

Liberté Égalité Fraternité

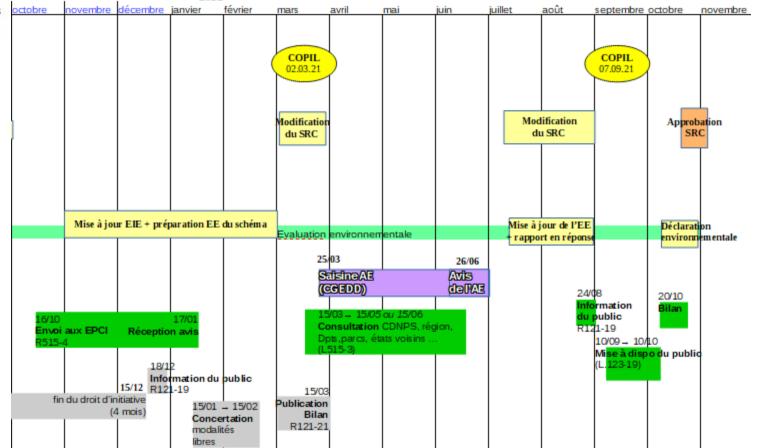
COMITÉ DE PILOTAGE

Schéma régional des carrières

07 septembre 2021

1 – Introduction

Ordre du jour


- 1. Introduction
- 2. Planning et rappel du COPIL précédent

- 3. Consultation (L515-3CE) et avis de l'AE
- 4. Réponses apportées : principes généraux et zoom

- 5. Itérations avec l'EES
- 6. Dynamique d'appropriation du SRC

2021

2 – Rappel du COPIL précédent

1. Choix du scénario régional

2. Bilan des premières consultations

- Scénarios de besoins
- (B-2): bas carbone/bois/biosourcé territorialisé
- Scénarios en réponse
- 5 report progressif des capacités de production avec territorialisation

- Avis des SCoT
- Concertation préalable

- → SRC ajusté été complété pour les consultations suivantes
- → Evaluation environnementale complétée et soumise à l'AE
- → En parallèle préparation d'outils pour la suite du SRC

3 – Consultation (L515-3 CE) et avis de l'AE

1. Consultation du L515-3

Consultations jusqu'au 15/05 ou 15/06

12 CDNPS, PNR, parcs nationaux, chambre d'agriculture, INAO, CNPF, conseil régional, 12 conseils départementaux, états et régions importateurs (préfet de région, conseil régional, CDNPS) + 3 comités de bassin + CLE des SAGE

58 avis : généralement favorables, avec réserves ou remarques. Profession défavorable, CDNPS 15 et 19 défavorables à la majorité

Avis globalement positifs

- concertation,
- territorialisation.
- projet cohérent avec les démarches portées par les personnes interrogées
- lien avec les documents d'urbanisme
- approche approvisionnement, principe de proximité, maillage
- socle commun d'exigences régionales

2. Avis de l'AE du 23/06 (CGEDD)

demandes, et recommandations de l'autorité environnementale

3 – Consultation (L515-3 CE) et avis de l'AE

Réserves, observations, demandes, recommandation souvent contradictoires

- Possibilités de réduire plus fortement les besoins en matériaux ? Augmentation du recyclage ? ►
- Perception de la disponibilité pour l'avenir de matériaux locaux en quantité et qualité suffisante selon les usages
- Mieux réguler du marché ?
- Impact des GES liés aux transports non comptabilisés

→ Rapports de synthèse des avis du L515-3 et réponse à l'avis de l'AE disponibles en ligne, envoyés à J-7

- Identification des gisements : inventaire, croisement avec les enjeux
- Hiérarchisation des enjeux environnementaux et mesures associées

Orientations :

- Perception du caractère prescriptif selon engagement maîtres d'ouvrages et autorités décisionnaires (ERC, agriculture, limiter le recours aux matériaux neufs...)
- Différenciantes : articulation règles locales/régionales, mesures dérogatoires, critères de la situation d'approvisionnement, ►

1 - Compléments apportés pour améliorer l'information du public, éclairer les choix

Recyclage, économie des ressources :

- Hiérarchie des modes des traitement (L541-1 CE) explicités, différences entre recyclage et valorisation, valorisation par remblaiement et stockage, exemples donnés dans le document. 1/4 des besoins en matériaux est couvert par le recyclage (11%) et le réemploi (14%)
- Le PRPGD établit les données sur les déchets, examine différentes hypothèses et fixe des objectifs, notamment pour le recyclage et la valorisation des déchets inertes. +1,8 MT de matériaux recyclés en 2031 (~ que les matériaux neufs importés)... mais des besoins de > 40MT
- Le SRC examine les différents scénarios de réduction des besoins en matériaux neufs : valorisation, recyclage, évolutions techniques... sans interférer avec le PRPGD
- Des variations au scénario régional permises dans les déclinaisons territoriales. Permet de quantifier des marges de manœuvre réalistes. 72 % des déchets inertes sont recyclés dans les grandes aires urbaines

- 1 Compléments apportés pour améliorer l'information du public, éclairer les choix
- Compléments au guide méthodologique annexé pour apprécier la situation locale d'approvisionnement visée aux orientation VII et X
 - Permettre un approvisionnement local présentant le moins d'impact possible compte-tenu de ses forces et faiblesses préexistantes.
 - Méthodologie technique permettant d'explorer les critères de l'approvisionnement: permet d'éclairer la prise de décision en compatibilité pour les projets et les SCoT.
 - territoires hors aires urbaines explicitement intégrés dans la méthodologie
 - Périmètre d'étude pertinent détaillé et conséquences en termes d'enjeux sur l'approvisionnement
 - Approche par scénario simplifiée
 - Critères de l'analyse de la situation d'approvisionnement explicités sur le modèle des travaux de territorialisation.

2 – Ajustements (ou non) pour assurer un équilibre entre les différents enjeux confiés au SRC

- Articulation entre documents régional et règles définies localement
 - l'écoute des parties prenantes (COPIL, Conf régionale, GT, concertations préalable), a guidé le choix de valoriser la démocratie locale et les règles de gestion particulières associées à chaque zonage existant ou à venir pour élaborer le SRC.
 - En compatibilité avec les documents opposables de rang supérieur (SDAGE, SAGE), et lorsque l'impact sur l'accès aux gisements pouvait être évalué
 - En général, clarification ou ajustement sur les zonages pour distinguer :
 - les secteurs faisant l'objet d'un inventaire (à examiner de façon ciblée dans l'étude d'impact des projets : enjeu fort)
 - et de ceux faisant l'objet d'un plan de gestion concerté pour sa protection ou sa mise en valeur (à éviter ou réduire pour les usages ciblant des gisements substituables : enjeu majeur)
 - En particulier Natura 2000 : mieux intégrer les objectifs et menaces associés au classement (DOCOB, fiche INPN), rapprocher carriers et gestinnaire

2 – Ajustements (ou non) pour assurer un équilibre entre les différents enjeux confiés au SRC

Identification des gisements

- Croisements avec les enjeux : ne peut se substituer à une analyse fine au cas par cas à l'échelle des projets
- Gisements d'intérêt :
 - Croisement avec les enjeux conforme à l'instruction gouvernementale (enjeux rédhibitoires)
 - Inventaire de gisements à l'échelle d'un document régional de planification. Investigations fines et démonstration sur l'acceptabilité d'une extraction à la charge de la profession) l'échelle des projets.
- Gisements de reports : pouzzolane ne peut être d'intérêt national et gisement de report pour les granulats. Gisements écartés des gisements de report.

5 – Itérations avec l'évaluation environnementale

Présentation MTDA

SRC AUVERGNE-RHÔNE-ALPES

EVALUATION ENVIRONNEMENTALE STRATÉGIQUE

Comité de pilotage du 7 juin 2021

Rappel sur les parties de l'EES

Le rapport environnemental en 9 chapitres

- 1. Résumé non technique
- 2. Présentation générale
- 3. Description de l'état initial
- 4 Solutions de substitutions
- 5. Exposé des motifs
- 6. Analyse des effets notables (+ Natura 2000)
- 7. Mesures ERC
- 8. Modalités de suivi
- 9. Présentation des méthodes utilisées

Présentation du SRC et articulation avec les autres plans et programmes

Recommandation Ae - Préciser l'articulation du projet de SRC avec les 3 SDAGE et analyser avec les projets 2022-2027

1. Ajout de l'analyse de la compatibilité du projet de SRC avec les projets de SDAGE 2022-2027 (juillet 2021)

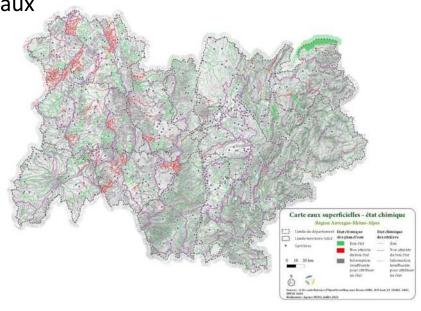
SDAGE	Orientations et dispositions 2016-2021	Projet d'orientations et de dispositions 2022-2027
Adour- Garonne	A - Intégrer les enjeux de l'eau dans les projets d'urbanisme et d'aménagement du territoire, dans une perspective de changements globaux : dispositions A35 à A37 B - Des eaux brutes conformes pour la	projets d'urbanisme, d'aménagement du territoire et de développement économique

2. Ajout de précisions sur l'articulation avec les SDAGE (suivi et zones humides notamment)

Au regard des autres avis reçus :

3. Développement de l'analyse de l'articulation avec le SAGE Bièvre-Liers-Valloire et avec les chartes des PNR Livradois-Forez et du Pilat

Etat initial de l'environnement



Recommandation Ae - Fournir des cartographies des carrières actuelles, la hiérarchisation des enjeux environnementaux et des données énergie, eau et gaz à effet de serre

- 1. Ajout de l'emplacement des carrières sur de nombreuses cartes de l'EIE
- 2. Ajout de données liées aux transports de matériaux (GES et énergie)

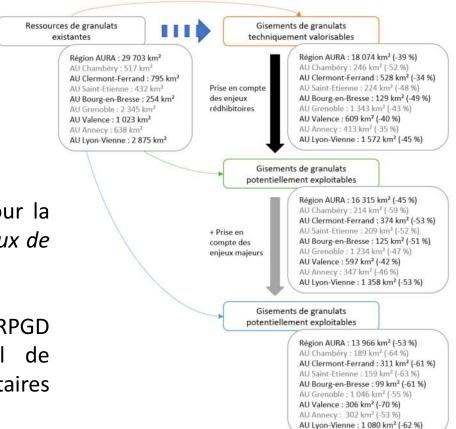
3. Hiérarchisation des enjeux environnementaux

lux de matériaux de carı ffet de serre par le trans	ière transportés au sein de la port	région en 2018 et estimat	tion d'émission de gaz à		
Tonnage transporté	Modalité de transport	Distance moyenne	Estimation de GES1		
42 500 000 tonnes	Route (97,5 %)	27 km (54 A/R)	151 331 tegCO2		
42 300 000 tollies	Fluvial (2,5 %)	14 km (28 A/R)	151 551 teqCO2		
xport des matériaux des ffet de serre par le trans	carrières d'Auvergne-Rhône- port	Alpes en 2018 et estimatio	on d'émission de gaz à		
Tonnage transporté	Modalité de transport	Distance moyenne	Estimation de GES		
1 400 000 tonnes	Route (75,6 %)	193 km (386 A/R)	27 939 tegCO ₂		
1 400 000 tonnes	Fluvial (24,4 %)	26 km (52 A/R)	27 939 teqCO2		
mports de matériaux des carrières en région Auvergne-Rhône-Alpes en 2018 et estimation d'émission de laz à effet de serre par le transport					
Tonnage transporté	Modalité de transport	Distance moyenne	Estimation de GES		
1 800 000 tonnes	Route (96,7 %)	123 km (246 A/R)	20 725 togCO		
1 800 000 tonnes	Fluvial (3,3 %)	296 km (592 A/R)	29 725 teqCO ₂		

Utilisation des BD Sitram et base carbone de l'ADEME, avec des incertitudes importantes

Etat initial de l'environnement

Sous- Thématique	Enjeu	Hiérarchie	1111111111111111		411111111111
Milieu physique					
Sols et sous-	L'économie des ressources minérales primaires, matériaux non renouvelables	Structurant		10 enjeux structurants	
sols	La prise en compte du patrimoine géologique	Fort			
	La maîtrise de la consommation d'eau dans les processus de production de matériaux	Fort		8 enjeux forts	
	La maîtrise (prévention/intervention) des risques de pollution accidentelle des eaux	Modéré		3 enjeux modérés	
L'eau	La protection des milieux aquatiques (cours d'eau, zones humides, espaces de bon fonctionnement) et des eaux souterraines lors de l'implantant, de l'exploitation et de l'extension de carrière, particulièrement pour les granulats alluvionnaires	Structurant		5 enjeux moderes	
	Une remise en état après exploitation neutre ou favorable vis-à-vis des cours d'eau, des nappes souterraines et des écosystèmes aquatiques	Structurant			
	La protection qualitative et quantitative de la ressource en eau potable actuelle ou	Structurant	Milieux naturels	, paysage, patrimoine	
Le climat et le	future La recherche de minimisation des émissions de GES tout au long du processus de		Milieux	La prise en compte et la préservation des espaces naturels et des espèces, en particulier celles inscrites sur les listes rouges	Structurant
change <mark>m</mark> ent climatique	production et d'usages des matériaux (extraction, transport, proximité gisement- besoins, recyclage, réaménagement, etc.).	Fort	naturels et	L'évitement du mitage, de la fragmentation des milieux et le respect des continuités	Structurant
La qual <mark>ité</mark> de l'air	La recherche de minimisation de l'émission de polluants atmosphériques (dont les poussières) au niveau des carrières et de leurs abords.	Fort	biodiversité	La lutte contre la prolifération d'espèces exotiques envahissantes ou invasives ou allergisantes, particulièrement l'ambroisie et le moustique tigre	Modéré
	La connaissance et la maîtrise de la consommation d'énergie dans les sites d'extraction,	Ford	Le patrimoine	La prise en compte des paysages lors du choix des sites d'implantation des carrières, en comprenant les paysages du quotidien afin de préserver le cadre de vie des habitants	Fort
L'énergie	dans le transport des matériaux et dans la valorisation des déchets inertes en guise de granulats	Fort	paysager et bâti	Le respect du paysage lors des différentes phases d'exploitation et de remise en état des carrières, avec une attention particulière du phasage de l'exploitation dans le temps visà-vis de la qualité paysagère du site	Structurant
			Milieu humain		
				La préservation des surfaces agricoles (en intégrant les valeurs patrimoniales, environnementales et économiques)	Structurant
			Activités agricoles et forestières	La restitution de la carrière à son occupation initiale (agricole, forestière, naturelle) en prévoyant une remise en état de qualité	Structurant
				La prise en compte de la diversité des usages présents (agriculture, loisirs, etc.) lors du choix de l'implantation d'une carrière	Fort
			L'urbanisme, la consommation	La réduction des nuisances et des risques liés au transport (risque routier, nuisances sonores, émissions de polluants)	Fort
			de l'espace et les transports	L'intégration du critère de proximité gisements-besoins et l'étude des potentialités de transport alternatif lors du choix de l'implantation d'une carrière	Structurant
-			Les risques	La non aggravation des risques inondation et érosion par les carrières dans un contexte de changement global : libre écoulement des eaux dans les zones d'expansion des crue et libre divagation du cours d'eau	Modéré


Justification des choix - 1 -

Recommandation Ae - Reconsidérer le niveau de sensibilité associé à chacune des composantes environnementales et synthèse avec chiffrage

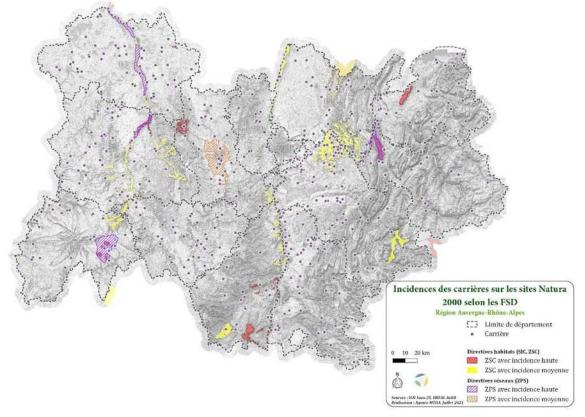
Recommandation Ae - Définir le « recyclage des matériaux de carrières » et préciser pourquoi l'augmentation du recyclage des matériaux issus de la déconstruction de la filière BTP n'a pas été une variable dans les scénarios étudiés

- 1. Ajout d'une note de bas de page pour la définition de « recyclage des matériaux de carrières »
- 2. Ajout de précisions en lien avec le PRPGD AURA (limites quant au potentiel de ressources secondaires supplémentaires issues du BTP)

Justification des choix - 2 -

Recommandation Ae - Compléter la comparaison des scénarios en prenant en compte le transport de matériaux lié aux carrières

		Ratio Distance		Eta	t initial	Scén	ario A-1	Scenar	rio A-2	Scen	ario B-1	Scena	rio B-2	
		utilisé (I/t/km)	moyenne parcourue (km)	Quantité (t)	Consommation (GWh)	Quantité (t)	Consommation (GWh)	Quantité (t)	Consommation (GWh)	Quantité (t)	Consommation (GWh)	Quantité (t)	Consommation (GWh)	
	Flux interne 2032		54	41 427 599	778	44 839 284	842	42 889 750	806	39 673 018	745	42 889 750	806	
	Flux interne 2050		54	41 427 333	778	45 521 621	855	40 842 739	767	28 560 674	537	33 337 033	626	
Route	Exportations 2032	0,0342	386	1 057 844	142	1 057 844	142	1 057 844	142	1 057 844	142	1 057 844	142	
Route	Exportations 2050	0,0342	300	1 037 044	142	1 037 844	142	1 0 3 7 0 4 4	142	1 037 044	142	1 037 844	142	
	Importations 2032		246	1 741 209	149	1 741 209	149	1 741 209	149	1 741 209	149	1 741 209	149	
	Importations 2050		246	1 741 209	149	141 209	149	1 741 209	149	1 /41 203	149	1 741 209	143	
	Flux interne 2032	28	1 072 401	2	1 160 716	3	1 110 250	3	1 026 982	2	1 110 250	3		
	Flux interne 2050		20	1 072 401	2	1 178 379	3	1 057 261	2	739 326	2	862 967	2	
Fluvial	Exportations 2032	0,008	52	342 156	1	342 156	1	342 156	1	342 156	1	342 156	1	
riuviai	Exportations 2050	0,008	32 3	32	342 130	1	342 130	1	342 130	1	342 130	1	342 130	1
	Importations 2032		592	58 791	3	58 791	3	58 791	3	58 791	3	58 791	3	
	Importations 2050		392	30 /31 3	3 38 /91	20 /31 3	56 /91	3	56 /91	3	56 /91	3		
	Total 20	32		45 700 000	1 076	49 200 000	1 141	47 200 000	1 104	43 900 000	1 043	47 200 000	1 104	
	Total 20	50		45 700 000	1070	49 900 000	1 153	45 100 000	1 065	32 500 000	834	37 400 000	924	


- Enrichissement de la comparaison des scénarios de besoins avec des données « consommation d'énergie » et « émissions de GES » liées aux transports de matériaux, avec les même incertitudes que pour l'EIE
- 2. Précisions supplémentaires dans le tableau de comparaison des scénarios, relative aux transports, en lien avec ces éléments

Evaluation incidences Natura 2000

Recommandation Ae - Détailler les incidences du schéma sur les sites Natura 2000

1. Adaptation de l'évaluation des incidences Natura 2000 selon les évolutions du projet de SRC, à savoir l'introduction du critère de sensibilité du site au regard de l'activité de carrière (fiches INPN et DOCOB) et de la modulation de la hiérarchisation de ces sites en fonction (entre majeure et forte)

Dispositif de suivi

Recommandation Ae - Compléter les indicateurs de suivi (fréquence, cible)

1. Ajout, dans le tableau des indicateurs, d'une colonne « cible du SRC » pour les indicateurs

Objectifs	Indicateurs	Cible SRC	Contributeurs				
Evaluer les effets du schéma par rapport au scénario retenu							
Connaître l'évolution des besoins en matériaux par rapport aux hypothèses de réduction du schéma	- Evolution des besoins en matériaux neufs - Besoin en import/export de matériaux hors région et international : maintien d'une logique de proximité (seuil d'alerte matériaux exportés ou importés à 10 % de la production locale)	Scénario B-2 fourchette population basse et haute: - en 2027 : entre 43,4 et 45,2 Mt - en 2033 : entre 42,4 et 45,5 Mt	CERC UNICEM Conseil Régional (pour les ressources secondaires) DREAL				

- 2. Fréquence donnée pour l'ensemble des indicateurs de 6 ans (évaluation à miparcours du SRC)
- 3. Ajout des indicateurs supplémentaires du SRC à la suite de ces avis, notamment en lien avec les réservoirs biologiques des SDAGE (« Au regard de l'enjeu prioritaire des SDAGE des réservoirs biologiques : examen selon une méthodologie commune des actions et suivis des sites »)

6 – Dynamique d'appropriation du SRC

- Données et cartes sur l'activité des carrières : panorama, exploitation de l'enquête annuelle (dans le respect du secret statistique). Exemple du panorama présenté au COPIL précédent.
- Guide méthodologique joint au schéma (y compris hors aires urbaines)
- Note d'enjeux de l'état
- Quels rendez-vous pour la suite ?

Extraits guide méthodologique

Egelist Eveternité

Cas-types rencontrés :

structurant le réseau des carrières et des plateformes de recyclage. Les enjeux du territoire nécessitent une approche quantitative, du fait de la forte demande locale. Un déficit de matériaux pourrait déstabiliser les autres bassins environnants, du fait des « importations ». S'assurer de la soutenabilité de la situation sur le long-terme sera l'un des enjeux majeurs

Plusieurs pôles de consommation apparaissent. Si les carrières ont plutôt tendance à acheminer les matériaux vers le bassin le plus proche, elles peuvent également alimenter les autres zones. Le périmètre d'étude doit permettre d'avoir une vue d'ensemble, et ne pas isoler un pôle par rapport aux autres. Selon l'organisation territoriale des pouvoirs publics, cela peut nécessiter de réaliser un diagnostic « multi-SCoT » plutôt que centrer sur un SCoT unique.

Le territoire se situe à la périphérie d'un important pôle urbain. Les carrières du territoire peuvent ainsi majoritairement acheminer leurs matériaux vers ce bassin de consommation, tout en alimentant cette zone. L'enieu sera de saisir la part de matériaux consommée localement, et le degré d'importance des matériaux « exportés » pour le pôle voisin.

Le territoire est principalement rural, et aucun pôle important de consommation ne se dégage. Les besoins sont plutôt dispersés, au gré de la localisation des chantiers. L'enjeu sur un tel territoire se situe plutôt sur le maillage : il s'agit de s'assurer que tous les espaces sont couverts par la zone de chalandise d'une carrière. et ainsi qu'ils aient accès à des matériaux primaires en limitant les distances de transport.

Les cas-types présentés demeurent schématiques et plusieurs de ces situations peuvent se retrouver imbriguées sur un même territoire. Ils permettent néanmoins de soulever des problèmatiques à examiner. L'exemple de Gannat des pages précédentes semble ainsi plutôt relever du 3ème cas de figure : un territoire périphérique à proximité de pôles urbains plus

Résultats à l'issue de l'examen de la situation initiale :

Le territoire connaît sa situation actuelle, a minima de manière qualitative, parmi les différentes possibilités d'approvisionnement en matériaux

>	Sobriété	Les besoins locaux de la filière BTP (dont l'impact des chantiers d'envergure).
0	Recyclage	Le potentiel de substitution par des ressources secondaires, son poids par rapport à l'extraction de matériaux primaires et les marges de manœuvre associées.
*	Gisement	Les gisements extraits et les filières d'usage des matériaux.
23	Extraction	Le volume extrait annuellement sur le périmètre et les capacités autorisées à l'extraction des carrières.
5	Acheminement	L'organisation de la logistique d'approvisionnement, les flux de matériaux actuels acheminés par camion et les alternatives possibles.
0	Importation / exportation	Les flux de matériaux à l'import et à l'export liés au territoire et la dépendance ou non aux territoires situés à proximité

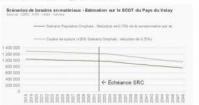
Une fois ces trois facteurs connus. l'évolution des besoins en matériaux peut être calculée. A noter que la baisse constatée en termes de volume doit être comparée avec le potentiel de recyclage des déchets inertes identifié lors de l'établissement de la situation initiale. Si jamais le potentiel est inférieur, cela signifie que d'autres leviers vont devoir être activés (rénovation du bâti, matériaux biosources...)

Outil disponible :

Un module de calcul des besoins en matériaux est disponible ICI

3 informations sont à implémenter dans le module : les hypothèses de population du territoire à horizon 2048, le ratio de matériaux en t/an/hab et l'hypothèse de réduction des besoins en matériaux primaires (valeur issue du scénario régional, peut être revue selon les marges de manœuvre locale identifiées sur le recyclage et la sobriete)

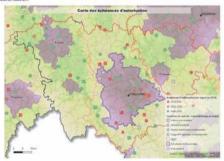
Exemples de présentation :


Dans le cas d'un diagnostic portant sur un territoire peu dense, les estimations du besoin futur peuvent être limitées à quelques horizons temporels :

Année	Population	Consommation par habitant*	Estimation du besoin
2021	50 000 habitants	10 t/hab/an	#500 kt
2030	55 000 habitants	9,2 t/hab/an	=510 kt
2040	60 000 habitants	7,9 t/hab/an	=475 kt
2048	65 000 habitants	6,6 t/hab/an	=440 kt

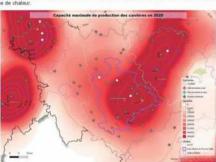
*Exemple fictif. Valeurs établies à l'aide du module de calcul. Baisse basée sur les hypothèses utilisées dans le SRC : -0.70% par an et -1.95% par an à partir de 2035.

Dans le cas d'un territoire fortement peuplé. Il est conseillé de proieter la demande en matériaux pour toutes les années. Exemple de présentation, issu du diagnostic territorial du SCoT du Pays du Velay : le graphique représente l'évolution des besoins en matériaux selon différentes hypothèses retenues.



Egalité Fraternité

Extraits guide méthodologique


Exemple issu du diagnostic territorial du Pays du Velay

Carte représentant les carrières en fonction de leur flière de rattachement et leur échéan d'autorisation

Exemple Issu du diagnostic territorial du Pays du Velay

Carte représentant les capacités maximales des carrières de la fillère BTP en 2020 sous forme

3. Analyse multicritère des différentes solutions possibles pour répondre au besoin

Après avoir établi la situation dans le cas le plus défavorable où tous les sites fermeraient à l'échéance de leur autorisation, cette partie a pour but d'étudier les différentes solutions possibles d'approvisionnement, tout en identifiant les limites possibles de ces leviers en raison des enjeux établis en partie II (Identification des enjeux).

Il s'agit ici d'imaginer une situation plus réaliste, à partir :

. Du recensement des projets / des intentions des carriers du territoire étudié dossiers en cours d'instruction, pas d'intention de renouvellement prévue par le carrier à l'échéance de l'autorisation actuelle, intention de continuation (dossier pas encore déposé)... Ces informations sont indicatives et ne préjugent pas de l'autorisation ou non du projet à l'issue de la procédure d'instruction. Par ailleurs, les informations récoltées auprès des experts hors dépôt de dossier sont confidentielles et ne peuvent être traitées qu'à un niveau suffisamment agrégé pour permettre l'anonymat. Néanmoins, mieux connaître les perspectives des sites permet aux collectivités d'anticiper leur devenir dans le temps.

· Des enieux identifiés en partie II

La synthèse des différents leviers d'approvisionnement en matériaux du BTP examinés dans cette méthodologie permet à l'échelle de chaque territoire d'identifier :

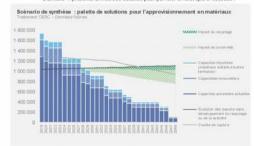
- les forces et faiblesses de la situation actuelle

- les options les plus réalistes à différents horizons temporels pour disposer d'un approvisionnement durable sur chaque territoire.

La situation locale d'approvisionnement doit donc être appréciée au regard des critères suivants que cette méthodologie permet d'évaluer.

Examen multicritère de la situation d'approvisionnement :

Griteres	Détails	Orientations
Disponibilité des réssources primaires :	Existe-I-II des carrières localement ? Alimentent-elles l'ensemble des filères (béton, enrobé, VRD) ? Avec quels matériaux ? Comment présence de plateformes, implantation des installations de transformation, importance de certaines carrières dans le maillage ou les capacités de production selon les filères) ?	2, 3, 4, 5
Accessibilité aux gisements compte- tenu des enjeux	Existe-t-il des gisements de report après prise en compte des enjeux sur le territoire ? Déjà exploités (perspectives de renotivellement-extension) et/ou nouveaux ?	3, 5, 6, 7, 8, 9, 10, 11
Valorisation des ressources secondaires	Les carrières contribuent-elles pour une part importante à la gestion des déchets inettes par remblaiement ? Les sous-produits de l'extraction peuvent-ils être plus largement valorisés ?	1
Performance du recyclage des ressources secondaires	Quelles sont les marges de manœuvre pour augmenter la part de matériaux recyclés ? Le territoire dispose-t-il d'installations permettant d'atteindre les objectifs de recyclage ?	1
Réponses logistiques possibles dans une logique de proxim≹é	Comment se répartissent les capacités de production sur le territoire ? Sont-elles proches des bassins de consommation ? Comment les matériaux sont-las acheminés ? Quelles alternatives crédibles possibles ? A quelle écheance ?	4


Adéquation besoins/ressources	Quel est l'équilibre actuel entre besoins et ressources? Quelles sont les perspectives des besoins en mafériaux neufs compte-teru du projet porté par le territorie (aménagement, accueil de population)? Quelles sont les perspectives de production de matériaux locaux compte-teru des échéances des carrières et de potentiel de renouvellement-extension (hypothèses liées aux projets exprimés et à la protection des equieux)? En logistique de produité? Quelle situation d'équilibre à l'échéance des 12 ans du schema ? Au-delà?	1, 2, 4, 5, 6, 7, 10
Interdépendance pour les matériaux (flux territoires voisins)	Le territoire étudié est-il en interdépendance avec d'autres territoires ? Quélies en sont les consequences à l'échelle locale et globale ? L'évolution des conditions d'accès aux gisements peuvent-elles mettre en d'iffauté des territoires consomnateurs sans solutions alternatives à court terme ?	4
SYNTHÈSE	Situation favorable ou non au regard des orientations du SRC.	
PISTES DE SOLUTION	Marges de manosuvres locales quantifiables identifiées pour chaque levier de l'approvisionnement. Prise en compte dans les documents d'urbanismes de solutions de report adaptées aux besoins, gisements exploités ou nouveaux.	

Zoom sur l'adéquation besoins / ressources :

Dans le cas d'un territoire fortement peuplé, une approche quantitative est recommandée, en établissant d'abord différents scénarios de renouvellement, puis en établissant un scénario de synthèse opérant des choix nuancés parmi la palette des solutions disponibles pour approvisionner un territoire en matériaux.

L'annexe 4, présente la méthode détaillée pour parvenir à l'exemple ci-dessous :

Direction régionale de l'environnement, de l'aménagement et du logement Auvergne-Rhône-Alpes

Service prévention des risques industriels, climat, air, énergie

Pôle santé, sols, sous-sol

69453 Lyon cedex 06 Tél. 04 26 28 60 00 www.auvergne-rhone-alpes.developpement-durable.gouv.fr

Liberté Égalité Fraternité

2 – Rappel du COPIL précédent

1. Proposition dans le rapport

Evolution des capacités moyennes de production autorisées des carrières au regard des besoins en matériaux (en tonnes)
- Scénario 5 Orientations -

Scénarios de besoins

(B-2): bas carbone/bois/biosourcé territorialisé

Scénarios en réponse

5 - report progressif des capacités de production avec territorialisation

17