inéaires 4 0,10 ml 0,00 12 0,70 Dépose équipements inéaires 4 0,10 m1 0,00 12 0,70 Bindage palpianche 2 1,90 tonne 0,00 37 1,40	Bétonnage vertical	4	0.08	m3	0,00	48	1,40
Coffrage surface (en hauteur)	Marquage au sol	2	0.00	1	7,60	0,00	0.00
Pose piocs beton prefa	Grenaillage mar quage au sol	2	0,01	m2	0,00	5,90	0,35
Coffrage Inéaire (en hauteur) 4 0,05 ml 0,00 19 0,70 Démofition manuelle 1 0,90 m3 1,60 0,00 0,00 Démofition chaussée 4 0,03 m2 0,00 31 1,05 Démofition eléments BA 3 2,84 m3 0,00 13 0,35 Dépose équipements inéaires 4 0,01 m2 0,00 13 0,35 Dépose équipements inéaires 4 0,10 m1 0,00 19 0,70 Babotage coudre de roulement 4 0,00 m2 0,00 54 1,40 Atter de levage équipements 4 0,00 m2 0,00 54 1,40 Atter de levage équipements 4 1,00 h 0,00 37 1,40 Bindage palplanche 2 1,90 tonne 0,00 37 1,40 Forage fondiditions profondes 3 0,17 m1 0,00 64 0,70 </td <td>Coffrage surface (en hauteur)</td> <td>4</td> <td>0,03</td> <td>m2</td> <td>0,00</td> <td>19</td> <td>0,70</td>	Coffrage surface (en hauteur)	4	0,03	m2	0,00	19	0,70
Démotition manuelle 1 0,90 m3 1,60 0,00 0,00 Démotition rhaussée 4 0,03 m2 0,00 31 1,05 Démotition eléments BA 3 2,84 m3 0,00 13 0,35 Dépose équipements inéaires 4 0,01 m2 0,00 13 0,35 Dépose équipements inéaires 4 0,10 mI 0,00 19 0,70 Boépose équipements 2 0,25 u 0,00 12 0,70 Rabotage coudre de roulement 4 0,00 m2 0,00 54 1,40 Atteler de levage équipements 4 1,00 h 0,00 37 1,40 Atteler de levage équipements 4 1,00 h 0,00 37 1,40 Bindage palplanche 2 1,90 tonne 0,00 37 1,40 Bindage palplanche 2 1,90 tonne 0,00 37 1,40	Pose piocs beton prera	4	0,10	ш	0,00	19	0,70
Démotition chaussée 4 0,03 m2 0,00 31 1,05 Démotition éléments BA 3 2,84 m3 0,00 13 0,35 Démotition enrobés 4 0,01 m2 0,00 13 0,35 Dépose équipements inéaires 4 0,10 mI 0,00 19 0,70 Dépose manuelle équipements 2 0,25 u 0,00 12 0,70 Bindage couche de roulement 4 0,00 m2 0,00 54 1,40 Ateler de kwage équipements 4 1,00 h 0,00 37 1,40 Bindage palplanche 2 1,90 tonne 0,00 37 1,40 Forage fondations profendes 3 0,17 mI 0,00 40 1,40 Forage fondations profendes 3 0,17 mI 0,00 40 1,40 Pose équipement lèger en hauteur 2 0,22 u 0,00 7,50 0,70	Coffrage linéaire (en hauteur)	4	0,05	ml	0,00	19	0,70
Démotition éléments BA 3 2,84 m3 0,00 13 0,38 Démotition enrobés 4 0,01 m2 0,00 13 0,35 Dépose équipements inéaires 4 0,10 mI 0,00 19 0,70 Dépose manuellé équipements 2 0,25 u 0,00 12 0,70 Rabctage couche de roulement 4 0,00 m2 0,00 54 1,40 Ateier de levage équipements 4 1,00 h 0,00 37 1,40 Bindage palplanche 2 1,90 tonne 0,00 40 1,40 Forage fondations profondes 3 0,17 mI 0,00 40 1,40 Forage fondations profondes 3 0,17 mI 0,00 64 0,70 Pose équipement leiger en hauteur 2 0,22 u 0,00 64 0,70 Débisyage (foulle) 3 0,12 m3 0,00 12 0,70	Démolition manuelle	1	0,90	m3	1,60	0,00	0,00
Démotition enrobés 4 0,01 m2 0,00 13 0,35 Dépose équipements inéaires 4 0,10 ml 0,00 19 0,70 Dépose manuelle équipements 2 0,25 u 0,00 12 0,70 Rabotage coubre deroulement 4 0,00 m2 0,00 54 1,40 Ateler de levage équipements 4 1,00 h 0,00 37 1,40 Bindage palplanche 2 1,90 tonne 0,00 40 1,40 Forage fondations profondes 3 0,17 ml 0,00 64 0,70 Pose équipement léger en hauteur 2 0,22 u 0,00 7,50 0,70 Débisyage (foulle) 3 0,12 m3 0,00 12 0,70 Pose équipements inéaires 4 0,10 ml 0,00 24 1,05 Répandage courbe d'accrochage 2 0,00 m2 0,00 29 0,70	Démolition chaussée	4	0,03	m2	0,00	31	1,05
Dépose équipements inéaires 4 0,10 ml 0,00 19 0,70 Dépose manuelle équipements 2 0,25 u 0,00 12 0,70 Rabotage courbe de roulement 4 0,00 m2 0,00 54 1,40 Ateler de levage équipements 4 1,00 h 0,00 37 1,40 Bindage palplanche 2 1,90 tonne 0,00 40 1,40 Forage fondations profendes 3 0,17 m1 0,00 64 0,70 Pose équipement lièger en hauteur 2 0,22 u 0,00 7,50 0,70 Pose équipements inéaires 4 0,10 m1 0,00 24 1,05 Répandage couche d'accrochage 2 0,00 m2 0,00 29 0,70 Pose manuelle de fournitures 1 1,00 moe 0,00 29 0,70 Misse en œutre GBénrobés aufinisseur 8 0,00 m2 0,00	Démolition éléments BA	3	2,84	m3	0,00	13	0,35
Dépose manuelle équipements 2 0,25 u 0,00 12 0,70	Démoltion enrobés	4	0,01	m2	0,00	13	0,35
Rabotage couche de roulement 4 0,00 m2 0,00 54 1,40 Ateler de levage équipements 4 1,00 h 0,00 37 1,40 Bindage palplanche 2 1,90 tonne 0,00 40 1,40 Forage fondiations profondes 3 0,17 ml 0,00 64 0,70 Pose équipement léger en hauteur 2 0,22 u 0,00 7,50 0,70 Póse équipements liéaires 4 0,10 ml 0,00 24 1,05 Répandage couche d'accrochage 2 0,00 m2 0,00 24 1,05 Répandage couche d'accrochage 2 0,00 m2 0,00 29 0,70 Pose manuelle de fournitures 1 1,00 moe 0,00 29 0,70 Pose manuelle de fournitures 1 1,00 moe 0,00 29 0,70 Pose de quipements BA 5 1,00 m2 0,00 37<	Dépose équipements linéaires	4	0,10	ml	0,00	19	0,70
Ableter de levage équipements 4 1,00 h 0,00 37 1,40 Bindage palplanche 2 1,90 tonne 0,00 40 1,40 Forage fondations profondes 3 0,17 ml 0,00 64 0,70 Pose équipement lèger en hauteur 2 0,22 u 0,00 7,50 0,70 Déblayage (foulle) 3 0,12 m3 0,00 12 0,70 Pose équipement lèger en hauteur 2 0,22 u 0,00 7,50 0,70 Pose équipements linéaires 4 0,10 ml 0,00 24 1,05 Répandage courbe d'accrochage 2 0,00 m2 0,00 29 0,70 Pose manuelle de fournitures 1 1,00 moe 0,00 0,00 0,00 Mise en œuvre GB/en robés au l'nisseur 8 0,00 m2 0,00 37 1,40 Levage éléments BA 5 1,00 cycle 0,00 19 0,70 Levage éléments BA 5 1,00 cycle 0,00 19 0,70 Pose de gabions 6 0,33 m3 0,00 32 1,40 Remblayage (foulles) 2 0,06 m3 0,00 36 1,75 Remblayage (foulles) 2 0,06 m3 0,00 36 1,75 Remblayage et couches de forme 2 0,09 m3 0,00 28 1,05 Partation arbres 3 0,66 u 0,00 11 0,70 Plantation arbustes 2 0,05 u 0,00 11 0,70 Plantation arbustes 5 0,00 tonne 0,00 39 1,40 Makaxage sols en centrale 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon	Dépose manuelle équipements	2	0,25	ш	0,00	12	0,70
Bindage palplanche	Rabotage coudhe de roulement	4	0,00	m2	0,00	54	1,40
Forage fondiations profondes 3 0,17 ml 0,00 64 0,70	Atelier de levage équipements	4	1,00	h	0,00	37	1,40
Pose équipement lèger en hauteur 2 0,22 u 0,00 7,50 0,70	Blindage palplanche	2	1,90	tonne	0,00	40	1,40
Deblayage (foulle) 3 0,12 m3 0,00 12 0,70 Pose équipements linéaires 4 0,10 ml 0,00 24 1,05 Répandage courbe d'accrochage 2 0,00 m2 0,00 29 0,70 Pose manuele de fournitures 1 1,00 moe 0,00 0,00 0,00 Mise en œuvre GB/enrobés au finisseur 8 0,00 m2 0,00 37 1,40 Levage éléments BA 5 1,00 cycle 0,00 19 0,70 Levage éléments d'armeture 5 0,50 cycle 0,00 19 0,70 Pose de gabions 6 0,33 m3 0,00 32 1,40 Remblayage (fouilles) 2 0,06 m3 0,00 36 1,75 Remblayage et couches de forme 2 0,09 m3 0,00 45 3,15 Épandage terre végétale 2 0,09 m3 0,00 28 1,0	Forage fondations profondes	3	0,17	ml	0,00	64	0,70
Pose équipements linéaires 4 0,10 ml 0,00 24 1,05 Répandage couche d'accrochage 2 0,00 m2 0,00 29 0,70 Pose manuelle de fournitures 1 1,00 moe 0,00 0,00 0,00 Mise en œuvre GB/enrobés aufinisseur 8 0,00 m2 0,00 37 1,40 Levage éléments BA 5 1,00 cycle 0,00 19 0,70 Levage éléments d'armeture 5 0,50 cycle 0,00 19 0,70 Pose de gabions 6 0,33 m3 0,00 32 1,40 Remblayage (fouilles) 2 0,06 m3 0,00 36 1,75 Remblayage (fouilles) 2 0,08 m3 0,00 36 1,75 Remblayage et couches de forme 2 0,09 m3 0,00 45 3,15 Épandage terre végétale 2 0,00 m2 0,00 28 1,05 Plantation arbres 3 0,66 u 0,00 11 0,70 Plantation arbustes 1 0,01 m2 5,20 0,00 0,00 Malaxage sols en centrale 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation agazon 5 0,06 m2 11 0,00 0,00	Pose équipement léger en hauteur	2	0,22	u	0,00	7,50	0,70
Répandage courbe d'accrochage 2 0,00 m2 0,00 29 0,70 Pose manuelle de fournitures 1 1,00 moe 0,00 0,00 0,00 Mise en œuvre GB/enrobés aufinisseur 8 0,00 m2 0,00 37 1,40 Levage éléments BA 5 1,00 cycle 0,00 19 0,70 Levage éléments BA 5 1,00 cycle 0,00 19 0,70 Levage éléments d'armeture 5 0,50 cycle 0,00 19 0,70 Pose de gabions 6 0,33 m3 0,00 32 1,40 Remblayage (foulies) 2 0,06 m3 0,00 36 1,75 Remblayage et couches de forme 2 0,09 m3 0,00 36 1,75 Epandage terre végétale 2 0,09 m2 0,00 28 1,05 Plantation arbustes 3 0,66 u 0,00 11 0,70	Déblayage (fouille)	3	0,12	m3	0,00	12	0,70
Pose manuele de fournitures 1 1,00 moe 0,00 0,00 0,00 0,00	Pose équipements linéaires	4	0,10	ml	0,00	24	1,05
Mise en œuvre GB/enrobés aufinisseur 8 0,00 m2 0,00 37 1,40 Levage éléments BA 5 1,00 cycle 0,00 19 0,70 Levage éléments d'armature 5 0,50 cycle 0,00 19 0,70 Pose de gabions 6 0,33 m3 0,00 32 1,40 Remblayage (fouilles) 2 0,08 m3 0,00 36 1,75 Remblayage et couches de forme 2 0,09 m3 0,00 45 3,15 Épandage terre végétale 2 0,00 m2 0,00 28 1,05 Plantation arbustes 3 0,66 u 0,00 11 0,70 Plantation arbustes 2 0,05 u 0,00 11 0,70 Malaxage sols en centrale 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 </td <td>Répandage coudhe d'accrochage</td> <td>2</td> <td>0,00</td> <td>m2</td> <td>0,00</td> <td>29</td> <td>0,70</td>	Répandage coudhe d'accrochage	2	0,00	m2	0,00	29	0,70
Levage éléments BA	Pose manuelle de fournitures	1	1,00	moe	0,00	0,00	0,00
Levage éléments d'armeture 5 0,50 eyele 0,00 19 0,70	Mise en œuvre GB/enrobés au finisseur	8	0,00	m2	0,00	37	1,40
Pose de glabions	Levage éléments BA	5	1,00	cycle	0,00	19	0,70
Remblayage (foulles) 2 0,06 m3 0,00 36 1,75 Remblayage et couches de forme 2 0,09 m3 0,00 46 3,15 Épandage terre végétale 2 0,00 m2 0,00 28 1,05 Plantation arbres 3 0,66 u 0,00 11 0,70 Plantation arbustes 2 0,05 u 0,00 11 0,70 Tonte espaces verts 1 0,01 m2 5,20 0,00 0,00 Makaxage sols en centrale 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon 5 0,08 m2 11 0,00 0,00	Levage élémenta d'armature	5	0,50	cycle	0,00	19	0,70
Remblayage et couches de forme 2 0,09 m3 0,00 45 3,15 Épandage terre végétale 2 0,00 m2 0,00 28 1,05 Plantation arbres 3 0,66 u 0,00 11 0,70 Plantation arbustes 2 0,05 u 0,00 11 0,70 Tontle espaces verbs 1 0,01 m2 5,20 0,00 0,00 Malaxage sols en centrale 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon 5 0,08 m2 11 0,00 0,00	Pose de gabions	6	0,33	m3	0,00	32	1,40
Epandage terre végétale 2 0,00 m2 0,00 28 1,05 Plantation arbustes 3 0,66 u 0,00 11 0,70 Plantation arbustes 2 0,05 u 0,00 11 0,70 Torde espaces verts 1 0,01 m2 5,20 0,00 0,00 Makaxage sols en centrale 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon 5 0,06 m2 11 0,00 0,00	Remblayage (fouilles)	2	0,06	m3	0,00	36	1,75
Pantation aribres 3 0,86 u 0,00 11 0,70 Plantation aribustes 2 0,05 u 0,00 11 0,70 Tortle espaces verts 1 0,01 m2 5,20 0,00 0,00 Makxage sols en certifiate 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon 5 0,06 m2 11 0,00 0,00	Remblayage et couches de forme	2	0,09	m3	0,00	45	3,15
Plantation arbustes 2 0,05 u 0,00 11 0,70 Tonte espaces verts 1 0,01 m2 5,20 0,00 0,00 Malaxage sols en centrale 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon 5 0,06 m2 11 0,00 0,00	Épandage terre végétale	2	0,00	m2	0,00	28	1,05
Tonte espaces verts 1 0,01 m2 5,20 0,00 0,00 0,00 Makaxage sols en centrale 5 0,00 tonne 0,00 39 1,40 1	Plantation arbres	3	0,66	u	0,00	11	0,70
Makaxage sols en centrale 5 0,00 tonne 0,00 39 1,40 Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon 5 0,06 m2 11 0,00 0,00	Plantation arbustes	2	0,05	ш	0,00	11	0,70
Levage et pose d'équipements 2 1,00 h 0,00 19 0,70 Plantation gazon 5 0,06 m2 11 0,00 0,00	Tonte espaces verts	1	0,01	m2	5,20	0,00	0,00
Plantation gazon 5 0,06 m2 11 0,00 0,00	Malaxage sols en centrale	5	0,00	tonne	0,00	39	1,40
7 - 7,55 11.5 1	Levage et pose d'équipements	2	1,00	h	0,00	19	0,70
Projection béton 4 6,47 m3 0,00 5,70 0,70	Plantation gazon	5	0,06	m2	11	0,00	0,00
	Projection béton	4	6,47	m3	0,00	5,70	0,70

CI503703 Échangeur de la Varizelle à Saint-Chamond Ind. A

Annexe 3 : Métrés des intrants

Annexe 3 - Quantités consommées par intrants en unité fonctionnelle et en masse.

Inv. E1	Inv. E2	Inv. E3	U.F.	Somme d Qté.
Déchets	Déchets bâtiment	Aluminium [moyenne]	tonne	1,31
		Béton, briques, tuiles et céramiques [hors- recyclage]	tonne	2 921
		Bois de classe B [hors recyclage]	tonne	26
		Déchets inertes en mélange (Gravats) [hors recyclage]	tonne	10 726
		Déchets non dangereux en mélange (DIB) [hors recyclage]	tonne	15 529
		Métaux [hors recyclage]	tonne	44
		Platte et autres contenant du gypse (nors- recycloge)	tonne	ьо
	Déchets dangereux	DIS [stockage]	tonne	12
	Déchets plastiques	Plastique moyen [moyenne]	tonne	3,50
	Ordures	Déchets: putrescibles [incineration]	tonne	980
	ménagères	DEFF, moyen (par défaut) [moyenne]	tonne	0,16
Déplacements	Routiers	Autobus moyen, agglomération de plus de 250 000 habitants	passager.k m	52.921
		Voiture, motorisation moyenne 2018	km	96 220
Énergie	Combustibles	Butane, inclus maritime	kg	285
HARAS C		Essence, supercarburant sans Pb (95, 95- E10, 98)	litre	46 940
		Gazole non routier	litre	395 075
		Huile moteur lubriliant	litre	17 339
	flectricité	2008 - usage : Autres (RTP, recherche, année, etc.)	kWh	207.306
		2018 - mix moyen	kWh	946
		2018 - usage : Eclairage public	kWh	248 346
		2020 mix moyen	kWh	51 448
Fret	Maritime & fluvial	Bateau pousseur, > 880 kW	tonne.km	1.088
	Routier	Articule, 40 à 44 T diesel routier, 7 % de- biodiesel	tonne.km	12 810 057
		Rigide, 26 à 32 T diesel routier, 7 % de biodiesel	tonne.km	81316
Immobilisations	Bätiments/EP	Bâtiment industriel, structure en béton	m2	27
	Véhicules,	Outils et équipements divers acier	tonne	0,58
	Machines et Outils	Vehicules labrication	tonne	21
Intrants	Acier	Acier ou (er-blanc [neuf]	tonne	11
		Acier, töles fortes et profilés	tonne	3.1
		Aciers HA, armatures passives	tonne	197
		Atténateurs de choc acier galvanisé	ti	2,00
		Cage gabion (2mx1mx1m, 3mm)	ti	925
		Clóture en acier [haut, 2,5m]	mL	1 4 1 4
		Élements en acier galvanisé	tonne	2,57
		Garde-corps acier remplissage tubes	mL	317
		Glissière acier galvanisé N2	mL	167
		Grille #200mm	mi	70

46/55
CI503703 | Échangeur de la Varizelle à Saint-Chamond | Ind. A

	Mat de lampadaire d'éclairage	u	126
	Portail en acier	LI.	4,00
	Poteau de fixation routier	u	489
	Poteau panneau de police acier galvanisé	ti	297
	Potence de signalisation routière	tt	1,00
Aluminium	Luminaires pour éclairage fonctionnel	ti	126
	Panneaux de police/panonceaux (tôle alu anodisé)	W.	8,01
	Panneaux de signalisation [m2]	m2	283
Asphalte	Couche d'imprégnation (émulsion bitume)	tonne	99
	Étanchéité bicouche bitume-polymère	m2	1244
Bătiments/EP	Bătiment industriel, structure en béton	m2	372
Béton hydraulique	Béton C20/25	m3	36
	Béton C25/30CEM II	m3	7.8
	Beton C30/37	m3	441
	Béton de proporté	m3	7.4
	Béton pour fondation XA3 C40/50	m3	401
	Béton pour poteaux et culées XE2 C35/45	m3.	808
	Béton pour tablier XF1 C45/55 (EM II/A-I	m3	445
	Béton pour Voirie en béton C35/45 XF2 CFM II/A	1113	970
Beton prefabrique	Bloc en beton creux, joints épais	m2	1 500
	Bordure T2	ml	951
	Cadre héton préfabrique (OH)	m3	526
	Caniveau beton en U	mL	179
	Caniveaux a fente φ300mm	mi	1.047
	Caniveaux à l'ente ø400mm	mL	213
	Coffrage perdu pour béton	m2	783
	Collecteur beton #300mm	mil	215
	Collecteur béton φ400mm	mL	226
	Collecteur béton φ500mm	mL	179
	Collecteur béton φ600mm	mi	3.2
	Collecteur beton	ml	22
	Descente d'eau béton type tuile	mL	7,00
	Equipements en béton préfabrique	m3	48
	Massils pour équipement	u	411
	Massils pour mat	u	116
	Regard de visite en héton [Dint= 1900mm]	ti	40
	Séparateur en béton type GBA	ml	67
	Tête de ponts DN300-500	ti	4,00
Bois	Brise soleil	m2	196
04.0	Foran acoustique	m2	196
Divers	Eau d'arrosage	m3	3.737
	Fau du mbinet	litre	2703990
Enduits/revêteme nts résine	Enduit à froid projeté (ACV entreprise SIGNATURE)	litre	18 194
	Enduit bitumineux pour l'étanchéité et l'impennéabilisation pour murs enterres	m2	1.466
	Résine polyuréthane pour sois industriels et piétonniers	kg	774
Enrobés bitume	Enrobés bitumineux	m3	406
		tonne	5 028
	Grave bitume 3	m3	176
	Grave, bittime 3	tonne	12 548

Échangeur de la Varizelle à Saint-Charnond

Ind A

	Graviers/granulats	Compost horticole (moyenne)	tonne	161
		Granulats (sortie carrière)	tonne	2 000
		Granulats issus de roche massive	m3	573
	Graviers/granulats Liant hydraulique Matériel électronique Plastiques/polyméres	Granulats issus de roche meuble	m3	89
		Granulats, roche meuble [sortie carrière]	tonne	688
		Grave non traitée	m3:	2.707
	Liant hydraulique	Chapes en mortier à base de ciment	m3	60
	Canthydraulique Chamber Chambe	Mortier de montage maçonnerie	m2	1 500
		Mortiers de réparation du béton	litre	681
	Matériel	Boucle à induction magnétique	u:	50
	électronique	Câble culvre basse tension [section conductrice entre 95 mm ² / ₇ 1G]	mL	600
		Câble moyenne tension 12/20 kV [Section conductrice de 150 mm² à 240 mm²]	mL.	900
		Fibre optique (Réseaux) [D=4 à 8,5 mm]	mL	1 500
		PMV 1480 W (2,8w1,8 m)	44	0,60
		Appareil d'appui	dm3	317
	éres	Balises type I (PEHD neuf)	u	15
		Balises type KSC (PEHD neuf)	ti	53
		Canalisation d'assainissement pluvial en PVC [D-315 mm]	ml	105
		Collecteur PEHD ¢400mm	mL	105
		Cone de signalisation lesté (PEHD neuf)	ti	40
		Gaines et Tourreaux en PVC [DN entre 100 et 200mm] ID MI ab	mL	200
		Géomembrane PEHD	m2	2234
		Géotextile en palypropylène (300g/m²)	th2	10 301
		Lestage temporaire. PVC	ti	53
		Membrane synthétique pour l'étanchérié et l'imperméabilisation pour murs enterrés (ép. 2mm)	m2	118
		Plastique, PEHD [neuf]	tonne	0,90
		Réseaux d'adduction d'eau en PVC [D entre 110 et 200 min]	mi	900
		Système de drainage et d'infiltration Drenotube	mi	91
	Ratios	Assurance, services bancaires, conseil et honoraires	kf	1.253
		Produis informatiques, électromiques et optiques	ke	45
		Services (imprimerie, publicité, architecture et îngénierie, maintenance multi-technique des bâtimen	k€	13
	Vegétation	Arbuste	u	9 590
		Mélange de semences pelouse	kg	1.672
		Paille céréale	tonne	111
JTCF	Forêts Mixtes	Sols artificiels arbores et buissonants	ha	0,19
		Sols artificiels enherbés/arbustifs	ha	0,19
		Sols artificiels impennéabilises	ha	0,62
	Prairies zones	Sols artificiels arborés et buissonants	ha	0,49
	arbustives	Sols artificiels impennéabilises	ha	0,51
	Praines zones	Sols artificiels arborés et buissonants	ha	0,03
	hethacées	Sols artificiels enherbés/arbustifs	ha	9,02
		Sols artificiels imperméabilisés	ha	0,07
		Sols artificiels arborés et buissonants	ha	0,01

CI503703 Echangeur de la Varizelle à Saint-Chamond Ind. A

Sols artificiels enherbés/arbustif s	Sols artificiels imperméabilisés	ha	0,20
Sols artificiels	Sols artificiels arborés et buissonants	ha	0,07
imperméabilisés	Sols artificiels enherbés/arbustifs	ha	0,09
Zones humides	Sols artificiels arborés et buissonants	ha	0,14
	Sols artificiels enherbés/arbustifs	ha	0,03
	Sols artificiels imperméabilisés	ba	1.96

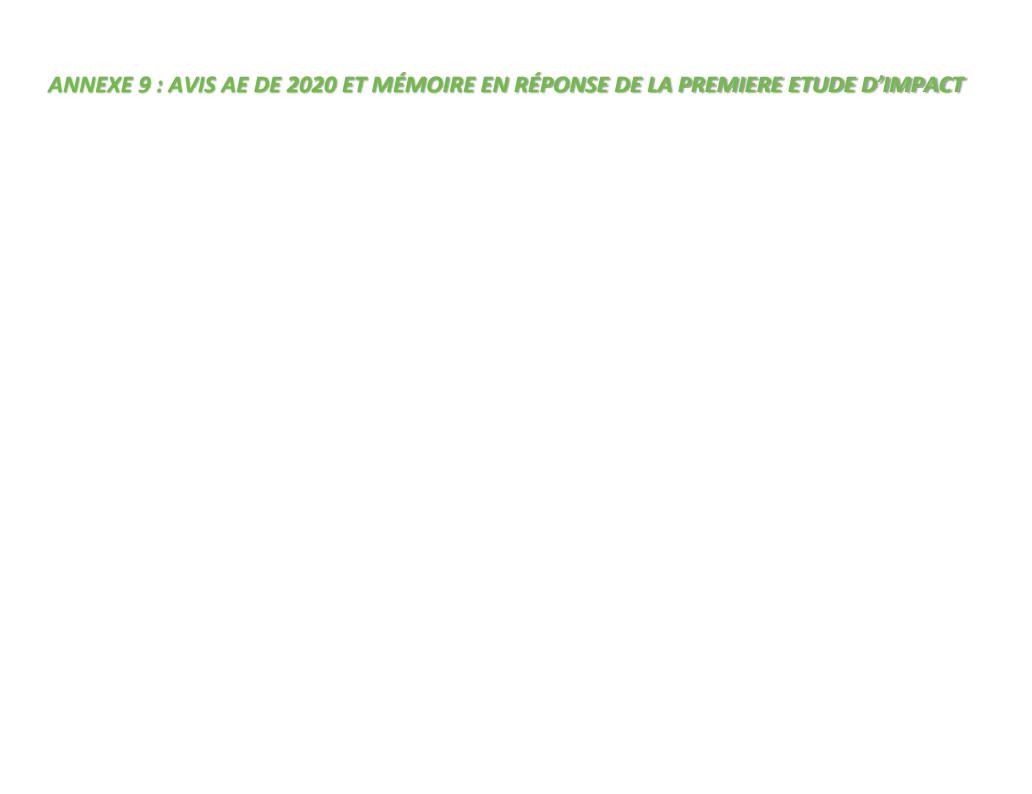
Annexe 4 : Base de données FE

Annexe 4 - Facteur d'émission, caractéristiques et sources

Inv. E1	Inv. E2	Inv. E3	U.F.	M.U. (kg)	Scope1	Scope 2	Scope 3	Incertit ude	Source
Énergie	Combustibles	Butane, inclus maritime	kg		2,95	0,49		5%	Base Carbone 20
Énergie	Combustibles	Essence, supercarburant sans Pb (95, 95-E10, 98)	litre		2,23	0,50		10%	Base Carbone 20
Energie	Combustibles	Gazole non routier	litro		2,51	0,66		10%	Base Carbone 20
Énergie	Combustibles	Huile moteur lubrifiant	litre	0,00		1,56		20%	Ecoinvent
Énergie	Electricité	2008 - usage : Autres (BTP, recherche, armée, etc.)	kWh			0,05		30%	Base Carbone 20
Énergie	Électricité	2018 - mix mayen	kWh			0,06		10%	Base Carbone 20
Énergie	Électridté	2018 - usage : Eclairage public	kWh			0,06		30%	Base Carbone 20
Énergie	Électridté	2020 - mix moyen	kWh			0,08		10%	Base Carbone 20
UTCF	Forêts Mixtes	Sols artificiels arborés et buissonants	ha				125 576	70%	Aldo
UTCF	Forêts Mixtes	Sols artificiels enherbés/arbustifs	ha				273 157	70%	Aldo
UTCF	Forêts Mixtes	Sols artificiels imperméabilisés	ha				492 140	70%	Aldo
UTCF	Prairieszones arbustives	Sols artificiels arborés et buissonants	ha				- 147 582	70%	Aldo
UTCF	Prairies zones arbustives	Sols artificiels imperméabilisés	ha				218982	70%	Alda
UTCF	Prairieszones herbacées	Sols artificiels arborés et buissonants	ha				- 173 248	70%	Aldo
UTCF	Prairies zones herbacées	3ols artificiels entrerbés/artbustifs	ha				-25 007	70%	Aklo
UTCF	Prairieszones herbacées	Sols artificiels imperméabilisés	ha				193316	70%	Aldo
UTCF	Sols artificiels enherbés/arbustifs	Sols artificiels arborés et buissonants	ha				- 147 582	70%	Aldo
UTCF	Sols artificiels enherbés/arbustifs	Sols artificiels imperméabilisés	ha				218982	70%	Alda
UTCF	Sols artificiels imperméabilisés	Sols artificiels arborés et buissonants	ha				-366 564	70%	Aldo

UTCF	Sols artificiels imperméabilisés	Sols artificiels enherbés/arbustifs	ha				- 218 982	70%	Aldo
UTCF	Zones humides	Sols artificiels arborés et buissonants	ha	1			- 18 231	70%	Aldo
UTCF	Zones humides	Sols artificiels enherbés/arbustifs	ha				129 351	70%	Aldo
UTCF	Zoneshumides	Sols artificiels imperméabilisés	ha				348 333	70%	Aldo
Intrants	Acier	Acier ou fer blanc [neuf]	tonne	1 000			2 211	10%	Base Carbone 20
Intrants	Acier	Acier, tôles fortes et profilés	tonne	1 000			1 680	30%	DIOGEN
Intrants	Acier	Aciers HA, armatures passives	tonne	1 000			607	30%	DIOGEN
Intrants	Acier	Atténateurs de choc acier galvanisé	u	1 300	0,00	0,00	2 874	10%	Base Carbone 20
Intrants	Acier	Cage gabion (2mx1mx1m; 3mm)	ш	19	0,00	0,00	42	10%	Base Carbone 20
Intrants	Acier	Clöture en acier [haut. 2,5m]	mL	19			116	30%	INIES
Intrants	Acier	Garde-corps acier remplissage tubes	mL	14			61	30%	FFB
Intrants	Acier	Glissière ader galvanisé N2	ml	19	0,00	0,00	53	20%	Bilan produit
Intrants	Acier	Grille ф200mm	ml	9,00	0,00	0,00	25	20%	Bilan produit
Intrants	Acier	Mât de lampadaire d'éclairage	ш	79	0,00	0,00	175	10%	Base Carbone 20
Intrants	Acier	Portal en acier	u	92	0,00	0,00	259	20%	Bilan produit
Intrants	Acier	Poteau de fixation routier	u	18	0,00	0,00	51	20%	Bilan produit
Intrants	Acier	Poteau panneau de police acier galvanisé	и	10	0,00	0,00	28	20%	Bilan produit
Intrants	Acier	Potence de signalisation routière	ш	750	0,00	0,00	2 115	20%	Bilan produit
Intrants	Acier	Éléments en acier galvanisé	tonne	1 000			2 820	20%	Bilan produit
Intrants	Aluminium	Luminaires pour éclair age fonctionnel	u	6,38			635	30%	INIES
Intrants	Aluminium	Panneaux de police/panonceaux (tôle alu anodisé)	ш	3.00			45	30%	Bilan produit
Intrants	Aluminium	Panneaux de signalisation [m2]	m2	7,69	0,00	0,00	115	30%	Bilan produit
Intrants	Asphalte	Couche d'imprégnation (émulsion bitume)	tonne	1 000	0,00	0,00	485	28%	Base Carbone 20
Intrants	Asphalte	Étanchéité bicouche bitume-polymére	m2	4,90			9,75	30%	INIES
Intrants	Bois	Brise soleil	m2	35			50	30%	INIES
Intrants	Bois	Écran acoustique	m2	380			25	10%	Base Carbone
Intrants	Bâtiments/EP	Bâtiment industriel, structure en béton	m2	0,00			825	50%	Base Carbone 20
Intrants	Béton hydraulique	Béton C20/25	m3	2 300	0,00	0,00	186	30%	Base Carbone 20;INIES

Intrants	Béton hydraulique	Béton C25/30CEMII	m3	2 300	0,00	0,00	202	20%	Base Carbone 20
Intrants	Béton hydraulique	Béton C30/37	m3	2 300	0,00	0,00	244	23%	Base Carbone 20:INIES
Intrants	Béton hydraulique	Béton de propreté	m3	2 418			126	30%	INIES
Intrants	Béton hydraulique	Béton pour Voirie en béton C35/45 XF2 CEM II/A	m3	2 305			260	30%	INIES
Intrants	Béton hydraulique	Béton pour fondation XA3 C 40/50	m3	2 350			304	30%	DIOGEN
Intrants	Béton hydraulique	Béton pour poteaux et culées XF2 C35/45	m3	2 350			265	30%	DIOGEN
Intrants	Béton hydraulique	Béton pour tablier XF1 C45/55 CEMIVA-L	m3	2 350		1	290	10%	DIOGEN
Intrants	Béton préfabriqué	Bloc en béton creux, joints épais	m2	173		1	8,53	30%	INIES
Intrants	Béton préfabriqué	Bordure T2	ml	82	0,00	0,00	17	30%	INIES
Intrants	Béton préfabriqué	Cadre béton préfabriqué (OH)	m3	2 400	0,00	0,00	516	28%	CERIB;DIOGEN
Intrants	Béton préfabriqué	Canive au béton en U	ml	36	0,00	0,00	7,57	30%	INIES
Intrants	Béton préfabriqué	Caniveaux à fente φ300mm	ml	379	0,00	0,00	80	30%	INIES
Intrants	Béton préfabriqué	Caniveaux à fente φ400mm	ml	522	0,00	0,00	110	30%	INIES
Intrants	Béton préfabriqué	Coffrage perdu pour béton	m2	139			62	30%	INIES
Intrants	Béton préfabriqué	Collecteur béton φ300mm	ml	180	0,00	0,00	24	30%	CERIB
Intrants	Béton préfabriqué	Collecteur béton φ 400mm	ml	230	0,00	0,00	30	30%	CERIB
Intrants	Béton préfabriqué	Callecteur béton φ500mm	ml	330	0,00	0,00	43	30%	CERIB
Intrants	Béton préfabriqué	Callecteur béton φ600mm	ml	440	0,00	0,00	57	30%	CERIB
Intrants	Béton préfabriqué	Collecteur béton φ800mm	ml	700	0,00	0,00	91	30%	CERIB
Intrants	Béton préfabriqué	Descente d'eau béton type tuile	ml	71	0,00	0,00	9,28	30%	CERIB
Intrants	Béton préfabriqué	Equipements en béton préfabriqué	m3	2 400	0.00	0.00	335	30%	INIES
Intrants	Béton préfabriqué	Massifs pour mât	u	750	0,00	0,00	88	30%	INIES
Intrants	Béton préfabriqué	Massifs pour équipement	u	250	0,00	0,00	29	30%	INIES
Intrants	Béton préfabriqué	Regard de visite en béton [Dint= 1000mm]	и	1 989			278	30%	INIES
Intrants	Béton préfabriqué	Séparateur en béton type GBA	ml	625	0,00	0,00	74	30%	INIES
Intrants	Béton préfabriqué	Tête de ponts DN300-500	u	312	0,00	0,00	44	30%	INIES
Intrants	Divers	Eau d'arrosage	m3	1 000	0,30	0,08	0,00	5%	Base Carbone 20
Intrants	Divers	Eau du robinet	litre	1.00		+	0.00	30%	Base Carbone


Intrants	Enduits/revêtements résine	Enduit bitumineux pour l'étanchéité et l'imperméabilisation pour murs enterrés	m2	2,00		1	20	30%	INIES
Intrants	Enduits/revêtements résine	Enduit à froid projeté (ACV entreprise SIGNATURE)	litre	1,30			5,64	30%	Signature
Intrants	Enduits/revêtements résine	Résine polyuréthane pour sols industriels et piétonniers	kg	1,00			6,67	30%	INIES
Intrants	Enrobès bitume	Enrobés bitumineux	m3	2 350	0,00	0,00	125	20%	Base Carbone 20
Intrants	Enrobés bitume	Enrobés bitumineux	tonne	1 000			53	20%	Base Carbone 20
Intrants	Enrobés bitume	Grave bitume 3	m3	2 350	0,00	0,00	109	20%	Base Carbone 20
Intrants	Enrobés bitume	Grave, bitume 3	tonne	1 000			47	20%	Base Carbone 20
Intrants	Graviers/granulats	Compost horticale (mayenne)	tonne	1 000			34	30%	Ecoinvent
Intrants	Graviers/granulats	Granulats [sortie carrière]	tonne	1 000			4,00	50%	Base Carbone 20
Intrants	Graviers/granulats	Granulats issus de roche massive	m3	1 700	0,00	0,00	4, 35	50%	Base Carbone 20
Intrants	Graviers/granulats	Granulats issus de roche meuble	m3	1 700	0,00	0,00	3,94	50%	Base Carbone 20
Intrants	Graviers/granulats	Granulats, roche meuble [sortie carrière]	tonne	1 000			2,32	50%	Base Carbone 20
Intrants	Graviers/granulats	Grave non traitée	m3	1 700	0,00	0,00	25	20%	Base Carbone 20
Intrants	Lianthydraulique	Chapes en mortier à base de ciment	m3	2 500			652	30%	INIES
Intrants	Lianthydraulique	Mortier de montage maçonnerie	m2	25			2,98	30%	INIES
Intrants	Lianthydraulique	Mortiers de réparation du béton	litre	1,67			0,63	30%	SNM
Intrants	Matériel électronique	Boucle à induction magnétique	u	5,00	0,00	0,00	2,71	29%	Base Carbone 20;INIES;Base Carbone
Intrants	Matériel électronique	Câble cuivre bassetension [section conductrice entre 95 mm²/	mL	3,40			8,73	30%	INIES
Intrants	Matériel électronique	Câble moyenne tension 12/20 kV [Section conductrice de 150 mm²]	mL	6,41			25	30%	INIES
Intrants	Matériel électronique	Fibre optique (Réseaux) [D=4 á 8,5 mm]	mL	0,07			0,22	30%	INIES
Intrants	Matériel électronique	PMV 1480 W (2,8x1,8 m)	u	800	0,00	0,00	4 992	20%	Base Carbone 20;INIES
Intrants	Plastiques/polymères	Apparel d'appui	dm3	1,24			0,53	20%	Bilan produit
Intrants	Plastiques/polymères	Balises type J (PEHD neuf)	u	4, 10	0,00	0,00	7,87	20%	Base Carbone 20
Intrants	Plastiques/polymères	Balises type K5C (PEHD neuf)	u	1,40	0,00	0,00	2,69	20%	Base Carbone 20
Intrants	Plastiques/polymères	Canalisation d'assainissement pluvial en PVC [D=315 mm]	ml						

Intrants	Plastiques/polymères	Collecteur PEHD φ400mm	ml	16	0,00	0,00	30	20%	Base Carbone 20
Intrants	Plastiques/polymères	Cône de signalisation lesté (PEHD neuf)	u	5,40	0,00	0,00	10	20%	Base Carbone 20
Intrants	Plastiques/polymères	Gaines etfourreaux en PVC [DN entre 100 et 200mm] ID MLab	mL	11			41	30%	INIES
Intrants	Plastiques/polymères	Géomembrane PEHD	m2	1,92	0,00	0,00	3,69	20%	Base Carbone 20
Intrants	Plastiques/polymères	Géotextile en polypropylène (300g/m²)	m2	0,30			1,24	30%	INIES
Intrants	Plastiques/polymères	Lestage temporaire PVC	u	28	0,00	0,00	52	20%	Base Carbone 20
Intrants	Plastiques/polymères	Membrane synthétique pour l'étanchéité et l'impermé ab lisation pour murs enterrés [ép. 2mm]	m2	1,96			8,15	30%	INIES
Intrants	Plastiques/polymères	Plastique, PEHD [neuf]	tonne	1 000			1 920	20%	Base Carbone 20
Intrants	Plastiques/polymères	Réseaux d'adduction d'eau en PVC [Dentre 110 et 200 mm]	mL	3,50			31	30%	INIES
Intrants	Plastiques/polymères	Système de drainage et d'infiltration D renotube	mL	2,48			6,96	20%	INIES
Intrants	Ratios	Assurance, services bancaires, conseil et honoraires	k€				110	80%	Base Carbone 20
Intrants	Ratios	Produits informatiques, électroniques et optiques	k€				400	80%	Base Carbone 20
Intrants	Ratios	Services (imprimerie, publicité, architecture et ingénierie, maintenance multi-technique des bâtimen	k€				170	80%	Base Carbone 20
Intrants	Végétation	Arbuste	u	12			1,07	50%	Donnée métier
Intrants	Végétation	Mélange de semences pelouse	kg	1,00			1,20	30%	Ecoinvent
Intrants	Végétation	Paille céréale	tonne	1 000			85	30%	Ecoinvent
Immobilisations	Bâtiments/EP	Bâtiment industriel, structure en béton	m2	0,00			825	50%	Base Carbone 20
Immobilisations	Véhicules, Machines et Outils	Outils et équipements divers acier	tonne	1 000			1 680	30%	DIOGEN
Immobilisations	Véhicules, Machines et Outils	Véhicules fabrication	tonne				5 500	50%	Base Carbone 20
Fret	Maritime & fluvial	Bateau pousseur, > 880 kW	tonne.km				0,01	70%	Base Carbone 20
Fret	Routier	Articulé, 40 à 44 T diesel routier, 7 % de biodiesel	tonne.km		0,05	0,01		70%	Base Carbone 20
Fret	Routier	Rigide, 26 à 32 T diesel routier, 7 % de biodiesel	tonne.km		0,07	0,02		70%	Base Carbone 20
Déplacements	Routiers	Autobus moyen, agglomération de plus de 250 000 habitants	passager .km				0,13	60%	Base Carbone 20
Déplacements	Routiers	Voiture, motorisation moyenne 2018	km				0,19	60%	Base Carbone 20
Déchets	Déchets bâtiment	Aluminium [moyenne]	tonne	1 000			562	20%	Base Carbone 20
Déchets	Déchets bâtiment	Bois de classe B [hors recydage]	tonne	1 000			23	30%	Base Carbone 20

Dechets	Déchets bâtiment	Béton, briques, tuiles et céramiques [hors recyclage]	tonne	1 000	11	30%	Base Carbone 20
Déchets	Déchets bâtiment	Déchets inertes en mélange (Gravats) [hors recyclage]	tonne	1 000	9,00	30%	Base Carbone 20
Déchets	Déchets bâtiment	Déchets non dangereux en mélange (DIB) [hors recyclage]	tonne	1 000	23	30%	Base Carbone 20
Déchets	Déchets bâtiment	Métaux [hors recyclage]	tonne	1 000	8,00	20%	Base Carbone 20
Déchets	Déchets bâtiment	Plâtre et autres contenant du gypse [hors recyclage]	tonne	1 000	65	30%	Base Carbone 20
Déchets	Déchets dangereux	DIS [stockage]	tonne	1 000	128	50%	Base Carbone 20
Déchets	Déchets plastiques	Plastique moyen [moyenne]	tonne	1 000	877	50%	Base Carbone
Déchets	Ordures ménagères	DEEE, moyen (par défaut) [moyenne]	tonne	1 000	1 995	100%	Base Carbone 20
Déchets	Ordures ménagères	Déchets putrescibles [incinération]	tonne	1 000	45	50%	Base Carbone 20

Avis délibéré de l'Autorité environnementale sur le complément du demi-échangeur de la Varizelle à Saint-Chamond (42)

n'Ae: 2020-37

Avis délibéré nº 2020-37 adopté lors de la séance du 4 novembre 2020

Préambule relatif à l'élaboration de l'avis

L'Act s'est réume le 4 novembre 2020, en visioconférence. L'ordre du jour comportait, notamment, l'avis sur le complément du demi-échangeur de la Varizelle à Saint-Chamond (42).

Ont délibéré collégialement : Sylvie Banoun, Nathalie Bertrand, Marc Clément, Pascal Douard, Christian Dubost, Sophie Fonquernie, Louis Hubert, Christine Jean, Philippe Ledenvic, François Letourneux, Serge Muller, Thérèse Perrin, Alby Schmitt, Étic Vindinnan, Annie Viu, Véronique Wormser

En application de l'article 4 du réglement intérieur de l'Ae, chacun des membres délibérants cités ci-dessus atteste qu'aucun intérêt particulier ou élément dans ses activités passées ou présentes n'est de nature à mettre en cause son unpartialité dans le présent avis.

Étaient absents : Barbara Bour-Desprez

l'Me a été saisie pour avis par le préfet de la Loire, l'ensemble des pièces constitutives du dossier ayant été regue la 7 mût 2020

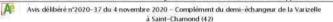
Cette saisme étant conforme aux dispositions de l'article R. 122 6 du code de l'environnement relatif à l'autorité environnementale prévue à l'article 1. 122-1 du même code, il en a été accusé réception. Conformément à l'article R. 122 / du même code, l'avis doit être fourni dans un délai de trois mois.

Conformément aux dispositions de ce même article, l'Ae a consulté par courriers en date du 10 août 2020 :

- le directeur général de l'Agence régionale de santé (ARS) Auvergne Rhône Alpes,
- le préfet de département de la Loire.

Sur le rapport de Christian Dubost et Caroll Gardet, après en avoir délibéré, l'Ae rend l'avis qui suit.

Pour chaque projet soumis à évaluation environnementale, une autorité environnementale désignée par la réglementation doit donner son avis et le mettre à disposition du maître d'ouvrage, de l'autorité décisionnaire et du public.


Cet avis porte sur la qualité de l'étude d'impact présentée par le maître d'ouvrage et sur la prise en compte de l'environnement par le projet. Il vise à permettre d'améliorer sa conception, ainsi que l'information du public et sa participation à l'élaboration des décisions qui s'y rapportent. L'avis ne lui est ni favorable, ni défavorable et ne porte pas sur son opportunité.

La décision de l'autorité compétente qui autorise le pétitionnaire ou le maître d'ouvrage à réaliser le projet prend en considération cet avis. Une synthèse des consultations opérées est rendue publique avec la décision d'octroi ou de refus d'autorisation du projet (article L. 122-1-1 du code de l'environnement). En cas d'octroi, l'autorité décisionnaire communique à l'autorité environnementale le ou les bilans des suivis, lui permettant de vérifier le degré d'efficacité et la pérennité des prescriptions, mesures et caractéristiques (article R. 122-13 du code de l'environnement).

Conformément à l'article L. 122-1 V du code de l'environnement, le présent avis de l'autorité environnementale devra faire l'objet d'une réponse écrite de la part du maître d'ouvrage qui la mettra à disposition du public par voie électronique au plus tard au moment de l'ouverture de l'enquête publique prévue à l'article L. 123-2 ou de la participation du public par voie électronique prévue à l'article L. 123-19.

Le présent avis est publié sur le site de l'Ae. Il est intégré dans le dossier soumis à la consultation du public.

Formation d'autorité environnementale du Conseil général de l'environnement et du développement durable (CGEDD).

Page 2 sur 1

Synthèse de l'avis

Le projet de demi-échangeur de la Varizelle, situé sur la commune de Saint-Chamond (42), consiste en la création de deux bretelles d'entrée et sortie de la RN-88 (depuis et vers Lyon) afin de désengorger le réseau viaire local, et d'améliorer la qualité de vie du quartier de la Varizelle et la desserte de l'est de la commune, notamment de la future halle des sports et des zones économiques en développement. Porté par la direction régionale de l'environnement, de l'aménagement et du longment Auvergne Rhône Alpes, le projet est inscrit au contrat de plan fet la Région.

Pour l'Ae, les principaux enjeux environnementaux sont :

- la prévention des risques naturels (risques inondation et risques miniers),
- la qualité de l'eau et des milieux aquatiques et les continuités écologiques,
- la protection des morains sus à vis des ninsances sonnres;
- la qualité de l'air et les émissions de gaz à effet de serre,
- l'amélioration de la sécurité routière.

Le dossier est relatif à la demande de déclaration d'utilité publique et à la mise en compatibilité du plan local d'urbanisme de la commune (modification de l'emplacement réservé, évolution des haies protégées).

L'étude d'impact est relativement claire et bien présentée, mais comporte des limites, avec notamment une liste de mesures d'évitement, de réduction et de compensation comportant des dispositions n'ayant pas de caractère environnemental.

Le secteur de projet étant en zone rouge du plan de prévention des risques d'inondation et en zone sensible du plan relatif aux risques miniers, l'Ae recommande de préciser les engagements du maître d'ouvrage pour assurer la protection des populations et ne pas aggraver la vulnérabilité du territoire et de mieux analyser la compatibilité du projet et de la modification du PLU avec ces deux plans.

L'Ac constate des erreurs méthodologiques du dossier en matière de prévisions de trafics et d'étude acoustique et recommande de reprendre largement ces deux volets, en prenant pour principe d'améliorer la situation des riverains vis—à vis des nuisances sonores issues de la RN 88 et du réseau viaire local.

L'Ae fait par ailleurs d'autres recommandations sur le renforcement des continuités écologiques aquatiques et terrestres le long du cours d'eau Le Janon, sur la qualité de l'air et les émissions de gaz à effet de serre (avec notamment des mesures de réduction en phase chantier), et sur impacts cumulés avec le projet de halle des sports, contigu, dont le chantier deviait être quasi concomitant.

L'ensemble des observations et recommandations de l'Ae est présenté dans l'avis détaillé.

Avis délibéré n°2020-37 du 4 novembre 2020 - Complément du demi-échangeur de la Varizelle à Saint-Chamond (47)

Avis détaillé

1 Contexte, présentation du projet et enjeux environnementaux

1.1 Contexte et contenu du projet

La commune de Saint-Charnond, située à une douzaine de kilomètres à l'est de Saint-Étienne, est desservie à l'ouest par l'échangeur n°17 de la route nationale n'88, dit de la Varizelle. Cette route relie Lyon à Toulouse en passant par Saint-Étienne, Saint-Charnond et Albi. La RN-88 supportait, en 2018. 74 000 véh/rour (dont 12 % de poids Tourds) au niveau de Saint-Charnond.

Porté par la direction régionale de l'environnement, de l'aménagement et du logement (Dreal) Auvergne-Rhône-Alpes, le projet de complément de l'échangeur, qui comprend actuellement une bretelle d'entrée sur la route nationale vers Saint-Étienne et une bretelle de sortie depuis Saint-Étienne, vise, selon le dossier, à améliorer la desserte du territoire, en particulier celle des zones d'activités économiques, ainsi que le cadre de vie des riverains.

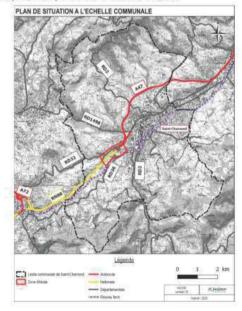


Figure 1 : Localisation du projet de complément d'échangeur de la Varizelle (source dossier).

Le projet a fait l'objet le 7 octobre 2016 d'une décision ministérielle relative à la phase d'études préalables à la déclaration d'utilité publique.

1.2 Présentation du projet

Le projet consiste à compléter l'échangeur en réalisant deux nouvelles bretelles (une sortie de la RN à 2x2 voies en venant de l'yon et une entrée sur la RN en direction de l'yon) pour disposer d'un point d'échange complet. Il comprend la création des deux bretelles, un ouvrage d'art supérieur de franchissement de la RN, un nouveau giratoire au nord (un autre existe au sud) pour le raccordement des bretelles à la voirie locale, le recalibrage et les rétablissements sous chaussée des cours d'eau, deux bassins multifonctions de 550 et 338 m², des cheminements pour les modes actifs et une aire de stationnement, ainsi que la démolition d'un bâtiment.

Le dossier indique un double objectif au projet :

- améliorer la desserte du territoire, et notamment des zones économiques en développement : halle des sports métropolitaine (4 000 places), reconversion et développement des zones de Novacières, de Métrotech et de la ZAC de la Varizelle;
- améliorer le cadre de vie des riverains, en diminuant les trafics sur le réseau local et les nuisances qui y sont associées.

Le déroulement des travaux est prévu de 2022 à 2024.

Leur coût global est estimé à 17 millions d'euros², dont près de 3 millions d'euros de « mesures »³ en faveur de l'environnement.

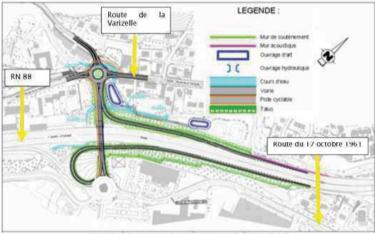


Figure 2 Description du plan des travaux (Source : dossier).

Les mesures présentées dans le dossier à ce titre ne sont pas toutes des mesures environnementales (cf. suite de l'avis).

Avis délibéré n°2020-37 du 4 novembre 2020 - Complément du demi-échangeur de la Varizelle Page 5 à Saint-Chamond (42)

1.3 Procédures relatives au projet

l'opération présentée à été soumise à étude d'impact par une décision facile de l'Ac après examen au cas par cas, conformément à l'article R. 122-3 du code de l'environnement. L'Ac est l'autorité environnementale compétente pour émettre l'avis du fait d'une maîtrise d'ouvrage assurée par un service de l'État (Dreal) dépendant du ministre en charge de l'environnement.

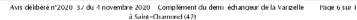
Un dossier d'enquête publique est présenté à l'Ae en vue de la déclaration d'utilité publique (DUP) du projet. Le dossier porte également sur la mise en compatibilité du plan local d'urbanisme (PLU) de Saint-Chamond et le classement des bretelles en route express⁴.

L'étude d'impact intègre une évaluation des incidences sur les sites Natura 2000 (articles L. 414-4 et R. 414-19 à 26 du code de l'environnement) situés dans l'environnement éloigné du projet. Le projet se situe à plus de 5 km du site Natura 2000? ZSC « Vallée de l'Ondrenon, contreforis Nord du Pilat » (ER8201762) à l'ouest. . Selon le dossier, « ce site n'entretient pas de lien fonctionnel dirext avec la zone d'étude immédiate » ; sa conclusion sur l'absence d'incidences significatives n'appelle pas d'observation de l'Ae.

Le maître d'ouvrage a fait le choix, sans en expliciter les raisons, de conduire les procédures réglementaires (déclaration d'utilité publique et autorisation environnementale) en deux temps. Dans le cadre de la demande d'autorisation environnementale ultérieure, qui motivera une nouvelle consultation du public, l'actualisation de l'étude d'impact apparaît nécessaire notamment pour les thématiques, pointées dans l'avis, pour lesquelles le dossier actuel est peu précis. L'Ae souligne que la présentation du projet selon deux procédures successives alors que le pétitionnaire à la possibilité de les regrouper n'est pas de nature à faciliter la bonne compréhension du dossier par le public.

1.4 Principaux enjeux environnementaux du projet relevés par l'Ae

Pour l'Ae, les principaux enjeux environnementaux sont :


- · la prévention des risques naturels d'inondation et miniers,
- la qualité de l'eau et des milieux aquatiques et les continuités écologiques,
- la protextion des riverains vis à vis des nuisances sonores,
- la qualité de l'air et les émissions de gaz à effet de serre.
- l'amélioration de la sécurité des biens et des personnes.

2 Analyse de l'étude d'impact

L'étude d'impact est d'une lecture aisée et bien illustrée.

Elle définit deux périmètres d'études, l'un correspondant au secteur de travaux et l'autre à un cercle de dix kilomètres de diamètre.

Les sites Natura 2000 constituent un réseau européen en application de la directive 79/409/CEE « Oiseaux » (codifiée en 2009) et de la directive 99/44/CET « (l'abitats faume llure », guaratissant l'état de ronservation Lavorable des habitats et espères d'intérêt communautaire. Les sites inventoriés au titte de la directive « habitats » sont des zones spéciales de conservation (25C), et ceux qui le sont au titre de la directive « oiseaux » sont des zones de protection spéciale (ZPS).

Et financement est prévu à l'actuel contrat de plan État-Région (CPER): 8,5 millions d'euros par l'État, 6 millions d'euros par Saint-Étienne Métropole et 2.5 millions d'euros par le Département.

Conformément à l'article L. 151. 2 du Code de la Voirie Routière, le classement de deux nouvelles bretelles au statut de route express nécessite une enquête publique.

2.1 État initial, incidences et mesures prises pour les éviter, les réduire et les compenser

2.1.1 Éléments généraux et transversaux

L'étude d'impact a pris le parti de présenter, pour chacun des thèmes, les impacts bruts, puis dans le même sous chapitre, les mesures LRC envisagées. Pour ce type de projet, de taille relativement modeste, cette approche pragmatique apparaît appropriée : il convient toutefois de noter que pour certaines thématiques, l'analyse des impacts bruts est très succincte.

Synthèse de l'état initial

Le dossier effectue une synthèse des enjeux environnementaux avez, une classification à quatre niveaux (faible, moyen, fort, très fort) pour une trentaine de thématiques. L'enjeu relatif à la qualité de l'air est considéré comme faible, un classement en enjeu moyen apparaîtrait plus appropné.

Démarche LRC

Le dossier présente de très nombreuses mesures d'évitement, de réduction et de compensation (et de suivi) qui peuvent témoigner d'une réelle volonté du maître d'ouvrage de limiter les incidences du projet.

Force est toutefois de constater que cette liste comporte de nombreuses inexactitudes. Plusieurs mesures proposées n'ont ainsi pas de dimension environnementale et un nombre significatif de mesures font l'objet d'une classification erronée. L'Ae a ainsi relevé au fil du document les points suivants?

- la mesure MR23c? « gérer et coordonner la sécurité du chantier » ne constitue pas à proprement parler une mesure à caractère environnemental,
- les mesures ML2c « respecter les prescriptions géotechniques », ML3c « prise en compte des servitudes d'utilité publique » et MRL2c « respecter les règles de construction parasismiques » ne sont pas des mesures environnementales mais des dispositions d'organisation qualité dans la conduite du chantier ou le simple respect de réglementations,
- la mesure MC/e «indemnisation des proprétaires expropriés» n'a pas de caractère environnemental,
- la mesure MESc « prévention des pollutions accidentelles » traite en majeure partie de la gestion des pollutions et constitue donc une mesure de réduction et non d'évitement.
- la mesure ME13c « saisine archéologique voire diagnostic archéologique » est une disposition réglementaire, sans caractère environnemental.
- la mesure MC1c « suppression de la zone de déchets sauvages », par ailleurs pertinente, ne constitue pas une mesure de compensation des impacts du projet (le dépôt existe aujourd'hui) mais une mesure d'accompagnement.

Le parti pris de considérer la plupart des mesures constructives comme des mesures ERC paraît ainsi artificiel., c'est également le cas en matière de paysage pour lequel l'ensemble du parti d'aménagement est considéré comme une mesure de réduction d'impact.

Classification M pour mesure, E pour évitement, R pour réduction, C pour compensation r pour la phase chantier et e pour la phase exploitation.

Avis délibéré n°2020-37 du 4 novembre 2020 - Complément du demi-échangeur de la Varizelle - Page 7 sur 17 à Saint-Chamond (42) L'Ae recommande de reprendre le catalogue des mesures ERC, en ne conservant que les seules mesures ayant un caractère réellement environnemental.

2.1.2 Eau

Le projet s'inscrit dans le périmètre de la nappe d'eau souterraine « Formations variées du bassin houiller stéphanois, bassin versant du Rhône », qui n'est pas exploitée pour l'alimentation en eau potable du secteur. Elle est en bon état chimique et quantitatif en 2016, selon le schéma directeur d'aménagement et de gestion des eaux (Sdage).

Le projet intercepte deux cours d'eau. Le Janon et le Ricolin, qui appartiennent à la masse d'eau. « *Te Janon de sa source au Ger* » dont l'état écologique est moyen et l'état chimique bon selon le Sdage, l'objextif de bon état écologique étant fixé pour 2027. Selon le dossier, les eaux du Ricolin sont de mauvaise qualité en raison d'une installation de traitement des eaux déficientes. Le dossier précise qu' « une étude hydrauhque sera réalisée ulténeurement dans le cadre du dossier d'autorisation environnementale, précisant les caractéristiques des deux cours d'eau.». L'Ae rappelle que le signalement d'une procédure ultérieure ne dispense pas d'une présentation dans la demande de déclaration d'utilité publique à un niveau de précision suffisant pour apprécier l'ensemble des effets du projet et dels mesures à mettre en œuvre. Le Janon et ses affluents font partie des cours d'eau classés en liste 1° selon l'article L. 214–17 du Code de l'environnement. Sur le Janon, sont présents de très nombreux obstacles à la continuité.

L'étude d'impact présente les mesures, classiques, prises pour l'assainissement et la gestion des eaux pluviales avec notamment la création de deux bassins de 550 et 338 m², dimensionnés pour une pluie trentennale. L'Ae relève que le mode d'évacuation (infiltration, rejet aux cours d'eaux —) n'est pas défini alors que ce questionnement devrait être présenté dans le dossier du fait de la possible présence d'argile.

2.1.3 Risques naturels

La commune de Saint. Chamond est située sur un territoire à risque important d'inondations (18i) , la zone d'étude est concernée par le plan de prévention des risques d'inondations du Gier et de ses affluents, approuvé le 8 novembre 2017.

Une partie significative du projet (17 800 m²) est située en zones rouge et bleue du plan de prévention des risques d'inondation du Gier et de ses affluents. Les constructions nécessaires à des services publics y sont autorisées, sous réserve de prendre en compte, dans leur conception, le risque d'inondation². Le dossier indique que « le projet sera conçu de façon à ne pas dégrader la satuation actuelle». Or, aucune ébauche d'analyse n'est fournie à ce stade, alors que les infrastructures (bretelles, giratories) peuvent avoir des incidences sur les écoulements et la ligne d'eau, il en est de même pour les zones de compensation à la réalisation du remblai en zone mondable, dont la localisation ne semble pas non plus avoir fait l'objet d'études alors qu'elles constituent potentiellement un obstacle hydraulique.

Estrait du règlement du PPR et es infrastructures nouvelles et les équipements associés ne doivent pas retourser les lignes d'eur in modifier les périmètres des zones exposés au risque. Elles doivent être transparentes à l'écoulement des eaux et les éventuels remblus compensés en volume cote pour cote ».

Cette liste n'est constituée que de quelques exemples et n'a donc pas vocation à l'exhaustivité.

Le classement en liste 1 (1º du § 1 de l'article L. 214-17 du code de l'environnement) a pour vocation de protéger certains cours d'eau des dégradations (et mutamment intendiction de tout mouvel obstacle à la continuité émolgique) et permet d'afficher un object de préservation à long terme.

L'Ae recommande de démontrer, dès le stade de la demande de déclaration d'utilité publique, le respect des prescriptions du PPRI.

Le secteur d'étude est concerné par le plan de prévention des risques miniers (PPRM) de la vallée du Gier, approuvé le 29 mars 2019. Plusieurs puits de mine sont présents dans le périmètre rapproché, correspondant à un zonage R3 où sont autorisés, sous conditions, « la réalisation et l'adaptation d'infrastructures linéaires ou non déclarées projet d'intérêt général (PIG) ou déclarées d'utilité publique (DUP), en démontrant que l'analyse d'autres alternatives n'a pas abouti ». Des prescriptions techniques particulières doivent être mises en œuvre, afin notamment de s'assurer de la stabilité d'ensemble de l'ouvrane (infrastructure) à la survenance d'un fontisie d'un diamètre maximum de 10 m. Le dossier précise que des études géotechniques ultérieures définiront plus précisément les incidences du projet, ce qui ne permet pas d'asseoir clairement la certitude de la faisabilité du projet proposé à déclaration d'utilité publique. Il n'est en conséquence pas possible à ce stade de considérer l'impact résiduel comme « très faible à nul », sans analyse.

Alors qu'une partie du projet est située en zone de risque faible de gonflement et de retrait des argiles, le dossier précise que « les polluants [des systèmes mis en place pour le traitement des eaux recueillies] sont retenus par engazonnement des noues et des fossés », bien qu'il ne soit pas démontré que l'infiltration des caux y soit exempte de risque, notamment à proximité des habitations.

L'Ae recommande de compléter dès le stade de la demande de déclaration d'utilité publique le dossier par une description des movens mis en œuvre par le maître d'ouvrage permettant de garantir le respect des dispositions relatives aux risques miniers.

2.1.4 Milieux naturels et continuités écologiques

Après une analyse bibliographique, le dossier dresse l'inventaire des milieux naturels et des corridors écologiques dans l'aire d'étude, sur la base notamment de cinq jours d'inventaire, effectués de mars à août 2019. La pression d'inventaire apparaît globalement proportionnée aux ещеих.

Aucun espace protégé ni aucun corridor mentionné au schéma régional de cohérence écologique n'est présent dans la zone de projet. Les impacts bruts sur les habitats naturels et espèces, et notamment les espèces patrimoniales, sont présentés sous forme de tableau. Les espèces exotiques envahissantes ont été correctement identifiées et font l'objet de mesures adaptées.

Le dossier propose la mise en place d'un ensemble de mesures d'évitement, de réduction et de compensation (ERC) : évitement des zones sensibles pour la base de travaux, adaptation de la période de coupe des boisements et de décapage des sols, végétalisation des talus, création d'un ilot de sénescence¹, plantation de 150 mètres de haies, limitation de l'éclairage, réalisation de pêches de sauvegarde, opération de capture et déplacement de reptiles, d'amphibiens et de

¹ En lorêt, un « îlot de sériescence » est une zone voluntairement abandonnée à une évolution sountanée de la nature jusqu'à l'effondrement complet des arbres (chablis) et reprise du cycle sylvogénétique (source Wikipedia)

Avis délibéré n°2020-37 du 4 novembre 2020 - Complément du demi-échangeur de la Varizelle à Saint-Charnond (42)

mammifères par l'écologue dédié au chantier, mise en place de clôtures anti-amphibiens sur l'emprise du chantier, mise en place de grillages à bayolet¹² incitatif au passage des chiroptères. création et amélioration de passages mixtes hydrauliques et petite faune, création d'abris artificiels pour les reptiles et pour les chiroptères, renaturation des berges du Janon et du Ricolin favorable au Castor d'Europe, destruction et prévention du développement des espéces végétales exotiques envahissantes, qui rendent les impacts résiduels faibles ou nuls.

Le dossier propose en compensation l'effacement d'un seuil sur le janon, légèrement en avail des ouvrages hydrauliques du projet. Cette disposition, certes inféressante, ne s'infègre pas dans une vision plus large de rétablissement des continuités écologiques du Janon, tant pour la faune aquatique que pour la faune terrestre. Les rapporteurs ont ainsi pu constater lors de leur visite que les deux ouvrages de franchissement de la bretelle de sortie actuelle et de la RN, de la responsabilité de l'État, constituaient délà des obstacles partiels à ces continuités. Le dossier mentionne que le cours d'eau est référencé dans le contrat de rivière du Gier mais n'en tire pas partie pour la définition dos actions, notammont un associant la syndicat gostionnaira du contrat da manièra à inscriro lo projet dans les actions prioritaires (article L. 214-17 du code de l'environnement).

L'Ac remarque par ailleurs que les aménagements intérieurs des ouvrages hydrauliques pour le passage de la petite faune ne sont réalisés que sur une rive, comme le montrent les photographies et les schémas du dossier, ce qui est contradictoire avec l'objectif d'éviter aux espèces de traverser les cours d'eau pour emprunter ces banquettes destinées à les éviter.

L'Ae recommande de renforcer les mesures de rétablissement des continuités écologiques sur le janon.

Le dossier ne précise pas les secteurs envisagés pour l'installation de la base chantier. Des précisions sont à apporter en deux temps : dès le présent dossier avec des engagements sur les secteurs à éviter, notamment du fait d'enjeux hés au milieu naturel, puis dans le dossier de demande d'autorisation environnementale.

Deux zones humides ont été identifiées dans la zone d'étude (une zone humide naturelle associée au Janon et une zone humide au sud-ouest du giratoire sud, située sur le site du projet de halle des sports'a). Le dossier mentionne qu'une zone humide a en partie été détruite par la réalisation d'un autre projet routier sans préciser laquelle ni son emplacement. Le dossier n'indique pas si des sondages pédologiques ont été réalisés dans le secteur nord où le projet affecte les cours d'eau du Janon et du Ricolin (cours d'eau recalibrés et couverts par des ouvrages). Une présentation plus fine des investigations effectuées dans ce secteur (selon les critères alternatifs de végétation ou de sol) est attendue, pour la demande d'autorisation environnementale, pour délimiter de manière exhaustive les zones humides et la mise en place de mesure d'évitement, de réduction et de compensation.

L'Ae recommande de vérifier l'existence d'une zone humide dans le secteur nord où le projet affecte directement les cours d'eau à l'aide d'investigations sur la végétation et les sols en place, et de mettre en place les mesures d'évitement, de réduction et de compensation correspondantes.

¹² Il a été précisé aux rapporteurs lors de leur visite que cette zone était évitée par ce projet

^{*} Un finitis est un effinidrement du sul visible en surface par une dépression, rausée par la déliquescence souterraine progressive des terrains porteurs et l'aspiration des terrains de surface.

¹¹ Partie supérieure des grillages, inclinée vers l'arrière.

2.1.5 Gestion des matériaux, sols pollués

Le projet sera déficitaire en matériaux, dans une fourchette comprise entre 20 000 m² et 50 000 m³ suivant le taux de réutilisation des matériaux en remblai. Le dossier ne présente pas d'information relative à la provenance des matériaux et à la gestion des déblais impropres à leur réutilisation en remblai.

À partir des bases de données existantes, le dossier met en évidence la possible présence de sols pollués dans l'emprise du projet, qui seraient liés à un ancien dépôt d'hydrocarbures. Une mesure de réduction prévoit l'élimination de ces déchets, selon leur nature, dans une filière adaptée. Cependant le dossier n'indique pas, à ce stade, les modalités des tests de caractérisation des sols à réaliser.

L'Ae recommande de compléter l'étude d'impact avec des informations relatives à la provenance des matériaux et à la gestion des déblais aux caractéristiques insuffisantes pour leur réutilisation en remblais.

2.1.6 Bruit

La route nationale 88 est classée en 160 catégorie au sens de l'article L. 571-10 du code de l'environnement et de l'arrêté du 30 mai 199614. Les mesures de bruit ont permis de classer le site du projet en ambiance sonore modérée, ce qui offre les meilleures garanties réglementaires aux riverains. Le calage du modèle acoustique, a été effectué sur quatre points seulement 11. Au-delà des difficultés soulevées en matière de prévisions de trafic, le dossier fait état d'une répartition jour/nuit des circulations « habituelle sur ce type de secteur » (95 % / 5 % pour la RN 88 ; 90 % / 10 % sur les autres axes) sans que ceci ne soit conforté par des comptages routiers. L'hypothèse retenue dans le modèle acoustique est celle d'une vitesse de 110 km/h entre les échangeurs 16 et 17.

La méthode présentée dans l'étude d'impact consiste à effectuer successivement trois types de calculs «La détermination de l'impact des nouvelles infrastructures seules sur les hâtiments existants», «La détermination de l'impact de la modification des voures sur les hâtiments existants » et «La comparaison des situations globales avec et sans projet ». Le dossier mentionne que cette comparaison n'a pas de critère réglementaire, « elle est donnée à ture informatif ». Le dossier conclut à l'absence d'obligations règlementaires en termes de protections acoustiques, tout en décidant ensuite de reconstituer le merlon acoustique situé au nord, en amont de la bretelle, en partie détruit par la réalisation de celle-ci.

Ce découpage d'un même projet, d'ampleur limitée et qui constitue de fait une modification de la RN-88, n'est pas approprié car il conduit à ne pas prendre en compte, pour l'interprétation de la réglementation, la globalité des impacts sonores subis par les riverains, alors même que, comme indiqué au 1.2, l'un des objectifs du projet est d'améliorer leur cadre de vie.

Avis délibéré n°2020-37 du 4 novembre 2020 - Complément du demi-échangeur de la Varizelle - Page 11 sur 17 à Saint-Charnond (42) Le code de l'environnement prévoit la mise en place de protection lorsqu'une infrastructure de transport subit une modification significative, l'article R. 571-45 indiquant: « Est considérée comme significative [...] la modification ou la transformation d'une infrastructure existante, [...] telle que la contribution sonore qui en résulterait à terme, pour au moins une des périodes représentatives de la gêne des riverains mentionnées à l'article R. 571-47, serait supérieure de plus de 2 dB (/\) à la contribution sonore à terme de l'infrastructure avant cette modification ou cette transformation ».

Le tableau de l'étude d'impact fait état, avant (re)création d'un remblai, d'un écart maximal de 2 dB(A) sur un récepteur (R08) mais de nombreux récepteurs au droit du remblai ne sont pas pris en compte. Au viu de ces éléments, il apparaît à l'Ae que le projet doit être considéré comme une modification significative au sens des articles 1, 571, 9 et 1, 571, 45 du code de l'environnement.

Le maître d'ouvrage compare la situation future avec projet et la situation future sans projet dont l'écart est ensuite confronté au seuil de 2 dB(A). Si cet écart est inférieur à 2 dB(A) pour un récepteur, le maître d'ouvrage se considère exonéré de toute responsabilité en matière de bruit, quand bien même les inveaux acoustiques avec, projet dépasseraient le seuil de gêne usuel de 60 dB(A) de jour retenu pour une infrastructure neuve. Or, comme l'Ae l'a expliqué dès 2015 dans sa note sur le bruit, cette interprétation du maître d'ouvrage, la moins favorable aux inverains, « pourrait entraîner un risque jundique, faute d'assurance que la référence à un état fotur sans projet, lequel est largement fictif, constituerant un raisonnement jundiquement acceptable ». La comparaison de la situation future avec projet à la situation actuelle (sans projet) est à privilégier (car « elle correspond à la mamère dom les riverains vivroint le projet » et correspond à l'objectif affiché pour le projet.

La refonte de l'étude existante permettrait de prendre en compte les prévisions de trafic remaniées (cf. chapitre 2.5) et d'optimiser les protections à la source (merlon, voire réduction de vitesse à 90 km/h, choix de l'enrobé...) qui sont à privilégier.

L'Ae rappelle enfin que le maître d'ouvrage a une obligation de résultat à court et long terme concernant le bruit en application des articles R. 571-44 et suivants du code de l'environnement, et que son traitement à la source doit être privilémé (article R. 571-48 du même code).

L'Ae recommande d'indiquer le niveau de précision du modèle acoustique utilisé. Elle recommande également de revoir l'analyse des impacts sonores du projet entendu comme une modification d'ensemble de la RN 88, en visant une amélioration de la situation actuelle en pleine cohérence avec l'objectif affiché d'amélioration du cadre de vie des riverains.

2.1.7 Qualité de l'air

L'agglomération stéphanoise fait l'objet d'un plan de protection de l'atmosphère approuvé en février 2014, qui prévoit notamment de « réduire les émissions de PM 10¹⁷ et de NO2 dues à la circulation routière au droit de l'axe autoroutier A 47 ». La fiche action correspondante montre que la RN 88, en tant que prolongement de l'A 47, est également concernée par la mesure visant notamment à la « fluidification du trafic : Réduction de la vitesse autorisée sur l'axe A 47-RN 88 entre Givors et Saint-Étienne (limitation à 90 km/h) sur une partie de l'itinéraire ». L'analyse est sommaire, le

¹⁷ Les PM10 sont des particules de taille inférieures à dix micromètres.

¹ les infrastructures de transports terrestres sont classées en 5 catégories selon le niveau de bruit qu'elles génèrent ; la catégorie 1 est la plus bruyante, avec des niveaux acoustiques durmes et nocturnes supérieurs respectivement à 81 et 76 dfl. et une languer maximale des set teurs affectés par le bruit de part et d'autre de l'instruture de 300 mètres.

La note de l'Ae sur la prise en compte du bruit dans les projets d'infrastructures Inéaires de transport du 8 juillet 2015 indique « On s'assurera matamment que les conditions des mesures utilisées pour le catage du modèle sont représentatives de la situation modéliéée, et que ces observations sont suffisamment nombreuses pour que le modèle avrès calage sont cédible sur l'ensemble de la zone étudiée ».

Comme l'a souligne l'Ae dans sa note sur le bruit, il convient de noter que l'arrêté bruit du 5 mai 1995 est d'une rédaction différente de celle de l'article R. 571-47, indiquant : « si la contribution sonore de l'infrastructure avant travaux est inférieure aux valeurs prévues à l'article 2 du présent arrêté, elle ne pourra dépasser ces valeurs après travaux » avec une valeur plafond de 60 d8(A) dans le cas d'une ambiance sonore modérée.

dossier se contentant de déclarer « dans le département de la Loire, la qualité de l'air est globalement bonne]...] » et de présenter des cartes, sans échelle, montrant que la pollution se concentre sur une bande étroite le long de la RN 88.

Le dossier indique qu'une étude air et santé de niveau III a été réalisée conformément à la note technique du 22 février 2019 relative à la prise en compte des effets sur la santé de la pollution de l'air dans les études d'impacts des infrastructures routières. Mais il ne présente pas les résultats de cette étude.

Le dossier compare la situation de projet en 2043 avec la situation sans projet au même horizon et avec la situation actuelle (2018). Il présente une forte diminution globale des émissions de polluants et une contribution légèrement positive du projet (baisse de 1 à 7% en fonction des types de polluants par rapport à la situation sans projet). L'étude d'impact ne fournit pas les résultats à la mise en service (2023) ** alors que ceux-ci devraient présenter des teneurs plus importantes en polluants que vindt ans plus tard, eu égard à l'amélioration attendue du parc, plus rapide que la croissance des trafics. Le dossier ne précise pas (y compris au chapitre refaif aux méthodes) les hypothèses prises en matrère de motorisation (utilisation ou non de la version V du logiciel COPIRI).

L'Ae recommande de compléter le volet qualité de l'air en présentant les résultats correspondant à l'année de mise en service (2023), en explicitant les méthodes et en intégrant les résultats détaillés de l'étude « air et santé ».

2.1.8 Émissions de gaz à effet de serre

Le projet ne comporte pas de chapitre relatif aux émissions de gaz à effet de serre (GES) et n'effectue aucun calcul pour la phase chantier, l'analyse pour la phase d'exploitation étant extrémement sommaire (un chiffre journalier faisant état d'un niveau d'émissions légèrement plus faible en projet par rapport à la situation de référence), sans explicitation des hypothèses. Pour la phase chantier, il conviendrait notamment de prendre en compte les émissions liées aux matériaux (production, transport...).

L'Ae recommande de conduire, pour le dossier d'autorisation environnementale, une analyse approfondie des émissions de gaz à effet de serre en phase chantier, assortie de mesures d'évitement, de réduction et de compensation, ainsi qu'un bilan pour la phase exploitation.

2.1.9 Paysage

Le dossier explicite « l'insertion paysagère » du projet : plantations d'agrément, reverdissement des délaissés routiers, aménagement paysager (avec plantations) du remblai supportant la voie de sortie, plantations d'arbres et d'arbustes afin de créer un écran visuel, plantation/reconstitution de haies... En particulier, le maître d'ouvrage a pris le parti d'un aménagement paysager jouant le rôle de filtre visuel depuis le quartier de la Varizelle afin de masquer les voiries et la zone d'activités située au sud. Les rives du Ricolin et du Janon seront reprises pour créer « une ripisylve d'accompagnement ».

C'est une des évolutions justement apportée par la roite tex hoique du 22 février 2019 par rapport à la rimulaire à laquelle elle s'est substituée.

Avis délibéré n°2020-37 du 4 novembre 2020 - Complément du demi-échangeur de la Varizelle - Page 13 sur 17 à Saint-Chamond (42)

2.2 Analyse de la recherche de variantes et du choix du parti retenu

Le dossier présente trois variantes. La variante A consistant à réaliser un barreau de franchissement de la RN 88 sans nouvelles bretelles d'accès, la variante 8 proche de celle *in fine* retenue et la variante C avec un décalage vers l'ouest de la bretelle nord (en provenance de Lyon).

Le maître d'ouvrage avait fait état de sa préférence pour la variante B, la variante A ne répondant pas à l'objectif et la variante C étant plus onéreuse et techniquement plus complexe. L'un des cinq critères d'analyse traitait des enjeux environnementaux liés à l'eau, la faune et la flore, et un autre critère concernait l'amélioration du cadre de vie. À la suite de la concertation menée au printemps 2019, en référence à l'article L. 103-2 du Code de l'urbanisme, la variante B a été optimisée fonctionnellement mais aussi en matière de consommation d'espace (diminution du diamètre du giratoire nord).

2.3 Effets cumulés

L'analyse des impacts cumulés avec le projet connexe de halle des sports¹² est sommaire, le dossier arguant de l'absence de plan du projet. À noter d'ailleurs qu'une dérogation relative aux espèces protégées au titre de l'article L. 411-1 du code de l'environnement a été récemment obtenue par le maître d'ouvrage de la halle des sports (Saint-Étienne Métropole), dont le projet devait être mis en service en 2022.

Cette analyse est d'autant plus importante que les deux projets sont contigus et que le dossier souligne que « la friche faccueillant la halle des sports] située au sud-ouest présente un enjeu fort pour sa qualité de zone refuge / chasse pour de nombreux groupes (oiseaux, reptiles, chiroptères, mammifères) ».

L'Ae recommande de compléter le dossier par une analyse approfondie des impacts cumulés avec le projet connexe de halle des sports.

Plus généralement, le dossier ne fait pas suffisamment état des synergies possibles des deux projets notamment en matière de mobilité modes actifs (avec la continuité de l'itinéraire cyclable au delà du rond point sud), parking de covoiturage envisagé par le projet de halle des sports, desserte en transports collectifs.

2.4 Mise en compatibilité du plan local d'urbanisme de Saint-Chamond

Le PLU de Saint-Chamond doit être mis en compatibilité avec le projet afin :

- d'ajuster le périmètre de l'emplacement réservé (ER) n'8 avec une superficie passant de 3,3 à 4,8 hectares et de changer l'attributaire de l'ER (Dreal en lieu et place de la Métropole)
- de modifier les emplacements et linéaires de haies à protéger, identifiées au titre de l'article 130-1 du code de l'urbanisme (et non de l'article L 151-23 comme indiqué dans le dossier).

Le projet est en effet incompatible avec le PLU actuel de la commune du fait de la présence de haies identifiées au titre de l'article L151–23 du code de l'urbanisme.

La halle des sports a une jauge de 4 000 places permettant à cette salle métropolitaine d'accueillir des matches de basket de haut niveau.

Avis délibéré n°2020-37 du 4 novembre 2020 - Complément du demi-échangeur de la Varizelle Page 14 sur 17 à Saint-Chamond (42)

Figure 3 : Mise en compatibilité du PLU , au centre et en croisillons rouges l'emplacement réservé R8 et en traits verts le nouveau réseau de haies protégées

L'étude d'impact comprend un chapitre dédié à la mise en compatibilité du PLU avec notamment une analyse de compatibilité avec les principaux plans et programmes s'appliquant au territoire.

L'affirmation de la compatibilité du projet et de la modification du PLU avec le PPRI, sans étude hydraulique, n'est pas étayée par un argumentaire précis. Il en est de même pour ce qui est des risques miniers.

L'Ae recommande de compléter le dossier afin de démontrer la compatibilité de la modification du PLU avec les plans de prévention des risques minier et d'inondation.

Les prescriptions du PLU concernant les haies sont décrites, notamment en matière d'épaisseur (plusieurs strates herbacée, arbustive et arborescente). Le maître d'ouvrage s'engage à les respecter.

2.5 Spécificités des dossiers d'infrastructures de transport

L'article R. 122-5 du code de l'environnement fait état de compléments spécifiques pour les infrastructures de transport, et notamment des analyses des conséquences prévisibles du projet sur le développement éventuel de l'urbanisation, des coûts collectifs des pollutions et nuisances, et une description des hypothèses de trafic.

2.5.1 Trafics et vitesses de circulation

Le dossier présente, pour chacune des infrastructures, les trafics de 2018 et 2043 (avec et sans projet).

Avis délibéré n°2020-37 du 4 novembre 2020 - Complément du demi-échangeur de la Varizelle Page 15 sur 17

Le chapitre prend comme hypothèse un taux de croissance de 0,6 % pour le « trafic de fond » auquel s'ajoute le trafic généré par les centres commerciaux, si bien que le lecteur ne peut pas réellement comprendre quel accroissement global a été retenu. Un calcul effectué par les rapporteurs aboutit à des taux de croissance annuels très conséquents en situation de référence (sans projet) entre 2018 et 2043 : 1,65 % pour la route de la Varizelle en cas de non réalisation du projet, et supérieur à 2,5 % pour la rue du 17 octobre 1961. Ces taux, qui paraissent élevés au regard de la capacité d'accueil limitée des zones d'activité et de la stagnation démographique du territoire, permettent toutefois de majorer certains impacts découlant du trafic.

Les préxisions en situation de projet n'apparaissent pas cohérentes entre elles ji s'agissant d'un report de trafic, l'augmentation de trafic sur la RN 88 (12 600 véhicules/jour) est bien inférieure aux diminutions constatées sur le réseau viaire local = 3 200 véhicules/jour pour la route de la Varizelle et = 4 700 véhicules/jour pour la ruie du 17 octobre 1961. Des éléments complémentaires transmis aux rapporteurs par le maître d'ouvrage font apparaître une situation différente (en contradiction avoc la cartographie précentée dans le descrer²⁰) avoc une augmentation significative en heures de pointe pour la rue du 17 octobre 1961 et non une diminution.

Cette question des prévisions de trafics est évidemment très importante au regard des impacts environnementaux du projet, notamment en matière de nuisances sonores*, la modélisation acoustique étant fondée sur ces prévisions tant dans la situation de référence qu'en situation de projet.

Globalement, les gains de temps de parcours sont limités, de l'ordre d'une minute, à l'exception de l'accès au centre commercial depuis Lyon.

La vitesse de circulation sur la RN-88 qui sera autorisée après la mise en service du projet est évoquée à plusieurs reprises dans le dossier sans qu'il soit possible de connaître l'objectif poursuivi en la matière, la zone de projet étant très proche du point de transition de vitesse entre 90 et 110 km/h. La vitesse de 90 km/h aurait des effets positifs en termes de la sécurité routière, eu égard à la distance limitée entre les deux échangeurs, mais aussi en termes de réduction du bruit et d'émissions de polluants et de gaz à effet de serre.

L'Ae recommande de reprendre le chapitre relatif aux prévisions de trafics en explicitant de manière détaillée les hypothèses et les résultats, en movenne journalière et en heures de pointe et d'en tirer les conséquences sur les incidences du projet, notamment en matière de bruit. L'Ae recommande également de clarifier les hypothèses de vitesses de circulation en situations de référence et de projet, et de quantifier les bénéfices environnementaux d'un abaissement local de la vitesse à 90 km/h.

2.5.2 Autres dispositions relatives aux infrastructures de transport

Le dossier indique « le projet n'est pas de nature à générer un effet significatif sur le développement de l'urbanisation », cette conclusion paraît discutable, l'une des motivations principales du projet étant précisément de faciliter l'accès aux zones d'activité en développement (Novacières, Métrotech), ainsi qu'à la halle des sports dont l'accessibilité est largement renforcée avec la création des bretelles.

C'est également vrai pour la qualité de l'air et les émissions de gaz à effet de serre.

Avis délibéré n°2020-37 du 4 novembre 2020 - Complément du demi-échangeur de la Varizelle Page 16 sur 17 à Saint-Chamond (42)

^{20.} Le dossier, fondé sur les premières prévisions de trafic, conclut à une diminution de la congestion.

L'étude d'impact met en avant la notion de bien-être : « bien que difficilement monétarisable, il est possible d'affirmer que, corollairement aux évolutions de trafic et à l'habitat, le projet présente globalement un gain important de bien-être pour la collectivité, avec une forte augmentation du bien-être au droit de la Varizelle », affirmation qui ne repose sur aucun fondement.

2.6 Résumé non technique

Le résumé non technique, présenté en début d'étude d'impact, traite de l'ensemble des thématiques environnementales à l'exception de la démarche ERC, le document se contentant de lister les différentes mesures sans les hiérarchiser, ni les positionner au regard des impacts bruts identifiés et sans expliciter les impacts résiduels.

L'Ae recommande de présenter le résumé non technique sous forme d'un document séparé et d'y revoir le traitement de la démarche « éviter-réduire-compenser » et les mesures associées, suivant le principe de proportionnalité : elle recommande également de prendre en compte. dans le résumé non technique, les conséquences des recommandations du présent avis.

DIRECTION REGIONALE DE L'ENVIRONNEMENT, DE L'AMENAGEMENT ET DU LOGEMENT AUVERGNE – RHONE- ALPES

RN88 – Complément du demi-échangeur de la Varizelle à Saint-Chamond

DOSSIER D'ENQUETE PREALABLE :

- A LA DECLARATION D'UTILITE PUBLIQUE DES TRAVAUX DE COMPLEMENT DU DEMI ECHANGEUR DE LA VARIZELLE
- A LA MISE EN COMPATIBILITE DU PLU DE SAINT-CHAMOND
- AU CLASSEMENT DES VOIES DANS LA CATEGORIE ROUTE EXPRESS

MEMOIRE EN REPONSE A L'AVIS DE L'AUTORITE ENVIRONNEMENTALE

Décembre 2020

Direction Régionale de l'Environnement, de l'aménagement et du Logement Auvergne-Rhône-Alpes

Sont reprises ci-après, les recommandations formulées par l'Autorité Environnementale, suivies par les éléments de réponse. Si ces éléments ont entrainé une modification du dassier de DUP, leur positionnement dans le dassier est précisé (paragraphe et page).

1. ETAT INITIAL, INCIDENCES ET MESURES PRISES POUR LES EVITER, LES REDUIRE ET LES COMPENSER

1.1 ELEMENTS GENERAUX ET TRANSVERSAUX (PAGE 7/17)

Synthèse de l'état initial

L'enjeu relatif à la qualité de l'air est considéré comme faible, un classement en enjeu moyen apparaîtrait plus approprié

L'enjeu de la qualité de l'air a été modifié dans la synthèse de l'état initial, pièce E02, chapitre 12. Synthèse des enjeux environnementaux (page 103) et celle du résumé non technique, pièce E00, chapitre 3.2 Synthèse des enjeux environnementaux (page 18). L'enjeu relatif à la qualité de l'air est passé de faible à moyen.

Démarche ERC

L'Ae recommande de reprendre le catalogue des mesures ERC, en ne conservant que les seules mesures ayant un caractère réellement environnemental.

Le tableau des mesures est repris afin d'identifier clairement les mesures environnementales et celles liées à l'aspect technique et de construction.

La mesure de suppression de la zone de déchets est modifiée en mesure d'accompagnement.

Ce point est modifié dans la synthèse des mesures, pièce E03, chapitre 11 Tableau de synthèse des mesures et coûts associés (page 173) et dans le résumé non technique, pièce E00, chapitre 4.3 Tableau de synthèse des mesures et coûts associés (page 24).

1.2 EAU (PAGE 8/17)

L'Ae relève que le mode d'évocuation (infiltration, rejet aux cours d'eau ...) n'est pas défini alors que ce questionnement devrait être présenté dans le dossier du foit de la possible présence d'argile.

Dans la pièce E01, présentation du projet, il est mentionné le mode d'évacuation des eaux.

- un bassin récupérant les eaux du barreau, du giratoire existant et du giratoire créé avec un rejet après traitement dans le Ricolin (l'exploitant sera celui du barreau et du giratoire non défini actuellement).
- un bassin récupérant les eaux de la bretelle de sortie de la RN88 avec un rejet après traitement dans le Janon. Ce bassin sera exploité par la DIR Centre Est.

Ce point est toutefois ajouté dans la partie analyse des impacts, pièce E03, chapitre 3.2.1 Ecoulements souterrains et superficiels (page 128).

2

1.3 RISQUES NATURELS (PAGE 8/17)

L'Ae recommande de démontrer, dès le stade de la demande de déclaration d'utilité publique, le respect des prescriptions du PPRI.

Le projet se situe en zone inondable au Plan de prévention des risques naturels prévisibles d'inondation (PPRNPI) de la rivière le Gier. Il implique des remblais en zone inondable qui selon le règlement de ce plan, sont autorisés sous réserve de ne pas rehausser la ligne d'eau ni modifier les périmètres de zones exposées à l'inondation. Les remblais doivent être compensés. L'Ae se questionne sur les mesures mises en œuvre pour répondre à cet objectif

Il est ainsi rappelé que le projet retenu est celui du moindre impact sur la zone inondable et qu'il est prévu de compenser le volume remblayé, volume par volume dans le même bassin versant afin de ne pas aggraver à l'aval le risque inondation, conformément aux dispositions du PPRNPi du Gier. La recherche de la mesure compensatoire se fera lors des études techniques menées ultérieurement et sera décrite dans le dossier d'autorisation environnementale justifié par une modélisation hydraulique.

Enfin, le dimensionnement des nouveaux ouvrages hydrauliques sur le Janon et le Ricolin ont pris en compte le critère de transparence hydraulique et de respect des zones d'inondation. L'étude hydraulique qui sera réalisée dans le cadre des études ultérieures, permettra de dimensionner l'ensemble du réseau hydrographique local avec les modifications liées au projet (remblais, zone de compensation, nouveau ouvrage hydraulique, arasement du seuil) pour s'assurer de l'absence d'impact sur la zone inondable. Et, les mesures seront ajustées, si nécessaire, pour assurer la transparence hydraulique du projet vis-à-vis des crues et afin de respecter les prescriptions du PPRI.

Ce chapitre est détaillé en pièce E03, analyse des impacts, chapitre 4.1 Respect du plan de prévention du risque inondation (page 131).

L'Ae recommande de compléter dès le stade de la demande de déclaration d'utilité publique le dossier par une description des moyens mis en œuvre par le maître d'ouvrage permettant de garantir le respect des dispositions relatives oux risques miniers.

Le risque minier a été établi à partir d'une étude historique définissant des zones avérées et des potentielles d'anciennes activités minières. Au droit de la zone d'étude, trois puits sont identifiés mais aucune précision n'existe à ce stade sur leur présence avérée, leur localisation, leur éventuel comblement.

Ainsi, il est prévu de réaliser une campagne de sondages géotechniques, dans le cadre des études de conception detaillees aim de caractenser ce secteur, et de definir les techniques a mettre en œuvre pour assurer la secunte des nouveaux ouvrages à créer.

Le règlement du PPRM autorise les infrastructures sous réserve d'avoir fait l'objet d'une déclaration d'utilité publique (article 1.3.1.2 du règlement du PPRM).

Le Maître d'ouvrage s'engage à respecter les prescriptions particulières et les objectifs de performances énoncés dans le règlement du PPRM (article 1.3.4).

Dans le cadre du chiffrage des travaux, un aléa a été estimé afin de prendre en compte les surcoûts pouvant être générés par les techniques à mettre en œuvre au droit de cet aléa minier.

La faisabilité du projet n'est donc pas remise en cause et le maître d'ouvrage s'engage à réaliser les études prescrites dans le plan de prévention des risques miniers pour intégrer les résultats au dossier d'autorisation environnementale.

De plus, dans le cadre des études d'opportunités, différents scénarios ont été étudiés.

3

Pour répondre aux enjeux de mobilité recherchés, les différents scénarios reposent sur une implantation assez

La solution retenue est celle qui a une emprise au sol la plus restreinte possible afin de limiter les différents impacts environnementaux et les impacts sur les riverains.

Dans la comparaison et le choix des scénarios, la problématique du risque minier a également été prise en compte. Dans l'absence des éléments géotechniques et d'une implantation plus précise des ouvrages liés à ce risque. Le fait d'avoir une emorise la plus resserrée possible l'imite d'autant ce risque.

Ce chapitre est intégré au pièce E03, analyse des impacts, chapitre 4.5 intégration du risque minier (page 132).

1.4 MILIEUX NATURELS ET CONTINUITES ECOLOGIQUES (PAGE 9/17)

L'As recommende de conferencias mesures de rétablirrement des continuités écologiques sur la Japan

Des nouveaux aménagements seront étudiés dans le cadre du dossier d'autorisation environnementale afin de de renforcer les mesures en faveur de la continuité écologique au droit du Janon. En effet, il sera étudié la possibilité de remplacer l'ouvrage existant sous la bretelle de sortie pour permettre la mise en place d'une hanquette et la suppression du seuil existant.

En effet l'ouvrage existant n'est pas accessible par la faune et un seuil existe entre le fond du lit et le fond de l'ouvrage faisant obstacle au passage de la faune piscicole. Il est ainsi proposé de remplacer la buse existante par un cadre avec mise en place d'une banquette et de positionner le fond du radier du nouvel ouvrage au même niveau que le fond du lit et de rétablir un lit dans l'ouvrage (mise en place de sédiments).

Cette modification est toutefois susceptible d'engendrer des modifications hydrauliques. Le dimensionnement de l'ouvrage sera établi en prenant en compte le fonctionnement hydraulique du cours d'eau et ses répercussions sur la zone inondable. Sa faisabilité dépendra des résultats des modélisations hydrauliques. L'objectif étant de ne pas modifier la zone d'inondation à l'avail.

De plus, en complément des mesures, afin d'assurer une continuité écologique de part et d'autre de la RN88 et du nouveau barreau. Il est proposé d'aménager un cheminement en pierres au droit de l'entrée de l'ouvrage sous le barreau et d'aménager la pente. Ainsi ce cheminement permettra aux espèces utilisant la banquette sous la RN88 de rejoindre les parcelles à l'ouest du barreau ou de traverser ce dernier.

Ce chapitre est intégré au pièce E03, analyse des impacts, chapitre 5.4 Corridors écologiques (page 142-144).

L'Ae demande que soit précisés les secteurs à éviter pour l'implantation des bases vie.

Le stockage des engins et les bases vies seront implantés en dehors de la zone inondable, afin de limiter le risque pour le personnel et les dégâts matériels.

La mesure ME1c délimite les secteurs à éviter pour le stockage des matériaux mais également pour les bases vie au vu des enjeux hindiversité

Dans la mesure du possible, les bases vie seront implantées sur des zones déjà imperméabilisées.

Ce point est prédsé dans la pièce EO3. Analyse des impacts, chapitre 2.1 Emprises des travaux (page 120).

L'Ae recommande de vérifier l'existence d'une zone humide dans le secteur nord où le projet affecte directement les cours d'eau à l'aide d'investigations sur la végétation et les sols en place, et de mettre en place les mesures d'évitement, de réduction et de compensation correspondantes.

Il a été précisé que des sondages pédologiques seraient établies ultérieurement en pièce E03, chapitre 3.3 Préservation des zones humides (page 129). Les résultats seront intégrés au dossier d'autorisation environnementale.

4

1.5 GESTION DES MATERIAUX, SOLS POLLUES (PAGE 11/17)

L'Ae recommande de complèter l'étude d'Impact avec des informations relatives à la provenance des matériaux et à la gestion des déblais aux caractéristiques insuffisantes pour leur réutilisation en remblais.

Des études géotechniques seront menées dans les phases ultérieures permettant de caractériser la nature des remblais et le taux de réutilisation de ces demiers. Il sera recherché une réutilisation au maximum sur site.

A ce stade la provenance des matériaux d'apport n'est pas connue. Afin de favoriser un apport local, le maitre d'ouvrage propose de définir un critère environnemental pour retenir l'entreprise en charge des travaux. Dans le règlement de consultation des entreprises, des points seront accordés aux entreprises utilisant des matériaux locaux et proposant un réemploi des déblais impropres à leur utilisation sur le chantier.

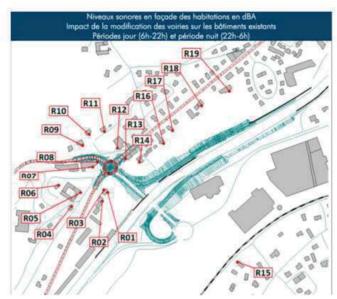
Ce point est ajouté dans la pièce E03, chapitre 2.5 Gestion des matériaux (page 122).

1.6 BRUIT (PAGE 11/17)

L'Ae recommande d'indiquer le niveau de précision du modèle acoustique utilisé. Elle recommande également de revoir l'analyse des impacts sonores du projet entendu comme une modification d'ensemble de la RN 88, en visant une amélioration de la situation actuelle en pleine cohérence avec l'objectif affiché d'amélioration du cadre de vie des rivernios

La pièce E03. Impacts et mesures, chapitre 7.1 Prévention des nuisances sonores (pages 151-161) a été reprise afin d'expliciter plus clairement la réglementation, le projet et sa configuration avec les murs et bretelles. Cette explication est accompagnée d'une illustration montrant que la nouvelle bretelle a une altitude supérieure au merion existant.

De plus, les modélisations ont été reprises en prenant une vitesse de 90 km/h sur RN88 en phase projet afin de recalculer l'impact pour les riverains. Un tableau d'analyse des niveaux sonores permettant la comparaison entre la situation 2043 future et la situation à l'horizon 2023 sans projet a été inséré afin d'identifier les gains et pertes pour les riverains.


Les résultats de l'étude acoustique sont les suivants :

Le projet respecte la réglementation, que ce soit l'analyse de la contribution sonore des nouvelles infrastructures ou la modification des infrastructures existantes. Les seulls réglementaires ne sont pas dépassés.

De manière globale, le projet a un impact positif sur les nuisances sonores, en réduisant leurs niveaux pour la majorité des riverains. Ces comparaisons permettent d'analyser la situation avec et sans projet à deux horizons 2023 et 2043. Ainsi les niveaux de bruit vont diminuer pour pratiquement l'ensemble des cepteurs de façon plus ou moins importante en fonction de leur localisation. L'abaissement de la vitesse de 110km/h à 90 km/h sur la RN88 entre les deux échangeurs aura une incidence sur l'ensemble des récepteurs mais de façon plus importante pour les façades exposées directement à la RN88 et au vu de leur éloignement. De plus, la prolongation du merlon entre l'écran actuel et la future bretelle, a pour effet de réduire les niveaux de bruit surtout pour les récepteurs R16 à R19. Enfin, la nouvelle bretelle de sortie aura une hauteur plus importante que le merlon existant, entrainant une diminution des niveaux de bruit pour les riverains, surtout pour les récepteurs R09 à R19 excepté R15. Ces demiers bénéficieront également d'une diminution du trafic sur la route de la Varizelle.

Seul le bătiment ROB voit son niveau augmenter, expliqué par la proximité du nouveau carrefour giratoire et de la route de Saint-lean-Bonnefonds. Toutefols, ce bâtiment correspond au garage qui sera déconstruit, seule l'habitation située à l'opposé de la façade ROB sera conservée.

Dans le cadre du dossier d'autorisation environnementale, l'étude acoustique sera reprise et une nouvelle modélisation sera effectuée afin de prendre en compte le tracé définitif (stade d'études de conception détaillée) et la suppression du garage sera prise en compte (partie du bâtiment aux façades R08 et R07) pour estimer le niveau de bruit de l'habitation R08/R07 conservée permettant de mieux estimer les niveaux sonores attendus.

Les précisions sur le modèle acoustique ont été intégrées dans la pièce E07 Méthodes, chapitre 3.2.5 Etude acoustique (page 220).

1.7 AIR (PAGE 12/17)

L'Ae récommande de complèter le volet qualité de l'air en présentant les résultats correspondant à l'année de mise en service (2023), en explicitant les méthodes et en intégrant les résultats détaillés de l'étude air et santé.

L'étude air a été complétée pour prendre en compte les émissions à l'horizon 2023 (date de mise en service du complément de l'échangeur de la Varizelle). Ces éléments sont intégrés dans la pièce E03. Analyse des impacts du projet, chapitre 7.2.2 Préservation de la qualité de l'air après la mise en service (pages 162 et 163).

Concernant l'étude air et santé, elle a été réalisée conformément au guide, les différents éléments sont situés :

- Un rappel sommaire des effets de la pollution atmosphérique sur la santé est présenté dans l'état initial, pièce EO2, chapitre 8. Cadre de vie (page 93). Il est également présenté les documents de planification relatifs à la qualité de l'air, les données des émissions atmosphériques disponibles pour Saint-Chamond (page 92).
- Une estimation des émissions de polluants au niveau du domaine d'étude (pièce E03 Analyse des impacts du projet, chapitre 7.2. Lutte contre les émissions polluantes (page 162 et suivantes). L'estimation des émissions en 2023 avec et sans projet a été ajoutée. L'analyse des impacts comprend les estimations de polluants en 2018, en 2043 avec et sans projet.

6

L'évolution entre la configuration avec et sans projet en 2023 et 2043 est liée à la mise en service du complément du demi-échangeur et d'une modification des répartitions des trafics sur les différentes voies.

L'impact du projet en 2023 et en 2043 est similaire en termes de pourcentage par contre les valeurs sont supérieures en 2023 par rapport à 2043.

Les estimations ne prennent pas en compte le temps de congestion du trafic dans les différentes configurations, qui impliquerait des valeurs d'émissions plus importantes dans la configuration actuelle. Au vu des analyses, le projet permet une réduction des émissions de polluents atmosphériques.

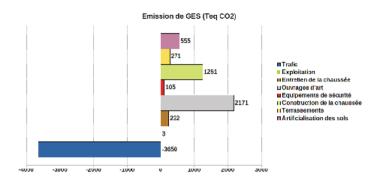
Le projet aura un impact positif en limitant le trajet effectué et surtout les émissions atmosphériques émises au sein des zones urbaines.

La méthode a été précisée dans la pièce EO7. Méthodes chapitre 3.2.7 Etude air et santé (page 222). Le logiciel utilisé pour les calculs d'estimations des concentrations de polluants est le logiciel TREFIC (version 5.1.2) utilisant la méthodologie COPERT V.

1.8 EMISSIONS DE GAZ A EFFET DE SERRE (PAGE 13/17)

L'Ae recommande de conduire, pour le dossier d'autorisation environnementale, une analyse approfondie des émissions de gaz à effet de serre en phase chantier, assortie de mesures d'évitement, de réduction et de compensation, ainsi qu'un bilan pour la phase exploitation.

Toutefois, une première approche a été réalisée et intégrée au dossier de DUP. Cette estimation a été établie sur la base du guide du CEREMA de mai 2020 « Recommandations pour l'évaluation des émissions de gaz à effet de serre des projets routiers » pour la réalisation de ce projet (phase trayaux, trafic et exploitation).


Cette évaluation comprend :

- Les émissions liées à la construction comprenant les terrassements, l'artificialisation des sols, la construction de la chaussée, des ouvrages d'art et la mise en place des équipements. L'estimation est de 2076 Teq CO2.
- Les émissions de la phase après la mise en service de l'infrastructure comprenant les postes suivants : l'entretien des chaussées, des ouvrages d'art, le trafic, l'entretien des équipements et l'exploitation et le changement d'affectation des sols. L'estimation pour la phase d'exploitation établie sur 50 ans est un gain de -1139 Teq CO2.

Cette estimation est établie au stade des études amont, la méthode permet de réaliser des calculs réalistes visà-vis du projet présenté, à partir d'hypothèses et de données disponibles à ce stade des études. Ils constituent une image du projet passeptible d'évoluer au cours des phases d'études ultérieures, et ne sunt valables que pour la phase durant laquelle ils sont réalisés.

En raison du caractère partiel des données disponibles et utilisées pour les calculs, le bilan des émissions de GES du projet est susceptible d'évoluer fortement s'il est actualisé pendant les phases ultérieures.

Compte tenu de l'importance croissante des enjeux climatiques, le MOA s'attachera à réduire les émissions de CO2 liées à la réalisation de son projet, en particulier s'agissant des émissions en phase chantier...Des actions seront mises en exergue lors des phases ultérieures telles que l'optimisation des mouvements de terre afin de réduire les flux de poids lourds, la réutilisation des matériaux, le choix des carrières si besoin d'apport ou d'export de matériaux, en mentionnant dans les dossiers de consultation des entreprises (DCE) des entreprises en charge des travaux, des clauses pour favoriser le choix de carrière au plus proche du site, et également pour avoir des engins de chantlers respectant les normes les plus récentes/ engins électriques...

Cette estimation est ajoutée dans la pièce E09, chapitre 3.2.1 Evaluation du coût des nuisances liées à la pollution atmosphérique (page 230).

2 EFFETS CUMULES

L'Ae recommande de compléter le dossier par une analyse approfondie des impacts cumulés avec le projet connexe de halle des sports.

Un plan de présentation de la halle des sports est ajouté ainsi qu'une analyse plus détaillée des impacts cumulés du projet avec le projet de halle des sports dans le chapitre impacts cumulés. Ces éléments sont dans la pièce E03 de l'étude d'impact, chapitre 12.2 Impacts cumulés avec la halle des sports (page 175-178).

Les impacts cumulés sont présentés pour la phase chantier et la phase exploitation.

Phase chantier

La réalisation de la salle omnisport est prévue pour 2021-2022, la phase de travaux devrait se dérouler en partie en même temps que la phase chancier du projet de complément du demi-échangeur. Ces deux chanciers vont donc générer des impacts cumulés.

Les nuisances générées concernent les nuisances acoustiques liées au trafic poids lourds notamment sur la rue du 17 octobre 1961 et la bretelle de sortie de la RN88.

Les impacts cumulés concement également l'impact sur les écoulements superficiels. Seuls les travaux au droit du complément de l'échangeur pourront avoir une incidence directe sur le cours d'eau (raidissement des berges), travaux réalisés à proximité de la traversée actuelle sous la RN8s esus la Court de la course de la Court de la Court

Des mesures sont mises en œuvre pour ne pas dégrader la qualité du Janon (assainissement provisoire des bases vie et des lieux de stockage des matériaux et des zones de travaux, mis en défens des abords du cours d'eau). Seul le projet de complément du demi-échangeur aura une incidence sur les zones inondables. Le projet de halle des sports est situé en dehors. Des mesures de compensation seront réalisées dans le cadre du projet de diffuseur.

Concernant le milieu naturel, les impacts sont la consommation de l'espace naturel. La phase chantier peut entrainer la propagation de ces espèces invasives et favoriser le développement sur des secteurs où ces espèces ne sont pas présentes. Des mesures seront mises en place pour ces deux chantiers afin de ne pas propager ces espèces.

Une mise en défens de la zone humide localisée sur le site de la halle des sports sera effectuée afin de préserver ce milieu et son alimentation hydrique.

La phase chantier aura également une incidence sur le dérangement de la faune locale par les nuisances sonores et la fréquentation humaine. De plus, les travaux peuvent être à l'origine d'une destruction accidentelle d'individus par la circulation des engins de chantier et les phases de débroussaillement et d'abattage de la végétation. Des mesures seront mises en œuvre pour limiter ces impacts (adaptation du calendrier d'intervention, suivi du chantier par des écologues).

De plus, il est prévu des mesures de réduction et de compensation vis-à-vis de la destruction des habitats naturels favorables à la faune locale :

- Gestion écologique de la zone humide et extension au droit de la zone sur environ 850 m³ pour la future halle de soort
- Création de milleux semi-ouverts pour la biodiversité sur 5,2 ha sur 2 parcelles situées à proximité immédiate de la future halle de sports
- Création d'un ilot de sénescence de 2,2 ha pour le projet de complément du demi-échangeur
 Plantation de 150 mi de haise cuivant les proceriptions du PLU et pour eleccamont dans la document d'urbanisme de Saint-Chamond pour le projet de complément du demi-échangeur
- Création de gites favorables aux espèces (reptiles, chauves-souris) pour les deux projets.

Plan projet de la halle des sports à Saint-Chamond

Phase exploitation

Ces deux projets vont avoir pour incidence d'augmenter la surface imperméabilisée dans ce secteur. Pour les deux opérations, il est prévu de collecter les eaux pluviales ruisselant sur ces surfaces et de les rejeter dans des bassins de rétention avant rejet au milieu naturel (bassin versant du Janon).

Le projet de complément de demi-échangeur aura également une incidence sur les écoulements du Janon et du Ricolin, par la réalisation de nouveaux franchissements par des voiries. Des nouveaux ouvrages hydrauliques seront mis en œuvre et dimensionnés de façon à assurer la transparence hydraulique afin de ne pas aggraver la zone inondable.

Des mesures en faveur de la biodiversité sont mises en place : limitation de l'éclairage au droit du nouveau barreau routier et au niveau de la halle de sport et de ses parkings.

8

Des plantations adaptées au site et favorables au développement de la faune locale seront plantées au niveau des deux projets (plantation de haies) et la gestion des espaces verts sera menée afin de favoriser le développement de la végétation (interdiction de traitement phytosanitaire, gestion différenciée).

Afin de maintenir les corridors écologiques au droit des secteurs, des mesures en faveur de la biodiversité sont proposées :

- Mise en place d'un passage petite faune, crapauduc, sous la voirie existante (pour la future salle de sport).
- Rétablissements écologiques au niveau du Janon et du Ricolin (mesures pour le projet de complément d'échangeur) avec renaturation des berges.

La construction de la halle des sports va engendrer de nouveaux trafics sur le secteur et le complément du demiéchangeur va modifier les flux dans Saint -Chamond. Ce trafic cumulé a été pris en compte dans le dossier de complément de l'échangeur de la Varizelle.

La réalisation de ces projets va également permettre la création de cheminements cycles et piétons entre le nord de la RN88 et le sud (nouveau barreau aménagé d'un itinéraire mode doux en lien avec ceux existants au niveau de la route de la Varizelle et ceux projetés rue du 17 octobre 1961). Le projet de halle des sports prévoit ágalement un cheminement modes deux entre l'entrés du bâtiment et le carrefour girateire suictant.

De plus, le tracé de la ligne M5 des transports en commun va évoluer afin de répondre au mieux à la desserte du secteur de la Varizelle et de ces nouveaux équipements.

Le parking au niveau de la future halle des sports qui sera moins utilisé en journée, pourra être utilisé comme parking relais, ayant tout son intérêt au vu de sa localisation à proximité de l'échangeur de la Varizelle et du nouveau barreau. Ces aménagements auront une incidence positive sur le développement du covolturage.

Ces deux projets auront une incidence sur le paysage : réalisation d'un nouveau bâtiment et d'un nouvel ouvrage sur la RN88 modifiant les perceptions riveraines au niveau de l'entrée ouest de Saint-Chamond. Depuis la RN88, les perceptions seront limitées au vu des écrans acoustiques et des merlons.

Des aménagements paysagers sont prévus aux abords des deux ouvrages afin de faciliter leur intégration : plantation de haies et d'arbustes.

3 MISE EN COMPATIBILITE DU PLAN LOCAL D'URBANISME DE SAINT-CHAMOND

L'Ae recommande de compléter le dossier afin de démontrer la compatibilité de la modification du PLU avec les plans de prévention des risques minier et d'inondation.

Les éléments décrits au chapitre 1.3 Risques Naturels du présent mémoire, sont repris dans le dossier de l'analyse de la mise en compatibilité, chapitre E06. Chapitre 2. Plan de prévention des risques naturels prévisibles d'inondation (page 198) et chapitre 3. Plan de prévention des risques miniers (page 199).

4 SPECIFICITE DES DOSSIERS D'INFRASTRUCTURES DE TRANSPORT

4.1 TRAFICS ET VITESSES DE CIRCULATION (PAGE 15/17)

L'Ae recommande de reprendre le chapitre relatif aux prévisions de trafics en explicitant de manière détaillée les hypothèses et les résultats, en moyenne journalière et en heures de pointe et d'en tirer les conséquences sur les incidences du projet, notamment en matière de bruit. L'Ae recommande également de clarifier les hypothèses de vitesses de circulation en situations de référence et de projet, et de quantifier les bénéfices environnementaux d'un abaissement local de la vitesse à 90 km/h.

Le chapitre description des hypothèses de trafic a été complété afin d'expliciter davantage le fonctionnement des flux au droit de la zone étudiée.

Les compléments sont apportés dans la pièce E09, compléments spécifiques aux infrastructures, chapitre 4. Description des hypothèses de trafic, des conditions de circulation et des méthodes de calcul (page 231-239).

4.2 AUTRES DISPOSITIONS RELATIVES AUX INFRASTRUCTURES DE TRANSPORT (PAGE 16/17)

L'avis d'Ae mentionne que le dossier indique « le projet n'est pas de nature à génèrer un effet significatif sur le développement de l'urbanisation », cette conclusion paraît discutable.

Un complément est ajouté dans le chapitre impact du projet sur l'urbanisation de la pièce EO9, chapitre 1 Conséquences prévisibles du projet sur le développement éventuel de l'urbanisation (page 227). En effet, le projet a un impact direct sur l'urbanisation au droit des emprises du projet, impact peu significatif au vu du classement des parcelles au zonage du PLU de Saint-Chamond.

Mais, à plus grande échelle, le projet a une incidence positive sur l'urbanisation en facilitant l'accès aux zones d'activités et donc leur développement.

5 RESUME NON TECHNIQUE

L'Ae recommande de présenter le résumé non technique sous forme d'un document séparé et d'y revoir le traitement de la démarche « éviter-réduire-compenser » et les mesures associées, suivant le principe de proportionnalité ; elle recommande également de prendre en compte, dans le résumé non technique, les conséquences des recommandations du présent avis.

Le résumé non technique est séparé de l'étude d'impact et fait l'objet d'une pièce spécifique dans le dossier de DUP (pièce EOO).

Il a été repris afin de prendre en compte les modifications apportées dans l'ensemble du dossier et de faire apparaître la démarche Eviter, Réduire et Compenser.