

SICTOM DE LA BIEVRE Site de Traitement et de Valorisation des Déchets Ménagers 113, Chemin des carrières 38260 PENOL

Rapport annuel d'activité 2018 – Exploitation ISDND

Rapport annuel d'activité 2018 – Traitement des lixiviats

SICTOM DE LA BIEVRE Site de Traitement et de Valorisation des Déchets Ménagers 113, Chemin des carrières 38260 PENOL

Installation de Stockage de Déchets Non Dangereux

Rapport d'activité - partie exploitation – Année 2018

Α	Jérôme EFFANTIN	Nicolas Seyve	Diffusion (SICTOM) - M. BEJUY
Indice	Rédigé par	Contrôlé par	Modifications / Observations

SOMMAIRE

1	Introduction	4
2	CADRE REGLEMENTAIRE	4
3	Presentation et activite du site	5
	3.1 Implantation	5
	3.2 Origine et nature des déchets	5
	3.3 Fonctionnement de l'installation	6
	3.4 Moyens mis en oeuvre	6
	3.4.1 Personnel d'exploitation	6
	3.4.2 Organigramme	7 7
	L'organisation des responsabilités est présentée ci-dessous : 3.4.3 Matériels en place	9
	3.5 Quantités de déchets enfouis	10
	3.6 Capacité résiduelle du site	13
4	·	
4	Localisation des casiers en exploitation	13
5	Prevention des impacts sur l'environnement — autosurveillance	15
	5.1 Bilan hydrique	15
	5.1.1 Objectif	15
	5.1.2 Définitions	15
	5.1.3 Calcul des données	16
	5.1.4 Calcul de la quantité d'effluent produit	17
	5.2 Eau souterraine	19
	5.2.1 Evolution du niveau de la nappe	19
	5.2.2 Suivi analytique	22
	5.3 Gestion des eaux pluviales	26
	5.4 Gestion du biogaz	27
	5.4.1 Captage du biogaz	27
	5.4.2 Surveillance et entretien du réseau biogaz 5.4.3 Localisation des puits	27 27
	5.4.4 Traitement du biogaz	27
	5.4.5 Mesures des émissions diffuses	29
6	Principaux travaux et modifications realises en 2018	32
7	BILAN DES ACCIDENTS ET INCIDENTS	59

Annexes:

- Annexe 1 : Données Météo France Station de Grenoble Saint-Geoirs
- Annexe 2 : Rapports trimestriels de suivi des eaux souterraines
- Annexe 3 : Registre des plaintes
- Annexe 4 : Analyses des rejets atmosphériques transvapo/torchère
- Annexe 5 : Rapport des émissions diffuses au travers des couvertures finales
- Annexe 6 : Rapports de maintenance BIOME transvapo/torchère

1 Introduction

Le **SICTOM de la Bièvre** a pour compétence le tri et le traitement des ordures ménagères des collectivités. L'exploitation de l'installation de stockage des déchets non dangereux (ISDND) de Penol a été confiée à **SERPOL** dans le cadre du marché « Exploitation des installations de tri et de traitement des déchets ménagers du SICTOM de la Bièvre »notifié le 11 décembre 2011.

Pour rappel, le cahier des charges comprend la gestion de l'exploitation des casiers réhabilités ainsi que la gestion, le suivi et la surveillance de l'ensemble des infrastructures de l'ISDND.

Dans ce cadre, les missions de SERPOL sont les suivantes :

[Extraits du « Cahier des charges exploitation ISDND »]

- Les prises en charge des déchets à enfouir
- Le régalage et compactage des déchets
- La mise en œuvre à l'avancement d'un réseau de captage provisoire du biogaz et le raccordement sur le réseau existant au droit de la torchère
- Le dégazage des puits en continu
- La gestion, la surveillance et l'entretien de l'ensemble des réseaux de captage et de collecte définitifs du biogaz sur les casiers
- La limite de la prestation de SERPOL est la vanne d'arrivée du réseau sur l'unité de valorisation,
- Les raccordements et les réglages se feront en contradiction avec le prestataire en charge de la valorisation du biogaz
- La mise en œuvre à l'avancement d'un réseau de collecte des eaux de ruissellement jusqu'au bassin de rétention,
- La mise en œuvre d'une couverture provisoire si l'exploitation d'un casier est suspendu pendant un délai supérieur à un mois, et obligatoirement lorsque le casier est terminé
- En fin d'exploitation d'alvéole, le remodelage avec forme de pente, la récupération des eaux pluviales par fossé étanche, la canalisation des eaux jusqu'au bassin de rétention, la mise en œuvre d'une couverture en matériau fin de 30 cm, la mise en œuvre d'une couverture provisoire avec ses ancrages
- La mise en œuvre à l'avancement du réseau de captage des lixiviats sur les casiers et le raccordement sur le réseau existant et le pompage jusqu'à la lagune de stockage
- La gestion, la surveillance et l'entretien de l'ensemble des réseaux des ruissellements et des bassins de rétention y compris les analyses, et le rejet vers le milieu naturel,
- La gestion, le contrôle, l'entretien, la surveillance et le suivi des piézomètres et des eaux souterraines y compris les analystes réglementaires, la surveillance et l'entretien des clôtures (2500 ml) et des 2 portails du site
- Le fauchage et l'entretien des casiers et talus 2 fois par an
- La surveillance et l'entretien des abords dans un rayon de 500 m autour du site (envols notamment).
- La bonne gestion de l'ensemble des nuisances pouvant être générées par l'exploitation du site

Également il a été convenu entre les parties d'inclure au marché initial n° 2012.01 « Marché d'exploitation des installations de tri et traitement des déchets ménagers du SICTOM DE LA BIEVRE à Penol », un ACTE MODIFICATIF (avenant n°5/2016) la prestation sur le Transvap'O et la torchère à savoir le contrôle, la maintenance et l'entretien des installations de traitement du biogaz sur torchère », pour la durée du marché unique,

2 CADRE REGIEMENTAIRE

L'exploitation est réalisée conformément aux prescriptions réglementaires des textes ci-dessous :

- Code L.541, du code de l'environnement (Loi du 19 juillet 1992),
- Décret n° 93.1410 du 29 décembre 1993 relatif au droit à l'information.
- Arrêté ministériel du 15 février 2016 relatif aux installations de stockage de déchets non dangereux
- Arrêtés préfectoraux N° 2000-3357 du 17 mai 2000- N°2006-01064 du 27 janvier 2006 et arrêté complémentaire N° 2009-02631
- Arrêté Préfectoral complémentaire 2015-097-0029 de prolongation d'exploitation du casier 1 (alvéole GHJK).

- Arrêté Préfectoral complémentaire 2017-04-06 de prolongation de durée d'autorisation d'exploiter
- Arrêté Préfectoral complémentaire 2016-09-19 lié à la valorisation du biogaz par le Transvap'O.
- L'article 3 Arrêté Préfectoral complémentaire 2015-097-0029 précise le contenu du Dossier Annuel d'Exploitation (DAE) :

Le dossier annuel d'exploitation au titre de l'année n prévu à l'article 1,13 de l'arrêté préfectoral n°2006-01064 du 27 janvier 2006 doit être adressé au préfet au plus tard le 31 mars de l'année n+1. Le bilan est remis sous forme papier et informatique.

Il comporte :

- une notice de présentation des activités exercées sur le site avec la liste des déchets autorisés ;
- le volume et le tonnage des déchets déposés
- le plan d'exploitation de l'installation de stockage à jour ;
- un relevé topographique, accompagné d'un document décrivant la surface occupée par les déchets, le volume et la composition des déchets et comportant une évaluation du tassement des déchets et des capacités disponibles restantes ;
- une synthèse commentée par l'exploitant des résultats des contrôles des lixiviats, des rejets gazeux, des eaux de ruissellement et des eaux souterraines accompagnés des informations sur les causes des dépassements constatés ainsi que sur les actions correctives mises en œuvre ou envisagées. Les résultats détaillés des contrôles sont donnés en annexe sous forme de tableaux. Les valeurs limites applicables et les fréquences de surveillance imposées sont rappelées;
- le bilan hydrique de l'installation au titre de l'année n ; ce bilan est commenté par l'exploitant qui doit se positionner sur la gestion des flux polluants potentiellement issus de l'installation et sur la révision éventuelle des aménagements du site ;
- les résultats synthétiques et commentés des analyses de la composition du biogaz ;
- une description synthétique des aménagements des casiers pour l'année n avec la description des différentes barrières et niveaux mis en place ;
- les changements notables intervenus sur le site;
- les incidents ou accidents survenus lors de l'année écoulée.

3 Presentation et activite du site

3.1 IMPLANTATION

Le centre de stockage est implanté au lieu-dit les Burettes à PENOL dans le département de l'Isère. Il s'étend sur une surface de 125 000 m² et comporte 5 casiers divisés en alvéoles La capacité de stockage de déchets compactés est de 30 000 tonnes par an.

3.2 ORIGINE ET NATURE DES DECHETS

Depuis le mois d'août 2012, les déchets ménagers en provenance des collectivités du **SICTOM de la Bièvre** : Communauté de communes de Bièvre Est/ Bièvre Isère Communauté /CC Territoire de Beaurepaire / CC Massif du Vercors sont prétraités sur l'Unité de Traitement et de Valorisation des Déchets Ménagers (UTVDM). A partir de janvier 2018, on peut compter également Savoie Déchets et St Marcellin. Les matériaux valorisables extraits tels que les aciers, l'aluminium, les plastiques (PET et PEHD) sont orientés vers les filières appropriées de reprise.

Les refus de tri et les produits stabilisés issus de la nouvelle unité sont ensuite enfouis, compactés, et recouverts sur les alvéoles 1K, 1L et 1M.

Pour l'année 2018, le rapport d'activité annuel relatif à l'UTVDM est établi par ailleurs.

3.3 FONCTIONNEMENT DE L'INSTALLATION

Entrée et sortie du site

Panneau d'information à l'arrivée sur le site

Les entrées sur le site se font selon le protocole de sécurité régulièrement actualisé. Ce document a été remis à l'ensemble des entreprises et chauffeurs amenés à intervenir sur le centre.

Les étapes ci-dessous représentent le fonctionnement du site :

- Accueil des véhicules Registre des admissions et des refus
- Contrôles (autorisation, visuel, détection de radioactivité...)
- Pesée et enregistrements
- Délivrance de bons de pesée
- Traitement sur l'Unité de Tri et de Valorisation des Déchets Ménagers
- Compactage des stabilisats issus de l'unité de tri et des encombrants de déchèterie
- Recouvrement en couches successives

L'enregistrement des pesées est effectué en continu sous la responsabilité de l'agent d'accueil du SICTOM. Ce poste est pris en charge directement par la collectivité.

Le registre est conservé par le SICTOM. Les cas de refus éventuels sont également notifiés.

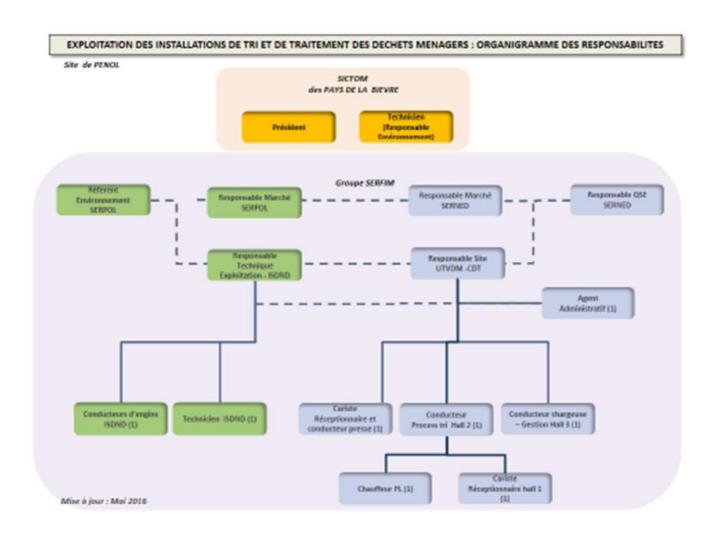
L'exploitation est de type « contrôlée compactée »: les déchets sont déposés dans les alvéoles, puis compactés et recouverts en couches successives. Depuis le mois d'août 2012, les ordures ménagères brutes sont préalablement triées dans une unité de tri et de valorisation.

La couverture intermédiaire, composée de matériaux inertes a pour rôle de limiter les infiltrations dans la masse des déchets.

3.4 MOYENS MIS EN OEUVRE

3.4.1 Personnel d'exploitation

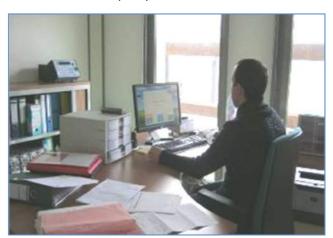
Un effectif de 3 personnes assure la gestion du centre. L'équipe est composée de :



- Un responsable d'exploitation « ISDND » chargé du :
- Suivi et gestion des travaux (réalisation de digues, aménagements...) sur le site ;
- Suivi et gestion des équipements techniques présents sur le site (engins, compacteur, chargeuse, matériel de mesure, installations de traitement, réseau biogaz ...);
- Exploitation du site conformément au cahier des charges du marché;
- Communication avec la collectivité (remontées des informations, suivis réglementaires...);
- Faire appliquer la réglementation en vigueur, les consignes relatives à la qualité, la sécurité et l'environnement à l'ensemble des intervenants sur le site (sous-traitants, fournisseurs...)
- Un conducteur d'engin chargé de :
- Conduite des engins d'exploitation et assurer le compactage optimal des déchets conformément aux exigences du cahier des charges
- Vérification la conformité des déchets déposés, détection et enregistrement de toute anomalie
- Exploitation du site conformément au cahier des charges du marché
- Reporting auprès du responsable d'exploitation
- Un technicien chargé de :
- Travaux et des contrôles liés à l'exploitation
- Contrôles et suivis des réseaux biogaz et lixiviats (prélèvements, entretien, remise en état, remplacement et réalisation de réseau adapté...)
- Entretien et contrôles des installations de traitement des lixiviats (lagunes de stockage, bassins de rétention, pompes, réseaux, station de traitement,...)
- Aménagements du site en fonction de l'avancement de l'exploitation des alvéoles de stockage (réalisation de digues, recouvrement provisoire, nettoyage du site, mise en place du dispositif de sécurité...)
- Maintenance et entretien des divers équipements mis à disposition par la collectivité

3.4.2 Organigramme

L'organisation des responsabilités est présentée ci-dessous :



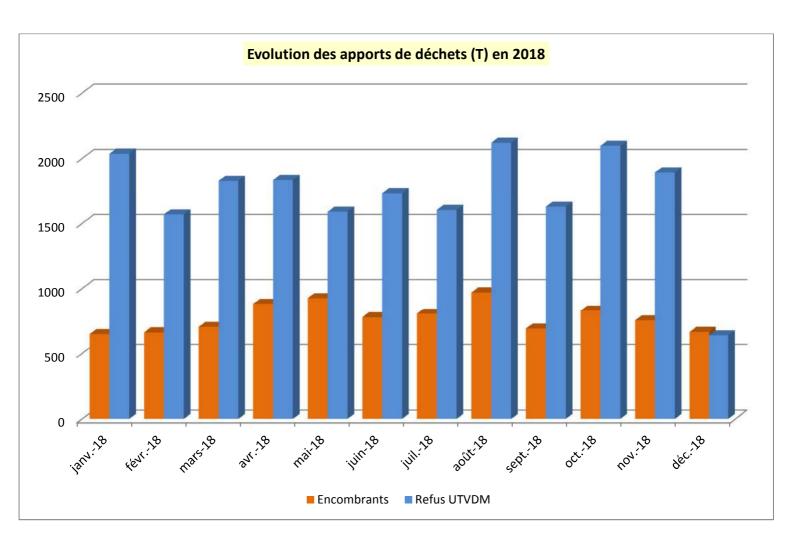
3.4.3 Matériels en place

Pour l'ensemble des équipements, carnets d'entretien et registres permettent le suivi des contrôles et la prévention des dysfonctionnements.

Pont bascule et portique de détection de radioactivité

Poste de contrôle et d'enregistrement

Engins de recouvrement et de compactage : Tracks CATERPILLAR 963 et compacteur VANDEL 250 30T


3.5 QUANTITES DE DECHETS ENFOUIS

Le tonnage global en 2018 s'élève à **29 929 T** soit une hausse de 18 % des déchets enfouis par rapport à l'année 2017 (Déchets issus de St Marcellin et Savoie déchets). Le volume* occupé par les déchets est de **33 555 m³**. Ce qui donne une densité de **0.89**.

*Le volume de remblais calculé à partir des relevés topographiques est de **35 955** m³. Pour connaitre le volume occupé par les déchets il faut déduire les remblais en terre utilisés pour la couverture de l'alvéole 1 K, soit 40 cm sur 6000 m2 ce qui fait **2 400** m³ environ.

Désignation	TOTAUX	janv-18	févr-18	mars-18	avr-18
20 03 07 Déchets encombrants	9 312,74	647,66	661,36	703,26	881,76
19 12 12 Ensemble des refus UTVDM	20 576,34	2036,76	1569,34	1828,92	1835,72
TOTAL	29 929,08	2 684,42	2 230,70	2 532,18	2 717,48

mai-18	juin-18	juil-18	août-18	sept-18	oct-18	nov-18	déc-18
925,94	778,44	805,58	969,9	731,1	828,6	753,96	665,18
1589,4	1734,64	1603,44	2120,62	1628,48	2097,1	1893,18	638,74
2 515,34	2 513,08	2 409,02	3 090,52	2 359,58	2 925,70	2 647,14	1 303,92

L'évolution globale des apports de déchets sur les 12 dernières années est la suivante :

En 2018, les déchets ont été enfouis successivement dans les alvéoles 1K, 1L et 1M du 1^{er} janvier au 31 décembre 2018.

Exploitation alvéole 1K en janvier 2018

Exploitation de l'alvéole 1L en juin 2018

Exploitation alvéole 1M septembre 2018

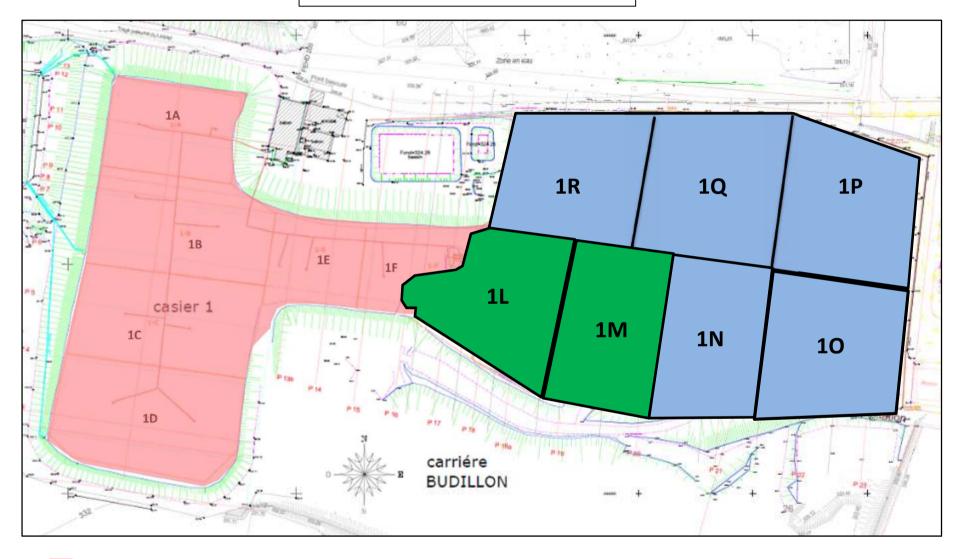
3.6 CAPACITE RESIDUELLE DU SITE

Sur la base du nouveau projet établi à partir du levé du 19 juin 2017, la capacité résiduelle estimée à fin décembre 2017 était de 109 855 m3.

Si on reprend la quantité de remblais de **35 955** m3 en 2018, le volume disponible au 7 janvier 2019 serait donc de **73 900** m3.

4 LOCALISATION DES CASIERS EN EXPLOITATION

Le plan ci-après renseigne les zones exploitées au cours de l'année 2018.


Sur 2018, nous avons exploité 3 alvéoles différentes d'environ 2000 m2 chacune :

- de janvier à mai, une partie de l'alvéole 1K
- de mai à septembre, l'alvéole 1L
- depuis septembre, l'alvéole 1M

Actuellement, nous sommes sur une surface d'environ 2000 m2 mais elle va évoluer vers une couverture provisoire au premier trimestre 2019.

Concernant les casiers en post exploitation, nous n'observons pas de tassements significatifs.

Localisation des alvéoles - Casier 1 - 2018

- Couverture définitive
- Couverture provisoire
- Alvéole en exploitation 1K (sous 1M et 1N, de janvier à mai), 1L (mai à septembre) et 1M (septembre à décembre)

5 Prevention des impacts sur l'environnement – autosurveillance

5.1 BILAN HYDRIQUE

5.1.1 Objectif

L'analyse du bilan hydrique permet de comprendre les phénomènes de formation de lixiviats dans un centre de stockage de déchets.

Ce bilan permet d'évaluer le volume d'eau de pluie infiltré dans les alvéoles au cours de leur exploitation, de définir et de dimensionner les ouvrages de collecte, de drainage et de traitement qu'il faut mettre en place

5.1.2 Définitions

[source : Techniques de l'Ingénieur]

Le bilan hydrique constitue une balance comptable des entrées et sorties d'eau sur le site, pendant une durée déterminée.

L'équation de base peut s'écrire : $E = P + ED - ETR - EX + R_{ext} - R_{int} + \Delta ED$

avec

E : quantité d'effluents pouvant être produite P : Quantité d'eau pluviale tombant sur le site

ED: Eau de constitution de déchets

ETR: Evapotranspiration réelle

EX : volume d'effluent s percolant vers l'extérieur à travers le fond de la décharge, ou infiltration en fond de casier

R _{ext} : Quantité d'eau ruisselant de l'extérieur du site vers les fossés de collectes des eaux de ruissellement

R int : Ouantité d'eau ruisselant de l'intérieur du site vers l'extérieur

Δ ED Variation de la teneur en eau de déchets

Le fond de casier étant étanche, nous considérons donc que l'infiltration en fond notée EX est égale à 0. Par ailleurs, compte tenu de la configuration du site, les coefficients de ruissellement intérieur et extérieur sont également retenus comme égaux à 0.

Dans cette approche, nous négligerons également les pertes d'eau dans le biogaz :

La formule se résume alors ainsi : $E = P + ED - ETR + \Delta ED$

5.1.3 Calcul des données

1/ Calcul de ED

Les déchets enfouis peuvent être plus ou moins humides et présentent des teneurs en eau variables. Dans le cas des ordures ménagères mélangés à des déchets artisanaux et commerciaux, la teneur en eau est estimée à 40% en masse.

Cette teneur en eau peut varier en fonctions des apports pluviométriques. Les déchets sont en effet susceptibles en fonction de leur nature à absorber une certaine quantité d'eau, en tendant vers leur capacité de rétention (teneur en eau maximale avant écoulement sous l'effet de gravité).

En se dégradant, les déchets produisent également une certaine quantité d'eau, qui reste néanmoins négligeable par rapport aux autres flux.

A l'inverse, leur teneur en eau peut diminuer sous l'effet de la température, de la pression et après percolation des jus.

Ces variations sont à l'origine du terme Δ ED, d'où la difficulté d'estimer l'ensemble ED+ - Δ ED.

Compte tenu de l'âge moyen des déchets (inférieur à 1 an), de la prise en compte d'une pluviométrie efficace totale, nous considérons que la contribution de ces termes à la formation des lixiviats est de l'ordre de 10 % du volume initial de déchets enfouis (année 2018 : 29 889 T) par an soit 2 988 m³/an.

2/ Détermination de la réserve utile appelé « RU »

Pour simplifier les calculs, il est d'usage de regrouper les termes teneurs en eau des déchets (originelle, minimale, maximale) et de schématiser la situation comme suit : l'épaisseur des déchets constitue un réservoir d'eau, dont la capacité est estimée à **50 mm**, soit 50 litres par mètre carré (valeur généralement retenue dans ce contexte).

3/ Calcul de la hauteur Infiltrée (I) – Méthode de Thornwaite

• Données Météo France – Station de Grenoble Saint-Geoirs – Voir Annexe 1

	BILAN Détail/mois - Année 2018												
mois	TOTAL	janv	fev	mars	avr	mai	juin	juil	aout	sept	oct	nov	dec
P (*)	838.6	122.8	24.2	126.2	22	70.5	83	31.4	58.5	16.4	98.9	108.3	76.4
ETP (*)	932.9	14.8	20.8	50	99.8	101.6	146	175.9	147.3	99	46.8	19.3	11.6
RU		50	50	50	0	18.9	0	0	0	0	50	50	50
ETR	632.3	14.8	20.8	50	22	70.5	83	31.4	58.5	16.4	46.8	19.3	11.6
I=P-ETR	393.5	108	3.4	76.2	0	0	0	0	0	0	52.1	89	64.8

5.1.4 Calcul de la quantité d'effluent produit

La quantité d'effluent produit associe :

- volume d'infiltration naturelle
- volume d'eau produit par les déchets (10 % de la quantité enfouie)

1/ Calcul de volumes infiltrés

a) Cas des zones exposées

La formule utilisée est la suivante : V infiltré = S x I

I = hauteur d'eau infiltrée calculée selon la méthode de Thornwaite

S = Surface des zones exploitées non couvertes

Le détail du calcul est présenté ci-dessous :

	Surface	Type de couverture	Période	Hauteur infiltrée	Volume infiltré
Alvéole 1 K	6 000 m ²	Aucune	Du 1 ^{er} janvier au 31 décembre 2018	393.5 mm	2361 m³
Alvéole 1L	3 600 m ²	Aucune	Du 23 mai au 31 décembre 2018	205.9 mm	741 m³

Volume total d'effluents infiltrés - zones exposées	3102 m ³
---	---------------------

b) Cas des zones réaménagées

Selon les statistiques, l'analyse des volumes de lixiviats collectés met en évidence une corrélation significative entre les volumes mensuels moyens des précipitations et les surfaces de zones contribuant à la production de lixiviats.

La formule utilisée est la suivante : V infiltré = 0.4 x S x P x CR

P = Précipitations

S = Surface des zones réaménagées

CR = coefficient de réaménagement

Très bon = 0.05 - cas d'une membrane étanche Bon = 0.25 - cas argile et terre végétale

Moyen = 0.5 - cas argile

Médiocre = 0.7 – terre végétale > 3 m

Mauvais = 1 aucun réaménagement limitant

[source : Agence l'Eau Seine Normandie]

CR a été défini à 0.25 dans le cas de mise en place de GSB et de 0.15 dans le cas de « Covertop ».

Le calcul est présenté ci-dessous :

	Surface	Type de couverture	Période	Précipitations	Volume infiltré
Casier 5	20 000 m ²	GSB 10 ⁻⁹ m/s	Du 1er Janvier au 31 décembre 2018	838.6 mm	1677 m3
Alvéoles 1A-1B-1C- 1D-1E-1F	18 000 m²	GSB 10 ⁻⁹ m/s	Du 1er janvier au 31 décembre 2018	838.6 mm	1509 m3
Alvéole 1G	2 500 m ²	Covertop	Du 1er janvier au 31 décembre 2018	838.6 mm	125 m3
Alvéole 1G	3 600 m ²	Covertop	Du 1er janvier au 23 mai 2018	365.7 mm	79 m3
Casier 1H	2 200 m ²	Covertop	Du 1 janvier au 31 décembre 2018	838.6 mm	110 m3
Casier 11	5 700 m ²	Covertop	Du 1 janvier au 31 décembre 2018	838.6 mm	286 m3
Casier 1J	3500 m ²	Covertop	Du 1 janvier au 31 décembre 2018	838.6 mm	176 m3
Total zones réaménagées					3 962 m ³

Volume total d'effluents - surfaces réaménagées	3 962 m ³
---	----------------------

2/ Volume bassin de stockage de lixiviats

Au 31/12/2017, la lagune de stockage faisait apparaître un stock de 2 000 m³. Ces derniers ont été traités au cours de l'année 2018.

Stock de lixiviats au 31/12/2017	2 000 m ³
----------------------------------	----------------------

3/ Rappel volume d'eau produit par les déchets (ED)

■ Hypothèse 10 % : 2 992 m³/an

Selon les calculs ci-dessus, au global la quantité d'effluent pouvant être produite, se situerait aux environs de 10 056 m³

En prenant une incertitude généralement admise de l'ordre de 30%, le volume estimé serait de 13 072 m³.

Ces calculs ne correspondent pas à la réalité observée sur le site.

L'écart constaté pourrait s'expliquer par la présence d'eaux parasites augmentant les volumes de lixiviats. La quantité d'effluents traités au cours de **l'année 2018** a été de **17 282 m³** selon les relevés compteurs de la station de traitement.

4/ Volume de lixiviats évaporé

Le volume annuel évaporé a été de 2 182 m³. Cette valeur correspond à celle relevée en 2016 lors du début de valorisation du biogaz sur le transvap'o.

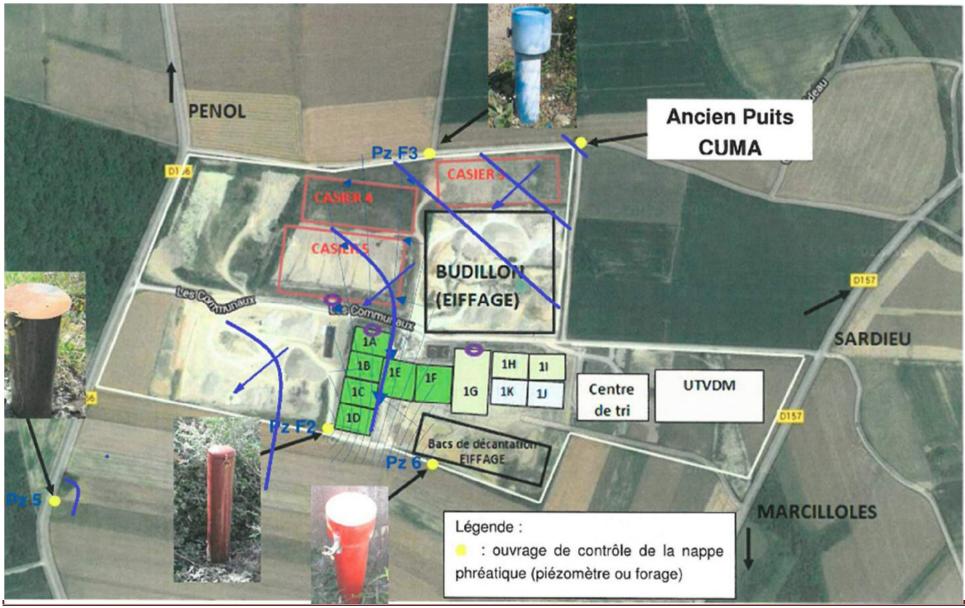
Année	2013	2014	2015	2016	2017	2018
Volume évaporé	2458 m ³	2856 m ³	3005 m ³	2233 m ³	1628 m3	2182 m3

5.2 EAUX SOUTERRAINES

Le programme de surveillance des eaux souterraines précisé dans l'arrêté préfectoral du 27 janvier 2006 est le suivant :

- Tous les trimestres : pH, potentiel d'oxydoréduction, résistivité, COT et relevé des niveaux piézométriques
- Tous les ans par un laboratoire agréé :
 - Analyse physico-chimique: pH, potentiel d'oxydoréduction, résistivité, NO2, NO3, NH4+, Cl-SO42-,PO43-, K+, Na+, Ca2+, Mg2+, Pb, Cu, Cr, Ni, Zn, Mn, Sn, Cd, Hg, DCO, COT, AOX, PCB, HAP. BTEX.
 - Analyse biologique : DBO5,
 - Analyse bactériologique : coliformes fécaux, coliformes totaux, streptocoques fécaux, présence de salmonelles

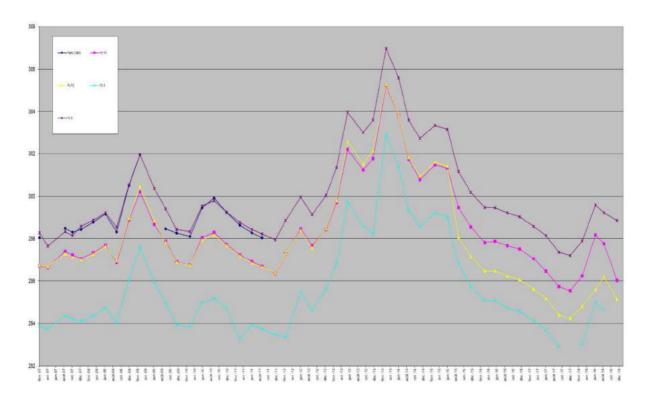
Les rapports établis par « EOOD Ingénieurs Conseils» chaque trimestre sont joints en annexe et rendent compte de la qualité de l'eau souterraine lors des prélèvements réalisés sur les 4 ouvrages de captages :


- PzF3 (amont hydraulique) et puits CUMA (non prélevé depuis 2011 en raison de nouveaux aménagements)
- Pz F2
- Pz5
- Pz6

5.2.1 Evolution du niveau de la nappe

[Source: Rapport EODD 2018]

Une mesure du **niveau statique de la nappe** est réalisée chaque année par un organisme indépendant par sonde piézométrique au niveau de 4 points : Pz F2, Pz5, Pz F3 et Pz6 implantés selon la cartographie présentée ci-après



Février 2019 Rapport d'activité 2018 Page 20

Les résultats des suivis du niveau statique de la nappe sont présentés dans les rapports trimestriels joints en annexe 2.

Le graphique ci-dessous illustre l'évolution des mesures piézométriques de la nappe. Les valeurs sont exprimées en côte mNGF.

On peut noter qu'il n'y a pas eu de prélèvement possible sur le Pz5 sur la campagne de décembre 2018 puisque le niveau ne le permettait plus (exceptionnellement bas comme en septembre 2017). Nous avons donc suivi l'évolution de la piézométrie de PzF3 et Pz5 sur 2018 et voici le tableau de synthèse :

Dates	Niveau statique des piézomètres en m par rapport au repère			
Dates	PzF3	Pz5		
09/01/18	39.80	Sec		
06/02/18	39.57	39.72 (30cm d'eau dans le fond de puits)		
05/03/18	39.32	39.55		
04/04/18	38.77	39.10		

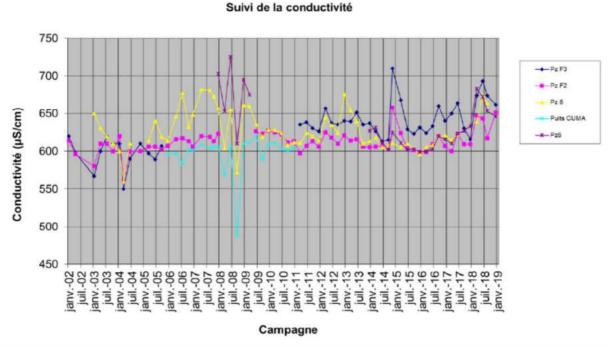
Dates	Niveau statique des piézomètres en m par rapport au repère				
	PzF3	Pz5			
07/05/18	37.95	38.54			
11/06/18	37.38	38.05			
02/07/18	37.32	37.85			
20/08/18	37.55	38.25			
08/10/18	37.85	38.51			
10/12/18	38.29	38.81			

Compte tenu de l'évolution sur le PzF3 et le Pz5, nous allons peut-être rencontrer des problèmes de prélèvements sur la campagne de 2019 (pas assez d'eau à prélever dans Pz5 si le niveau continue de baisser).

5.2.2 Suivi analytique

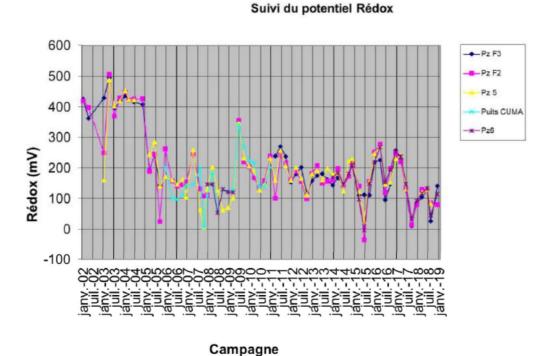
Le suivi trimestriel des eaux souterraines est assuré par le bureau d'études EOOD.

Les prélèvements ont été effectués sur les 4 ouvrages ci-dessous :


- Piézomètre Pz F3
- Piézomètre Pz F2
- Piézomètre Pz 6
- Piézomètre Pz 5

Ce bilan concerne l'analyse en laboratoire agréé des paramètres suivants :

- PH.
- Conductivité,
- Potentiel d'oxydoréduction,
- COT : carbone organique total

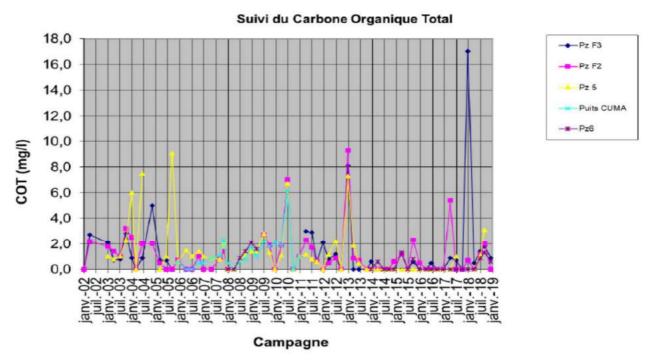


5.2.2.1 Evolution de la conductivité= f (temps)

Les dernières valeurs de conductivité mesurées sont du même ordre de grandeur de celles antérieurement observées.

5.2.2.2 Evolution du potentiel / redox = f (temps)

Ce graphique montre que le potentiel d'oxydo-réduction des eaux souterraines suit des variations importantes suivant les périodes ; il varie généralement, depuis début 2005, entre 50 et 350 mV. Ces variations semblent toutefois s'atténuer d'après les mesures faites sur l'année 2017.



5.2.2.3 Evolution du pH = f (temps)

Ce graphique montre des valeurs de pH qui semblent se stabiliser autour de la neutralité.

5.2.2.4 Evolution du COT = f (temps)

En décembre 2017, une valeur un peu élevée sur le COT (17mg/L) a été relevée au niveau du PzF3 mais pas d'impact du site sur ce paramètre puisque la valeur sur le piézomètre aval (PzF2) reste faible (0.7mg/L).

Depuis cette année, la fréquence de l'analyse complète est passée d'annuelle à biannuelle sur de la qualité des eaux souterraines.

Dans le cadre du programme de surveillance et conformément aux prescriptions de l'arrêté 2006-01064, une analyse complète a été réalisée le 27 juin 2018 sur les 4 piézomètres (PzF2, PzF3, Pz5 et Pz6) et le 5 décembre 2018 (sans Pz5).

Les prélèvements ont été réalisés par EOOD et les analyses ont été confiées au laboratoire WESSLING, organisme accrédité COFRAC.

Les résultats sont les suivants :

Paramètres	Unité	PZF2 PZF3		PZ5	PZ6			
		27/06	05/12	27/06	05/12	27/06	27/06	05/12
DBO5	mg/l	<3	<3	<3	7	<3	<3	<3
AOX	μg/l	<10	<10	<10	15	<10	<10	<10
DCO	mg/l	<10	<10	<10	<10	<10	<10	<10
Carbone Organique Total (COT)	mg/l	1.2	<0.5	1.4	0.9	1.1	0.9	0.6
Nitrites	mg/l	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
Chlorures	mg/l	22	20	28	25	21	20	18
Nitrates	mg/l	46	44	42	38	46	43	40
Sulfates	mg/l	16	15	16	15	23	18	18
Ammonium	mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Plomb	μg/l	<10	<10	<10	<10	<10	<10	<10
Cadmium	μg/l	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Calcium	mg/l	120	120	120	120	130	120	130
Chrome	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Potassium	mg/l	1	<2	1	<2	1.2	1.1	<2
Cuivre	μg/l	<5	<5	<5	<5	<5	<5	<5
Magnésium	mg/l	2.6	2.8	2.7	3	2.6	2.6	2.9
Manganèse	μg/l	<5	<5	<5	<5	<5	<5	14
Sodium	mg/l	7.8	8.7	12	13	7.1	8.1	8.2
Nickel	μg/l	<10	<10	<10	<10	<10	<10	<10
Zinc	μg/l	<50	<50	<50	<50	<50	<50	<50
Etain	µg/l	<10	<10	<10	<10	<10	<10	<10
Mercure	μg/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Somme des CAV	µg/l	-/-	-/-	-/-	-/-	-/-	-/-	-/-
HAP somme des 6 HAP	μg/l	-/-	-/-	-/-	-/-	-/-	-/-	-/-
-PCB Somme des 7 PCB	µg/I	-/-	-/-	-/-	-/-	-/-	-/-	-/-

^{-/-:} non détecté

Les résultats des analyses en laboratoire (analyses bactériologiques exclues) montrent l'absence de problématique vis-à-vis des composés recherchés. Toutes les concentrations mesurées sont inférieures aux seuils de détection du laboratoire et/ou inférieures ou égales aux valeurs références de qualité des eaux brutes et des eaux destinées à la consommation humaine (arrêté du 11 janvier 2007).

Analyses de type bactériologique de juin et décembre 2018

Paramètres	Unité	PZ	rF2		.F3	PZ5	PZ6	
		27/06	05/12	27/06	05/12	27/06	27/06	05/12
Salmonelles	/25 ml	Absence						
Coliformes	/100ml	<1	<1	<1	<1	<1	<1	<1
Coliformes thermotolérants	/100 ml	<1	<1	<1	<1	<1	<1	<1
Enterocoques	/100 ml	<1	<1	<1	<1	<1	<1	<1

Concernant les analyses bactériologiques, on ne constate aucune anomalie.

Analyses de radioactivité sur l'ensemble des 4 piézomètres lors de la campagne de juin 2018

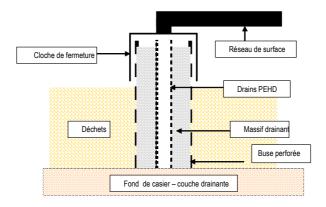
Comme prévu au programme, une analyse quinquennale radiologique a été réalisée par le laboratoire ALGADE sur les radioéléments des chaines de l'uranium, du thorium et du potassium 40. Ces analyses n'ont révélé aucune anomalie et sont disponibles en annexe 3 de ce rapport.

5.3 GESTION DES EAUX PLUVIALES

Le bassin de collecte des eaux de ruissellement intérieures, d'un volume de 3 000 m³ assure le stockage de ces effluents.

Les résultats des mesures sur les eaux pluviales sont présentés ci-dessous :

Paramètre	Seuil réglementaire	Mars 2018	Juin 2018	Septembre 2018	Décembre 2018
рН	Entre 5,5 et 8,5	8.16	8,24	8.14	8.08
Conductivité	< 1000 µS/cm	106 µS/cm	348 µS/cm	565 μS/cm	482 µS/cm
Conformité		oui	oui	oui	oui
Vidange bassin		oui	oui	non	oui
Volume estimé		200 m ³	500 m ³	0 m ³	300 m ³



5.4 GESTION DU BIOGAZ

5.4.1 Captage du biogaz

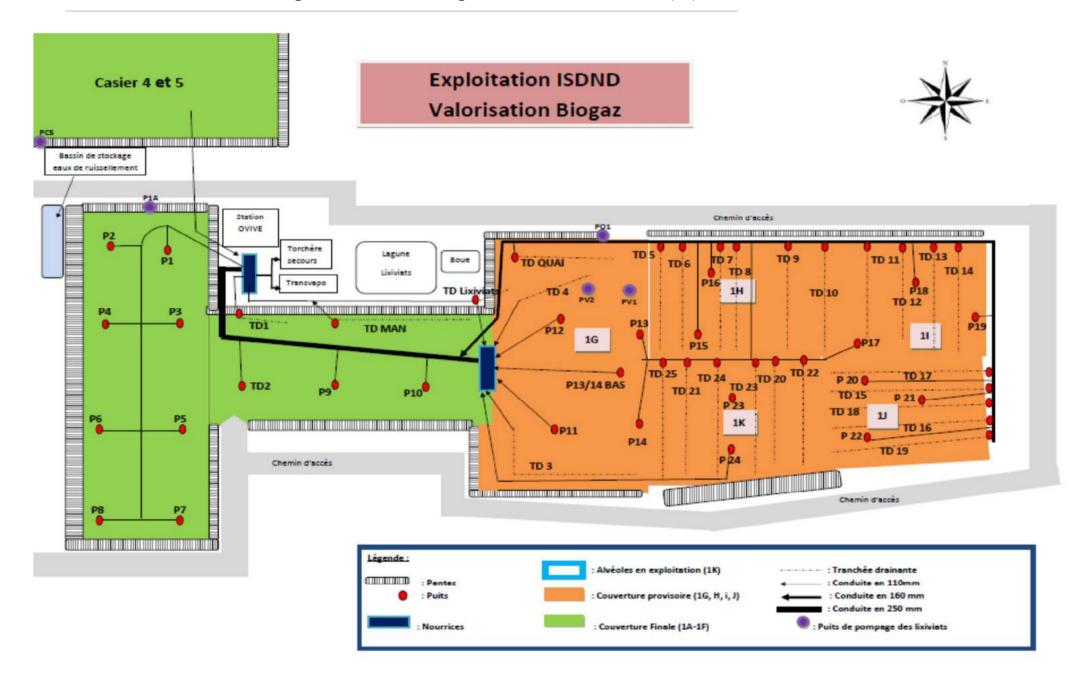
Le biogaz est capté par des puits verticaux ainsi que des tranchées drainantes créés à l'avancement et raccordés au dispositif de collecte.

Schéma de principe d'un puits de captage

Les travaux effectués sur le réseau de captage en 2018 sont décrits dans le chapitre 6 « Principaux travaux réalisés ».

5.4.2 Surveillance et entretien du réseau biogaz

La surveillance, l'entretien et la pose de nouveaux réseaux sont assurés au quotidien par l'équipe SERPOL. Ces principales actions sont décrites ci-dessous :


- Mesures quotidiennes de l'ensemble du réseau biogaz
- Contrôle des installations de valorisation
- Contrôle des connexions des puits au collecteur
- Calage et réglage des collecteurs avec vérification des points bas (évacuation des condensats...)
- Remplacements des diverses pièces usagées (vannes, manchons de dilatation, points de mesure...)
- Réalisation des nouveaux réseaux de collecte au fur et à mesure de l'avancement des alvéoles en exploitation. Raccordements des nouveaux équipements aux nourrices hautes.

5.4.3 Localisation des puits

La surveillance régulière de la composition du biogaz permet le réglage optimal des puits pour assurer l'efficacité du réseau de captage et prévenir les risques de nuisances olfactives aux abords du site.

La localisation des puits de biogaz est renseignée ci-après :

5.4.4 Traitement du biogaz

L'installation de valorisation du biogaz a été mise en service en décembre 2011.

A cet effet, deux moteurs permettaient la valorisation et l'énergie a été vendue au réseau de distribution électrique national jusqu'en juin 2016.

Après cette date, ces 2 moteurs ont été remplacés par le système transvapo de BIOME qui permet de valoriser le biogaz en évaporant des perméats en sortie de nanofiltration (traitement des lixiviats).

Unité de traitement transvapo

Le rapport de suivi de l'installation de valorisation thermique du biogaz (système transvapo) est présenté ci-dessous.

Sur 2018, 81.5% du biogaz a été valorisé.

Le système transvapo a permis d'évaporer 2 182 m³ de perméats, pour un fonctionnement de 7 945 h, et pour une valorisation de 2 799 487 m³ de biogaz, soit un débit moyen de 352 m³/h de biogaz. La torchère de secours a fonctionnée essentiellement pour des opérations de maintenance et en marche forcée pour 922 h pour 350 904 m³ de biogaz brulé soit un débit moyen de 380 m³/h.

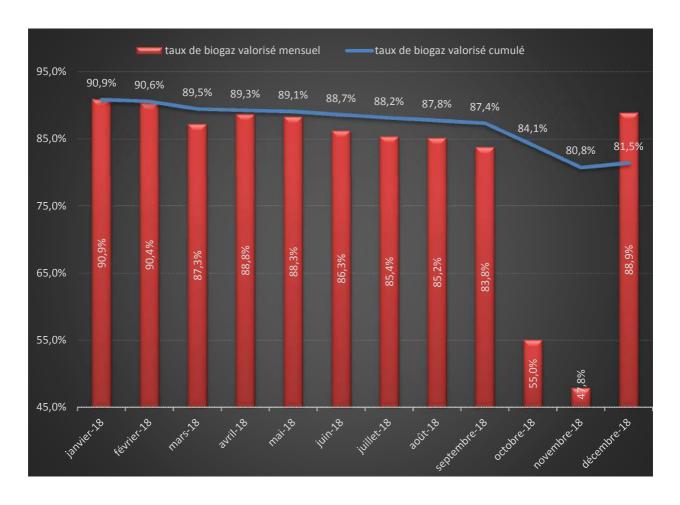
Les graphiques et tableau ci-après indiquent mensuellement les taux de valorisation, le volume de biogaz brulé et évaporé. Sur 2018, **2 799 487 m³** de biogaz a été valorisé.

Le tranvsapo et la torchère font l'objet de visite d'entretien et de maintenance approfondie trimestriellement par le constructeur (société Biome) en relation direct avec SERPOL et le SICTOM DE LA BIEVRE. L'ensemble des rapports d'intervention de BIOME figure en annexe 7 de ce rapport.

Une analyse annuelle des rejets atmosphériques a été réalisée par l'APAVE sur le transvapo et la torchère le 26 avril 2018.

Ces analyses sont présentes en annexe 5 de ce rapport.

Les débitmètres TGAP de marque EMERSON installés sur le transvapo et sur la torchère de secours ont été contrôlés et étalonnés le 8 juin 2018 (certificats étalonnages à disposition sur site).


5.4.5 Mesures des émissions diffuses

Une carte des émissions diffuses de méthane (CH4) a été réalisée cette année sur l'ensemble des casiers 1, 4 et 5 (couverture définitive, provisoire et exploitation en cours). Le rapport figure en annexe 6 de ce rapport.

La conclusion de ce rapport a été faite sur la base de plus de 1200 points de mesures sur l'ensemble des casiers

Cette dernière révèle que moins de 2% des valeurs sont significatives ce qui tend à dire que le réseau de dégazage ainsi que les couvertures présentes sur l'ISDND de Penol sont efficaces.

Mois	Part de biogaz valorisée (Nm3/mois)	Part de biogaz brûlée (Nm3/mois)	Taux de biogaz valorisé cumulé	Taux de biogaz valorisé mensuel (indicateur)
janv-18	261349	54	90,89%	90,89%
févr-18	203426	1192	90,63%	90,38%
mars-18	186125	7997	89,48%	87,16%
avr-18	259627	6276	89,48%	88,76%
mai-18	269685	7823	89,30%	88,35%
juin-18	235516	12653	89,11%	86,27%
juil-18	272 266	17 497	88,64%	85,42%
août-18	275503	18476	88,18%	85,20%
sept-18	247889	20958	87,80%	83,82%
oct-18	185635	121262	84,12%	54,99%
nov-18	145235	130956	80,82%	47,80%
déc-18	257231	5760	81,50%	88,92%
Total	2 799 487	350 904		

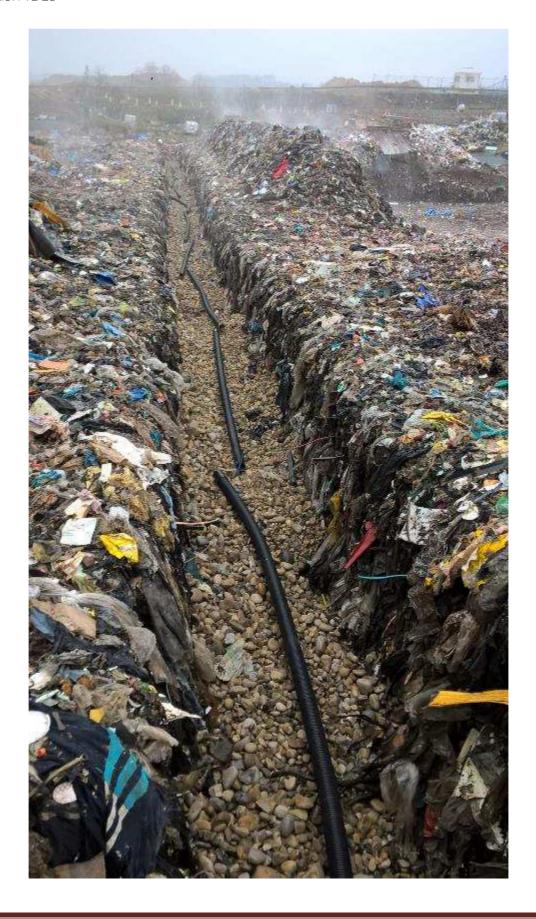
6 Principaux travaux et modifications realises en 2018

Les travaux liés à l'exploitation des alvéoles sont décrits dans le tableau ci-après :

Période	Type de travaux
1 ^{er} trimestre 2018	Exploitation alvéole 1K (fin) Mise en place des filets (côté Sud) Réalisation TD25 Nettoyage et remise en état pompe casier 5 Mise en place d'un nouveau coffret électrique casier 5 Couverture provisoire de 30% de l'alvéole 1K Remplacement du fût et de la rehausse du Transvapo Mise en place d'un point d'aspiration sur bassin EP CDT Réalisation de la dernière rehausse de digue côté Sud
2eme trimestre 2018	Comblement et obturation Pz4 Talutage et étanchéité digue côté Sud Clôture bassin EP CDT Réalisation d'une piste d'accès TTCR Fin d'exploitation alvéole 1K et démarrage alvéole 1L Broyage des casiers 1, 4 et 5 Végétalisation de la nouvelle digue Réalisation des tranchées drainantes TD23 et TD24 Aménagement de la plateforme d'accès au quai de déchargement
3eme trimestre 2018	Fin de couverture provisoire alvéole 1K Mise en place du nouveau quai de déchargement Livraison argile pour couverture alvéole 1L Mise en place des équipements ERP Mise en place du puits PEHD définitif P11 Couverture en argile alvéole 1L Fin d'exploitation alvéole 1L
4eme trimestre 2018	Connexion provisoire au réseau du puits P24 Début d'exploitation alvéole 1 M Broyage des casiers 1, 4 et 5 Modification du réseau biogaz coté CDT Réalisation de la dernière digue côté Est Talutage et étanchéité de la digue Est Couverture du talus alvéole 1 M Nouveau remplacement du fût et rehausse du Transvapo Connexion du puits P1 1

Les photos ci-après illustrent les principaux travaux.

> Exploitation alvéole 1 K



Mise en place des filets côté Sud

Réalisation TD25

> Nettoyage et remise en état pompe casier 5

Couverture provisoire de 30% de l'alvéole 1K

Remplacement du fût et de la rehausse du transvapo

Mise en place d'un point d'aspiration sur le nouveau bassin EP

Réalisation de la dernière rehausse de digue casier 1, côté Sud

> Talutage et étanchéité de la digue

Comblement et obturation de Pz4

> Clôture bassin EP

> Réalisation piste d'accès TTCR

Fin d'exploitation alvéole 1 K

> Préparation alvéole 1L

> Exploitation alvéole 1L

> Broyage des casiers 1, 4 et 5

Végétalisation de la nouvelle digue

Réalisations des tranchées drainantes TD23 et TD24

> Aménagement de la plateforme d'accès au quai de déchargement

Mise en place du nouveau quai de déchargement

Fin de couverture provisoire alvéole 1 K

> Livraison argile pour couverture alvéole 1L

> Mise en place du puits PEHD définitif

> Couverture en argile alvéole 1L

Fin d'exploitation alvéole 1L

Connexion provisoire au réseau du puits P24

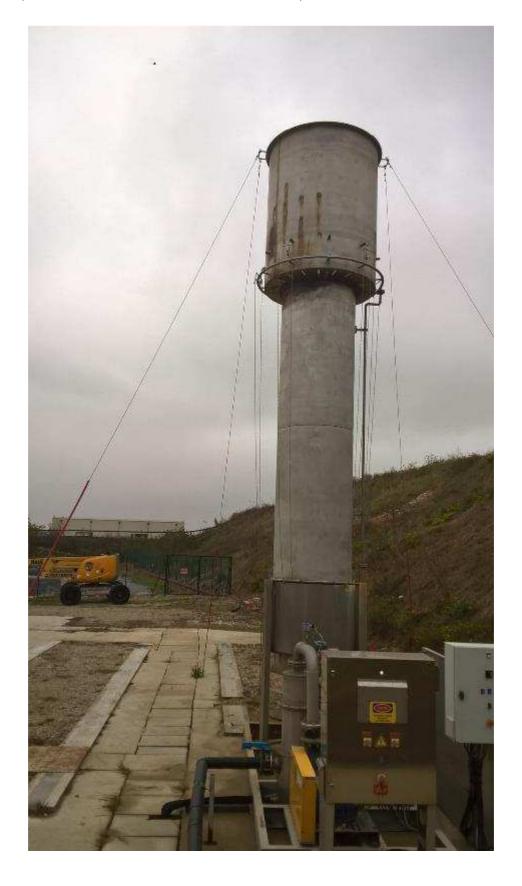
> Début d'exploitation alvéole 1M

Broyage des casiers 1, 4, 5

Modification du réseau biogaz côté Est

> Réalisation de la dernière digue côté Est

Talutage et étanchéité de la digue Est



Couverture du talus alvéole 1M

Second remplacement du fût et de la rehausse du transvapo

Connexion du puits P11

7 BILAN DES ACCIDENTS ET INCIDENTS

Aucun accident n'est à noter au cours de l'exploitation de l'ISDND sur l'année 2018.

Les plaintes relatives aux nuisances olfactives liées à l'émission de biogaz sont répertoriées sur un registre des plaintes. Aucune de ces plaintes n'est répétées ou persistantes, elles ont pu apparaître lors de conditions météorologiques particulières, de défaut d'installation (dépannage astreinte) ou de maintenance ponctuelle.

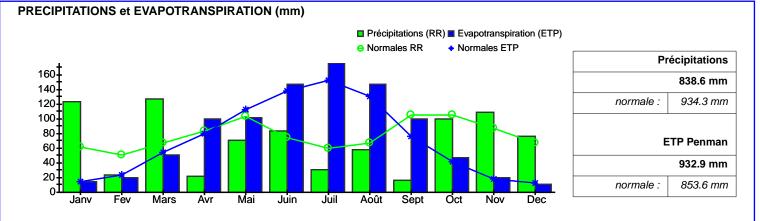
Le registre de suivi est présenté en annexe.

Les principaux incidents enregistrés sont les suivants :

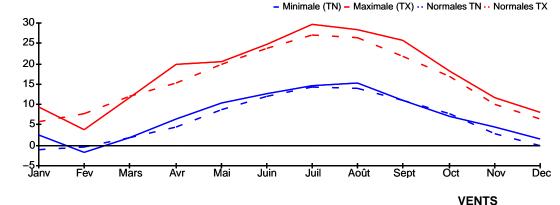
- Arrachage de PzF3 par un véhicule en décembre 2018 (nettoyage, vérification et remise en service en janvier 2019)

Aucune conséquence n'a été constatée sur le plan environnemental.

ANNEXE 1 : DONNEES METEO FRANCE STATION DE GRENOBLE SAINT-GEOIRS

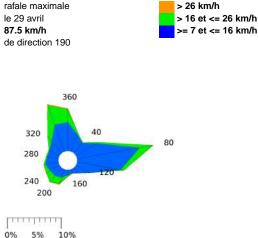


SYNTHESE CLIMATOLOGIQUE D'UNE ANNEE


Annee 2018

GRENOBLE-ST GEOIRS (38)

Indicatif: 38384001, alt: 384 m., lat: 45°21'48"N, lon: 05°18'48"E



TEMPERATURES (°C)

Moyenne des températures					
maximales	17.6 °C				
normale :	16.2 °C				
minimales	7.2 °C				
normale :	6.3 °C				
moyennes	12.4 °C				
normale :	11.2 °C				

INSOLATION (heures) Cumul d'insolation Normales rafale maximale le 29 avril 87.5 km/h de direction 190 200 Janv Fev Mars Avr Mai Juin Juil Août Sept Oct Nov Dec

Edité le : 15/01/2019

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

SYNTHESE CLIMATOLOGIQUE D'UNE ANNEE

Annee 2018

GRENOBLE-ST GEOIRS (38)

Indicatif: 38384001, alt: 384 m., lat: 45°21'48"N, lon: 05°18'48"E

Eléments météorologiques	Janv.	Févr.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Dec.	Anné
Températures :													
minimales	2.6	-1.7	1.8	6.6	10.3	12.8	14.6	15.4	11.1	7.2	4.6	1.5	7.2
normales	-1.2	-0.4	2	4.4	8.9	12	14.2	14	10.9	7.8	2.7	-0.1	6.3
maximales	9.3	3.9	11.8	19.7	20.4	24.9	29.6	28.3	25.8	18.1	11.7	8.1	17.6
normales	5.9	7.8	12	15.3	19.9	23.8	26.9	26.4	21.8	16.9	10.2	6.4	16.2
moyenne	6	1.1	6.8	13.1	15.3	18.8	22.1	21.9	18.5	12.6	8.2	4.8	12.4
normales	2.4	3.7	7	9.8	14.4	17.9	20.5	20.2	16.3	12.3	6.5	3.2	11.2
minimales la plus basse	-4.1	-11.5	-5	0.3	5.2	7.3	9.2	7.1	4.5	0.1	-2.3	-4.8	-11.
maximales la plus élevée	16.1	10.5	17.4	26.8	27.3	31.3	34.9	35.5	31.1	25.2	20.4	14.1	35.5
nombre de jours de gel	5	23	11								4	11	54
nombre de jours sans dégel		3			-		-	-			-		3
nombre de jours chauds (Tx>= 25 °C)				6	4	15	29	22	19	1	-		96
nombre de jours très chauds (Tx>= 30 °C)					-	2	14	14	6		-		36
Précipitations et ETP :													
précipitations	122.8	24.2	126.2	22	70.5	83	31.4	58.5	16.4	98.9	108.3	76.4	838.
normales	61.3	51.6	66.3	83	104.1	75.2	59.3	67.2	105.7	105.8	87.7	67.1	934.
hauteur maximale quotidienne	40.1	9.4	24.5	8.6	16	26.2	15	35	10.8	43	34.5	21.7	43.0
nombre de jours de pluie >= 1 mm	13	6	17	5	13	7	6	5	4	8	10	12	106
ETP	14.8	20.8	50.0	99.8	101.6	146.0	175.9	147.3	99.0	46.8	19.3	11.6	932.
normales	15.0	23.3	54.8	80.3	112.7	137.0	153.1	130.0	75.8	40.9	18.0	12.7	853.
Insolation et rayonnement :													
•													
insolations cumul	66.6	55.1	115.9	207.5	175.0	275.9	352.4	291.7	260.3	182.1	82.6	70.7	2135.
normales	95.0	111.7	169.8	183.0	219.2	255.4	289.8	255.5	193.1	137.5	84.5	71.6	2065.
rayonnement cumul	11559	15219	30939	52813	51589	70660	78631	64283	49806	30829	13796	10482	48060
normales	_	_	_	_	_	_	_	_	_	_	_	_	-
Vent :													
moyen	11.2	11.2	11.9	10.4	9.7	10.1	10.1	10.4	9.7	10.1	11.9	10.8	10.4
normales	12.2	11.9	11.9	11.5	10.4	10.4	10.4	9.7	9.7	10.4	11.5	12.2	11.2
rafales maxi	73.8	66.6	65.2	87.5	56.2	71.3	87.1	67.0	67.0	64.4	64.8	55.1	87.5
nombre de jours de vent >= 100.8 km/h)													
Occurrences :													
neige	2	11	2		_					2	2	2	21
grêle	_	''	_	· -	_		_	_		_	_	_	_'
brouillard	2	4	3		4	4	1	_		8	8	9	43
orage	I -	1	3	1	10	8	6	8	[[37

^{- :} donnée manquante ; lorsqu'un paramètre n'est pas mesuré il n'y a pas de valeur associée (colonne ou case vide)

· donnée égale à 0

heures, le rayonnement en Joules/cm², le vent en km/h et les occurrences en nombre de jours.

Normales: elles sont calculées sur la période de référence 1981–2010 (ou, à défaut, sur la période maximale d'ouverture de la station) sauf pour les paramètres suivants:

Normales: elles sont calculées sur la période de référence 1981–2010 (ou, à défaut, sur la période maximale d'ouverture de la station) sauf pour les paramètres suivants insolation (1991–2010), ETP (2001–2010). * Normales reconstituées.

Edité le : 15/01/2019

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

Occurences : jours où le phénomène a été observé avec certitude.

Unités : les températures sont exprimées en degrés Celsius (°C), les précipitations et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation en baurse, les republications et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation en baurse, les republications et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation en baurse, les republications et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation en baurse, les republications et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation en la republication et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation en la republication et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation en la republication et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation en la republication et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation en la republication et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation et l'évapotranspiration potentielle (ETP) en millimètres (mm), les durées d'insolation et l'évapotranspiration et l'éva

ANNEXE 2 : RAPPORTS TRIMESTRIELS DE SUIVI DES EAUX SOUTERRAINES CSD Ingénieur Plus

SERPOL ISDND DE PENOL (38)

Surveillance de la qualité des eaux souterraines – Campagne de mars 2018

Rapport d'EODD Ingénieurs Conseils

SERPOL

2 Chemin du Génie - BP 80 **Téléphone**: 04 78 70 33 55 **Adresse**:

69657 VENISSIEUX CEDEX **Télécopie**: 04 78 70 27 20

M. Nicolas Seyve

(Responsable secteur

Gestion Globale des Centres

d'Enfouissement)

M. Jérôme Effantin (resp.

d'exploitation)

Email: nicolas.seyve@serpol.fr

jerome.effantin@serpol.fr

Surveillance de la qualité des eaux souterraines de l'ISDND de Penol – Campagne de mars 2018

RAPPORT d'EODD Ingénieurs Conseils

IDENTIFICATION				MAITRISE DE LA QUALITE			
N° Contrat	Indice	Révisio	on	Chef de projet	Supervision et libération		
P03369	1	03/04/20)18	L. Maillard	G. Lacour		
Nombre de pag	ges (hors	annexes)	20	03/04/2018	03/04/2018		
Nombre	e d'annex	es	3				

Vos contacts et interlocuteurs pour le suivi de ce dossier :

ingénieurs conseils

Parc Gratte-Ciel

☐: 12.10 rug loop

13-19, rue Jean Bourgey

69100 Villeurbanne

2: 04.72.76.06.90

□: 04 72.76.06.99

Chef de projet : L. Maillard l.maillard@eodd.fr

Directeur métier stockage et valorisation des déchets :

G. Lacour

g.lacour@eodd.fr

www.eodd.fr

SOMMAIRE

1.	INTRODUCTION	5
1.1	CONTEXTE DE L'ETUDE	5
1.2		
1.3		
1.4	LIMITES DE L'ETUDE	9
2.	INVESTIGATIONS DE TERRAIN	10
2.1	METHODES ET TECHNIQUES RETENUES	10
2.2	PARAMETRES A ANALYSER / METHODES ANALYTIQUES - FREQUENCES DE MESURES ET	DE
PRE	ELEVEMENTS	10
3.	RESULTATS	12
3.1	SURVEILLANCE DU NIVEAU DE LA NAPPE	12
3.2	EVOLUTION DE LA PIEZOMETRIE DEPUIS FEVRIER 2007	14
3.3		
3.3	3.1 Mesures In Situ	15
3.3	3.2 Analyses en laboratoire	15
3.3	3.3 Comparaison avec les autres campagnes	15
4	ANNEXES	20

LISTE DES FIGURES

FIGURE 1: LOCALISATION DU SITE (EXTRAIT IGN 1/25000)	5
FIGURE 2 : CARTE PIEZOMETRIQUE AU 21 MARS 2018	13
FIGURE 3: EVOLUTION DE LA PIEZOMETRIE DEPUIS 2007, EN M NGF	14
FIGURE 4 : EVOLUTION DE LA CONDUCTIVITE DES EAUX SOUTERRAINES	16
FIGURE 5: EVOLUTION DU POTENTIEL D'OXYDO-REDUCTION DES EAUX SOUTERRAINES	17
FIGURE 6: EVOLUTION DU PH DES EAUX SOUTERRAINES	18
FIGURE 7: EVOLUTION DU CARBONE ORGANIQUE TOTAL DANS LES EAUX SOUTERRAINES	19

LISTE DES TABLEAUX

TABLEAU 1 : SOURCES D'INFORMATIONS	8
TABLEAU 2 : NORMES DES ANALYSES REALISEES EN LABORATOIRE	11
TABLEAU 3: NIVEAU DE LA NAPPE AUTOUR DE L'ISDND DE PENOL (CAMPAGNE DU 21 MARS 2018)	12
TABLEAU 4 : SYNTHESE DES RESULTATS DES MESURES IN SITU ET DES RESULTATS D'ANALYSES POUR LE	ES EAUX
SOUTERRAINES PRELEVEES LE 21 MARS 2018	15

LISTE DES ANNEXES

ANNEXE T. BULLETINS D'ANALYSES EN LABORATOIRE	۱ ک
ANNEXE 2 : FICHES DE PRELEVEMENTS DES EAUX SOUTERRAINES	22
Annexe 3: Arrete prefectoral	23

1. INTRODUCTION

1.1 CONTEXTE DE L'ETUDE

La société SERPOL exploite pour le compte du SICTOM de la Bièvre l'ISDND des Burettes, localisée sur la commune de PENOL (38).

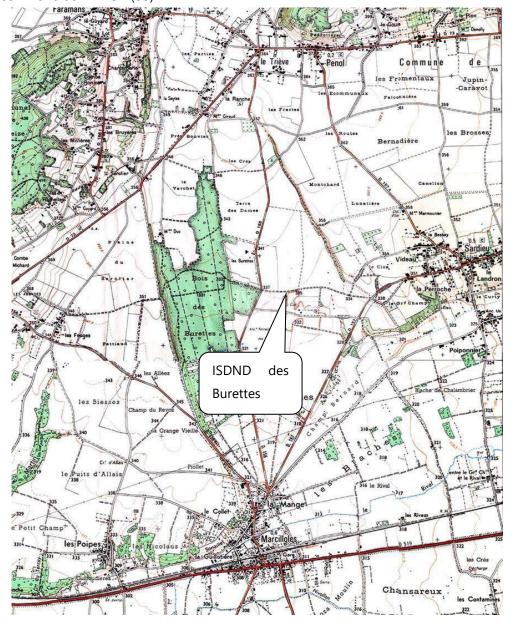


Figure 1: Localisation du site (extrait IGN 1/25000)

Conformément aux prescriptions de l'article 4 de l'arrêté Préfectoral n°2006-01064 du 27 janvier 2006 relatif à l'exploitation du site, des analyses d'eaux souterraines doivent être réalisées trimestriellement sur les points de contrôle mis en place en amont et en aval du site.

Dans ce cadre, EODD Ingénieurs Conseils a été mandaté par SERPOL pour réaliser le suivi de l'année 2018 des eaux souterraines.

Le présent rapport concerne la campagne de contrôles de mars 2018.

1.2 REFERENTIELS ET ACCREDITATIONS

La présente mission a été réalisée selon les référentiels suivants :

o la norme NF X31-615 de Décembre 2017 sur les prélèvements et l'échantillonnage des eaux souterraines dans un forage

Les analyses ont été sous-traitées au laboratoire Wessling, certifié par le COFRAC¹ (attestations d'accréditation n°1-5578 rév. 6 et n°1-1364 rév. 15). Les méthodes d'analyses sont récapitulées au paragraphe 2.3 (Tableau 2).

_

¹ COmité FRançais d'ACréditation.

1.3 SOURCES D'INFORMATION

Les différentes sources d'information consultées pour la réalisation de ce rapport sont les suivantes :

Titre	Source / Auteur	Référence
Arrêté préfectoral de poursuite d'exploitation en date du 17 mai 2000	Préfecture de l'Isère	n°2000- 3357
Arrêté préfectoral en date du 27 janvier 2006	Préfecture de l'Isère	n°2006- 01064
Arrêté préfectoral complémentaire en date du 16 avril 2009	Préfecture de l'Isère	n°2009- 02631
Société SERPOL – Contrôle de la qualité des eaux souterraines et des lixiviats au droit du C.E.T de Penol – campagne 11/2004	2ie	R 2004- 4969
Société SERPOL – Contrôle de la qualité des eaux souterraines et des lixiviats au droit de l'ISDND de Penol – campagne 03/2005	CSD AZUR	AZ02330
Société SERPOL – Contrôle de la qualité des eaux souterraines au droit de l'ISDND de Penol – campagne 06/2005	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes 09/2005 et 12/2005	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines et des lixiviats au droit de l'ISDND de Penol – Synthèse 2005 -	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes 04/2006, 07/2006, 10/2006 et 12/2006	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des lixiviats du bassin au droit de l'ISDND de Penol – campagne 12/2006	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes 04/2007, 08/2007, 10/2007 et 12/2007	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes 03/2008, 06/2008, 09/2008 et 12/2008	CSD AZUR	LY3313.100
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes 03/2009, 06/2009, 09/2009 et 12/2009	CSD AZUR	LY3313.102
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes de 03/2010, 06/2010, 09/2010 et 12/2010	CSD AZUR	LY3313.103
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes de 03/2011, 06/2011, 09/2011 et 12/2011	CSD INGENIEURS	LY3313.104
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes de 03/2012, 06/2012, 09/2012 et 12/2012	CSD INGENIEURS	LY3313.105
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes de 03/2013, 06/2013, 09/2013 et 12/2013	CSD INGENIEURS	LY3313.106
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes de 03/2014, 06/2014, 09/2014 et 11/2014	EODD INGENIEURS CONSEILS	LY3313.107
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes de 03/2015, 06/2015, 09/2015 et 12/2015	EODD INGENIEURS CONSEILS	P00594

Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes de 03/2016, 06/2016, 09/2016 et 12/2016	EODD INGENIEURS CONSEILS	P01440
Société SERPOL – Suivi analytique des eaux souterraines au droit de l'ISDND de Penol – campagnes de 03/2017, 06/2017, 09/2017 et 12/2017	EODD INGENIEURS CONSEILS	P02611
Carte topographique au 1/25 000 n° 3331 O de Meyzieux/Montluel	IGN	[22]

Tableau 1 : Sources d'informations

1.4 LIMITES DE L'ETUDE

Les résultats de ce rapport rendent compte de la qualité de l'eau souterraine prélevée dans les piézomètres de surveillance au 21 mars 2018.

Le programme de surveillance est mené dans un but précis : assurer un suivi dans le temps de la qualité des eaux souterraines pour vérifier l'absence d'anomalies de concentration des substances recherchées.

La surveillance de la qualité des eaux permet de quantifier l'impact éventuel du site sur les eaux souterraines. En revanche, la mission confiée à EODD ne comprend pas d'analyse interprétative ni de recherche d'origines d'éventuelles anomalies qui pourraient être détectées.

2. INVESTIGATIONS DE TERRAIN

2.1 METHODES ET TECHNIQUES RETENUES

L'arrêté préfectoral prévoit la réalisation de prélèvements d'eaux souterraines sur quatre ouvrages de captage présents sur le site :

- Puits CUMA (amont hydraulique),
- Piézomètre PzF2 (référence aval),
- Piézomètre Pz5 (référence aval),
- Piézomètre Pz6 (ouvrage situé au Sud du casier 2).

Le puits CUMA n'étant plus utilisable pour les prélèvements depuis des travaux de réaménagement en 2011, un prélèvement a été effectué (en commun accord avec la société SERPOL) au droit du piézomètre PzF3, en remplacement de celui dans le puits CUMA.

Lors de cette dernière campagne de mars 2018, les niveaux piézométriques étaient particulièrement bas. Ainsi, il n'a pas été possible de prélever au droit du piézomètre Pz5 qui était totalement sec.

Les prélèvements sur les autres piézomètres ont été réalisés après renouvellement des eaux du tube d'équipement jusqu'à stabilisation de leurs paramètres physico-chimiques, conformément aux recommandations de la norme NF X31-615 de Décembre 2017 sur les prélèvements et l'échantillonnage des eaux souterraines dans un forage.

Les purges ont été réalisées par pompage au moyen d'une pompe de prélèvement électrique (pompe immergée). Le niveau de la nappe a également été mesuré sur chaque ouvrage.

Les échantillons ont été conditionnés dans des flaconnages dédiés et stockés dans une glacière munie d'éléments réfrigérants avant d'être acheminés par nos soins au laboratoire Wessling.

2.2 PARAMETRES A ANALYSER / METHODES ANALYTIQUES - FREQUENCES DE MESURES ET DE PRELEVEMENTS

Conformément aux prescriptions relatives au contrôle des eaux souterraines précisées dans l'arrêté préfectoral n°2006-01064 du 27 janvier 2006, des analyses d'eaux souterraines doivent être réalisées sur les points de contrôle mis en place en amont et en aval du site. Le programme spécifié dans cet arrêté préfectoral doit être complété par celui précisé dans l'arrêté ministériel du 15 février 2016 relatif aux installations de stockage de déchets non dangereux (selon article 24).

Les analyses in situ et en laboratoire, listées ci-dessous, sont réalisées conformément aux exigences réglementaires sur tous les échantillons prélevés, et selon les fréquences et normes analytiques suivantes :

Paramètres	AP site 27/01/06	AP site 27/01/06	AM 15/02/16	AM Méthode 15/02/16 d'analyse		PzF3	PzF2	Pz5	Pz6
Fréquence	annuel	trimestriel	Bisannuel : basses et hautes eaux	Tous les 5 ans					
Conductivité / résistivité	X (In Situ)	X (In Situ)	X (In Situ)			Х	X	Χ	Χ
рН	X (In Situ)	X (In Situ)	X (In Situ)			X	X	Χ	Χ
Potentiel d'oxydoréduction	X (In Situ)	X (In Situ)	X (In Situ)			Х	Х	Х	Х
Radioactivité : analyse par spectrométrie gamma des chaînes de l'uranium et du thorium				X	NF EN ISO 10-703	x	х	x	х
DCO	Χ		X		ISO 15705 (H 45)	Х	Х	X	Χ
DBO5	X		X		NF EN 1899-1	Х	Χ	Χ	Χ
COT	Х	Х	Х		DIN EN 1484 (H3)	Χ	Χ	Χ	Χ
Ammonium	X		Х		DIN EN ISO 11732	Х	Х	Χ	Χ
Nitrites	Х		X		DIN EN ISO 10304- 1	Х	Х	Х	Х
Nitrates	Х		Х		DIN EN ISO 10304- 1	Х	Х	Х	Х
NTK			Х		EN 25663	Х	Х	Χ	Χ
Pb, Cu, Cr, Ni, Zn, Mn, Sn, Cd	Х		X (métaux totaux)		EN ISO 17294	Х	Х	Х	Х
Fe, As			X (métaux totaux)		EN ISO 11885	Х	Х	Χ	Х
Mercure	Х		X (métaux totaux)		EN 1483 - ISO 17294	Х	Х	Х	Х
AOX	Х		Х		DIN EN ISO 9562 mod.	Х	Х	Х	Х
CAV dont BTEX	Х		Х		NF EN ISO 11423-	Х	Х	Х	Х
PCB	Х		Х		NF EN ISO 6468	Х	Х	Х	Х
HAP	Χ		Х		d'ap. NFT 90-115	Х	Х	Χ	Х
Chlorures	Х		Х		DIN EN ISO 10304- 1	Х	Х	Х	Х
Sulfates	Х		Х		DIN EN ISO 10304- 1	Х	Х	Х	Х
Orthophosphates	Х		Х		NF EN 1189	Х	Х	Χ	Χ
Potassium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Sodium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Calcium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Magnésium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
MES			X		NF EN 872	Х	Х	Х	Х
Coliformes à 37°C	Х		X		BGesBl 10/95(A)	X	X	X	X
Coliformes thermotolérants à 44°C	X		X		BGesBl 10/95(A)	Х	Х	Х	Х
Enterocoques intestinaux	Х		Х		BGesBI 10/95(A)	Х	Х	Х	Х
Salmonelles	Х		X		EN ISO 19250	Х	Х	Х	Х
Escherichia coli	- •		X		Non précisé	X	X	X	X

Tableau 2 : Normes des analyses réalisées en laboratoire

La campagne de mars 2018 correspond à une campagne trimestrielle avec comme unique paramètre suivi en laboratoire le COT.

3. RESULTATS

3.1 SURVEILLANCE DU NIVEAU DE LA NAPPE

Le niveau de la nappe a été mesuré le 21 mars 2018 au moyen d'une sonde piézométrique au niveau de quatre points de contrôle : PzF2, PzF3, Pz5 et Pz6.

Les résultats obtenus sont indiqués dans le tableau 3 ainsi que sur la Figure 2 ci-après :

	Puits CUMA	PzF3	PzF2	Pz5	Pz6
cote TN (m NGF)	333,76	334,76	331,188	332,49	333,06
Cote du repère utilisé					
pour les mesures (m	Non mesuré	335,34	331,67	332,92	333,76
NGF)					
Niveau statique par	Non mesuré	39,11	36,86	39,90	35,86
rapport au repère (m)	Non mesure	55,11	30,00	39,30	33,00
niveau nappe (m NGF)	/	296,23	294,81	293,02	297,90

Tableau 3 : Niveau de la nappe autour de l'ISDND de Penol (campagne du 21 mars 2018)

La nappe s'écoule globalement d'Est en Ouest au droit du site (cf. figure suivante).

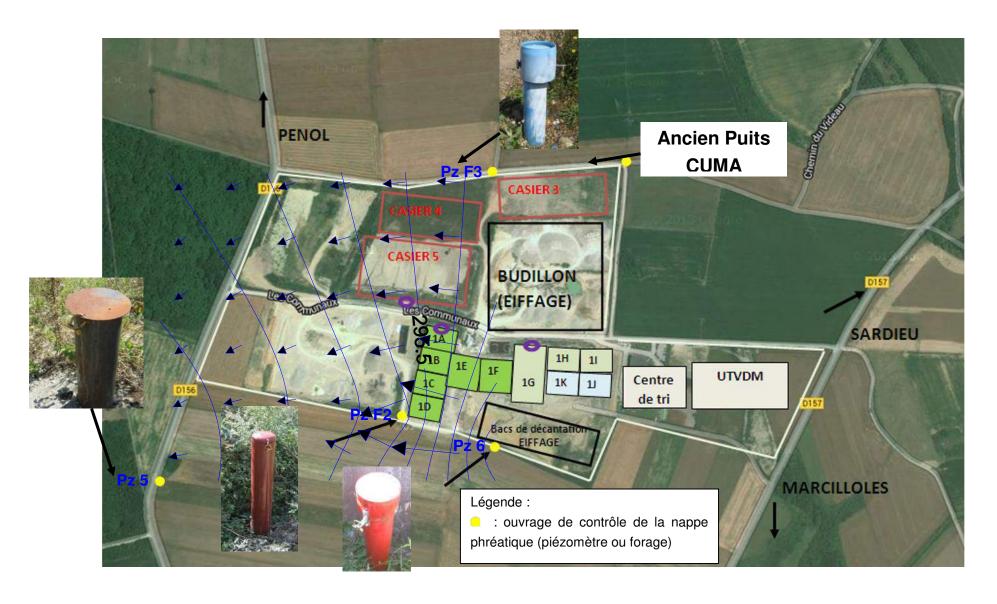


Figure 2 : Carte piézométrique au 21 mars 2018

13

Affaire P03369 / Emission du 03/04/2018

3.2 EVOLUTION DE LA PIEZOMETRIE DEPUIS FEVRIER 2007

L'évolution depuis février 2007 des niveaux statiques mesurés au droit de chaque ouvrage de contrôle est précisée sur le graphique ci-après :

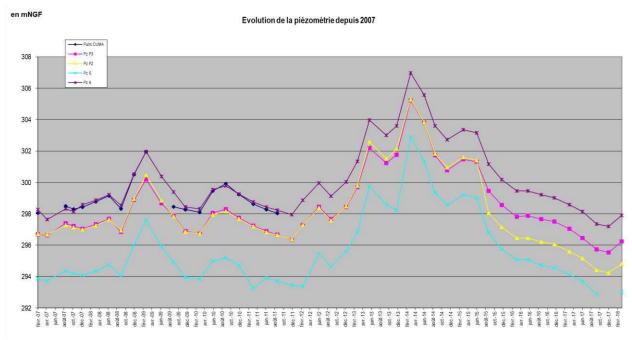


Figure 3 : Evolution de la piézométrie depuis 2007, en m NGF

3.3 RESULTATS DES MESURES IN SITU ET DES ANALYSES EN LABORATOIRE

Les résultats des mesures in situ ainsi que les résultats d'analyses en laboratoire sont présentés dans le tableau suivant :

		SUIVI D'ANALYSES MARS 2018									
Eaux Souterraines	Unité	Référence amont	Sud casier 2	Référence	Référence	(mg/l)					
		hydraulique		aval	aval						
Nom Echantillon		PzF3	Pz6	PzF2	Pz5						
Date de prélèvement		21 mars 2018									
Type d'eau		sout. sout. sout. sout.									
PARAMETRES											
PHYSICOCHIMIQUES											
Température	°C	10,2	10,8	12,4	11,0						
рН	-	7,31	7,39	7,35	7,32						
Conductivité électrique	μS/cm	674	683	647	639						
Oxygène dissous	mg/l	8,52	9,33	9,42	9,65						
Potentiel d'oxydo-réduction	mV	105	117	130	122						
Carbone organique total (COT)	mg/l	0,5	<0,5	<0,5	<0,5	10					

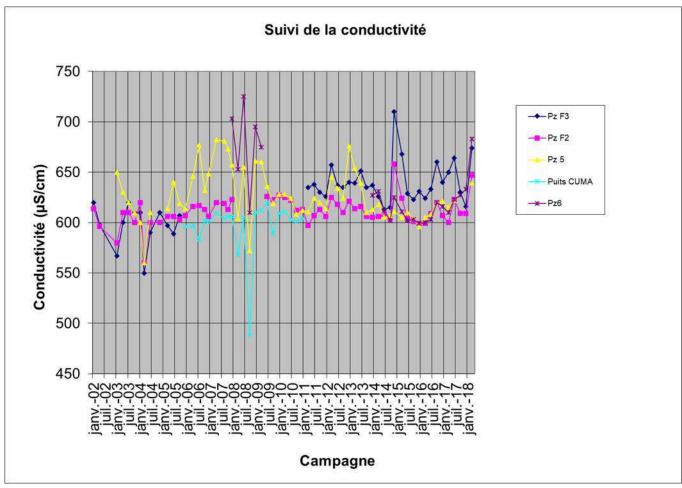
^{*} Arrêté Ministériel du 11 janvier 2007 – Annexe II : limites de qualité des eaux brutes de toute origine utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées, fixées pour l'application des dispositions prévues aux articles R. 1321-7 (II), R.1321-17 et R. 1321-42 du code de la santé publique.

Tableau 4 : Synthèse des résultats des mesures in situ et des résultats d'analyses pour les eaux souterraines prélevées le 21 mars 2018

La présence des quatre points de mesures autour du site permet de comparer les paramètres analysés en amont et en aval de celui-ci.

3.3.1 MESURES IN SITU

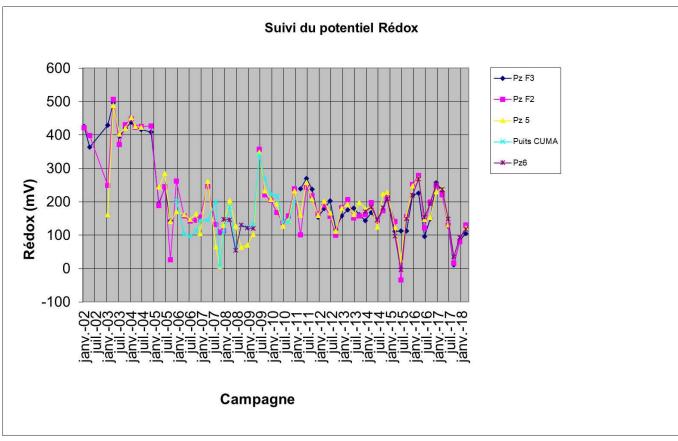
Entre les points PzF3, Pz6, PzF2 et Pz5, la campagne de mars 2018 montre que les valeurs de température, pH, conductivité, oxygène dissous et potentiel d'oxydo-réduction restent similaires.


3.3.2 ANALYSES EN LABORATOIRE

Les concentrations en COT mesurées en mars 2018 sur les 4 points de contrôle sont inférieures ou égales à la limite de quantification du laboratoire. L'unique détection concerne l'échantillon amont PzF3. Il n'y a donc pas d'impact du site vis-à-vis de ce paramètre sur cette campagne.

3.3.3 COMPARAISON AVEC LES AUTRES CAMPAGNES

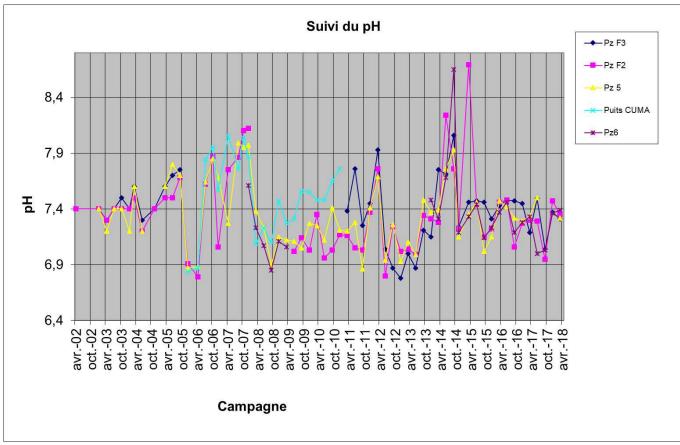
Précision importante : à partir de la campagne de décembre 2005, le piézomètre PzF3 a été remplacé par le Puits CUMA (positionné en amont hydraulique du site). Le Puits CUMA n'étant plus opérationnel depuis mars 2011, c'est à nouveau le piézomètre PzF3 qui a fait l'objet d'une surveillance.



(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 4 : Evolution de la conductivité des eaux souterraines

On peut constater une tendance à l'augmentation des valeurs de conductivité depuis juin 2015. A noter depuis décembre 2017 que la valeur en Pz6 dépasse celle mesurée en PzF3 (référence amont hydraulique). Cela n'avait pas été observé depuis mars 2014.



(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 5 : Evolution du potentiel d'oxydo-réduction des eaux souterraines

Campagne de juin 2015 mise à part, et plus récemment celle de septembre 2017, lors desquelles des mesures particulièrement basses de potentiel rédox ont été relevées (caractéristiques d'un milieu réducteur), les valeurs dernièrement mesurées sont généralement comprises entre 80 et 280 mV.

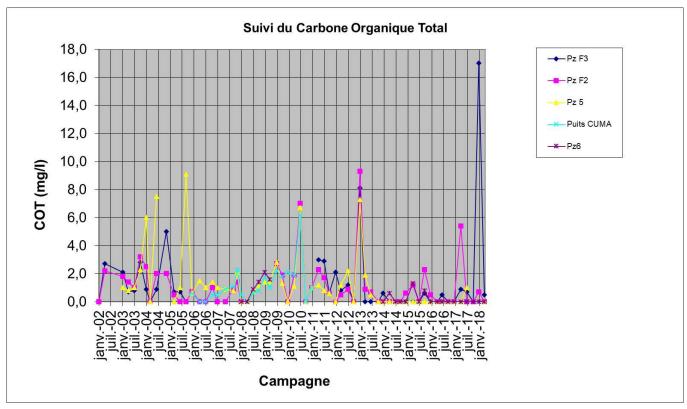

(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 6 : Evolution du pH des eaux souterraines

Les dernières mesures de mars 2018 montrent des valeurs de pH homogènes, proches de la neutralité, pour l'ensemble des eaux prélevées. Les valeurs de pH plus basiques relevées en PzF2 en juin 2014 (8,24) et mars 2015 (8,69) ne sont pas réapparues depuis.

L'évolution du COT, seul paramètre analysé trimestriellement, est présentée dans le graphique ci-après.

(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 7: Evolution du carbone organique total dans les eaux souterraines

En mars 2018, les concentrations en COT sont toutes inférieures ou égales à la limite de quantification du laboratoire (<0,5 mg/l). L'unique détection concerne la référence amont PzF3. Il n'y a donc pas d'impact du site vis-à-vis de ce paramètre sur cette campagne.

SERPOL - ISDND de Penol (38)

Surveillance des eaux souterraines – Campagne de mars 2018

4. ANNEXES

ANNEXE 1 : BULLETINS D'ANALYSES EN LABORATOIRE	21
ANNEXE 2 : FICHES DE PRELEVEMENTS DES EAUX SOUTERRAINES	22
ANNEXE 3: ARRETE PREFECTORAL	23

ANNEXE 1 : BULLETINS D'ANALYSES EN LABORATOIRE

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 [0]4 74 99 96 20 · Fax +33 [0]4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Laboratoire WESSLING, 40 rue du Ruisseau, 38070 Saint-Quentin-Fallavier Cedex

EODD INGENIEURS CONSEILS Monsieur Laurent MAILLARD Parc Gratte-ciel 13/19 rue Jean Bourgey 69100 VILLEURBANNE Rapport d'essai n° : ULY18-004085-1
Commande n° : ULY-03053-18
Interlocuteur : J. Moncorgé
Téléphone : +33 474 999-633
eMail : Jonathan.Moncorge@wessling.fr
Date : 23.03.2018

Rapport d'essai

P03369

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai, sous réserve du flaconnage reçu (hors flaconnage Wessling), du respect des conditions de conservation des échantillons jusqu'au laboratoire d'analyses et du temps imparti entre le prélèvement et l'analyse préconisé dans les normes suivies.

Les méthodes couvertes par l'accréditation EN ISO 17025 sont marquées d'un A dans le tableau récapitulatif en fin de rapport au niveau des normes.

Les résultats obtenus par ces méthodes sont accrédités sauf avis contraire en remarque.

La portée d'accréditation COFRAC n°1-1364 essais est disponible sur www.cofrac.fr pour les résultats accrédités par les laboratoires Wessling de Lyon. Les essais effectués par le laboratoire de Paris sont accrédités par le COFRAC sous le numéro 1-5578.

Les essais effectués par les laboratoires allemands sont accrédités par le DAKKS sous le numéro D-PL-14162-01-00 (www.as.dakks.de).

Les essais effectués par le laboratoire hongrois de Budapest sont accrédités par le NAT sous le numéro NAT-1-1398 (www.nat.hu).

Les essais effectués par le laboratoire polonais de Krakow sont accrédités par le PCA sous le numéro AB 918 (www.pca.gov.pl).

Ce rapport d'essai ne peut-être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING (EN ISO 17025).

Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai.

La conclusion ne tient pas compte des incertitudes et n'est pas couverte par l'accréditation.

Rapport d'essai n°.: ULY18-004085-1

Projet : P03369

Laboratoires WESSLING S.A.R.L.

Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 23.03.2018

N° d'échantillon Désignation d'échantillon	Unité	18-044283-01 PZ5	18-044283-02 PZ6	18-044283-03 PZF 2	18-044283-04 PZ F3
Paramètres globaux / Indices					
Carbone organique total (COT)	mg/I E/L	<0,5	<0,5	<0,5	0,5

Rapport d'essai n°.: ULY18-004085-1

Projet : P03369

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

St Quentin Fallavier, le 23.03.2018

Informations sur les échantillons

N° d'échantillon :	18-044283-01	18-044283-02	18-044283-03	18-044283-04
Date de réception :	21.03.2018	21.03.2018	21.03.2018	21.03.2018
Désignation :	PZ5	PZ6	PZF 2	PZ F3
Type d'échantillon :	Eau	Eau	Eau	Eau
Date de prélèvement :	21.03.2018	21.03.2018	21.03.2018	21.03.2018
Heure de prélèvement :	-/-	-/-	-/-	-/-
Récipient :	2HS	2HS	2HS	2HS
Température à réception (C°) :	8.9°C	8.9°C	8.9°C	8.9°C
Début des analyses :	21.03.2018	21.03.2018	21.03.2018	21.03.2018
Fin des analyses :	23.03.2018	23.03.2018	23.03.2018	23.03.2018

Rapport d'essai n°.: ULY18-004085-1

Projet : P03369

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 23.03.2018

Informations sur les méthodes d'analyses

ParamètreNormeLaboratoireCarbone organique total (COT)NF EN 1484(A)Wessling Lyon (F)

Commentaires:

Pour parfaire la lecture de vos résultats, les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice. Les métaux réalisés après minéralisation sont les éléments totaux. Sans minéralisation, Il s'agit des éléments dissous.

Signataire Rédacteur Signataire Technique

Jonathan MONCORGE

Chargé de Clientèle

Anne-Christine WAYMEL

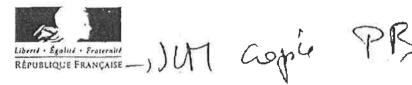
Responsable Qualité

ANNEXE 2 : FICHES DE PRELEVEMENTS DES EAUX SOUTERRAINES

			Géné	ralités						ECHANTILLON
Affaire :	Р	03369		Nom:		;	SERPOL			
Opérateur :		NPR		Site:		ISDNE	de Peno	I (38)		Pz F3
Date :	2	1/03/18		Heure :			9h00	, ,		
				Conditio	ns de pré	elèvem	ent			
Météo du jour		beau		couvert			sec		pluie f	aible Duie forte D
Météo des 3 dern	iers jours	sec		peu de pluie			pluvieux		•	très pluvieux
Météo des 20 der		sec		peu de pluie			pluvieux			très pluvieux \square
T° extérieure :	,	2 à 6°								•
				Description	on point	de me	sure			
Type d'ouvrage o	u point de mes	sure :					G	Géométri	e (pro	f, diam, repère, cote/sol)
puits										
forage								П	HS=	+0,58 m/sol
piézomètre									▽ .	NS= 39,11 m/rep
autre		:								FOND= 44,80 m/re
Point particulier :							dia. ext. :	125 mm	(PVC)	
Purge préalable	:			oui			non \square			
Mode de purge :	pompe PP45			Durée :	30	min.	Débit :		m ³ /h	Volume extrait : litres
				Avant :	39,11	m/rep	Après :	non	m/rep	Repère utilisé : +0,58 m/so
								mesu	ré	
				Mesures in	-situ et o	bserva	ations			
Débit naturel ou d	e fonctionnem	ent :				Pomp	e en fonct	tionneme	ent :	oui 🔲 non 🖿
Niveau statique	39,11	m/sol				Repèr	e utilisé		0,58	m/sol
Température eau		10,2	°C			Odeur			Néant	
рН		7,31				Saveu	ır		Non te	esté
Conductivité		674	μS/cm			Coule	ur		Trans	parent
Redox		105	mV			Limpid	dité		Claire	
O ₂ dissous		8,52	mg/l	80,3	%					
				P	rélèveme	nt				
Heure: 9h00										
Type de préleveu	r: pompe	PP45								
Zone prélevée :	vers 42	m								
Nombre de flacon	s: 2									
Analyses prévues	: COT									
Dispositions partic	culières :									
Observations :										

	ECHANT	ILLON										
Affaire :	P	203369		Nom :			SERPOL					
Opérateur :		NPR	,	Site:		ISDN	D de Pen	nol (38)		Pz I	F2	
Date :	2	1/03/18		Heure :			11h30					
				Condition	ns de p	rélève	ment					
Météo du jour		beau		couvert			sec		pluie f	aible pluie	forte	
Météo des 3 derni		sec		peu de pluie			pluvieux			très pluvieux		
Météo des 20 der	niers jours	sec		peu de pluie			pluvieux			très pluvieux	<u> </u>	
T° extérieure :		2 à 4°										
				Description	on poin	t de m	_	27 71	. ,			
Type d'ouvrage ou 	J point de mes	sure :						Geometi	rie (pro	of, diam, repère, c	ote/soi)	
puits									1	24017.1		
forage							l _		HS=	+0,48 m/sol		
piézomètre							l –			NS= 36,86 m/rep	13.1	5 m/rep
autre		<u>: </u>								FOND=	40,4	5 III/Iep
Point particulier :												
<u> </u>												
Purge préalable :				oui I			non \square					
Mode de purge :				Durée :	30	min.	Débit :		m ³ /h	Volume extrait :		litres
	Permit			Avant :			Après :	non		Repère utilisé :	+0,48	m/sol
					C 2,	-1	, de : c -	mesı			, -	
				Mesures in-	-situ et	obser	vations					
Débit naturel ou d	e fonctionnem	ient :				Pomp	e en fond	ctionnem	ent :	oui 🔲	non	
Niveau statique	36,86	m/sol				Repèr	re utilisé		0,48	m/sol		
Température eau		12,4	°C			Odeur	r		Néant			
рН		7,35				Saveu	ır		Non to	esté		
Conductivité		647	μS/cm			Coule			Trans	parent		
Redox		130	mV			Limpio	dité		Cla	aire, présence légè		tite
O ₂ dissous		9,42	mg/l	90,1	%	,				particules végé	tales	
				Pi	rélèven	nent						
Heure: 11h30												
Type de préleveur												
Zone prélevée :	vers 42	m										
Nombre de flacon												
Analyses prévues	: COT											
Dispositions partic	culières :											
Diopositionio pa	Miloroo .											
Observations:			•									
	Extension de	stockag	e (déchets i	inertes à prio	ri) à pro	ximité	immédiat	te du piéz	zo PzF2	2		

Généralités											ILLON	
Affaire :	Р	203369		Nom:			SERPOL					
Opérateur :		NPR		Site:		ISDN	D de Pend	ol (38)		Pz	5	
Date :	2	1/03/18		Heure :			12h40					
				Conditio	ns de pı	rélèver	nent					
Météo du jour		beau		couvert			sec		pluie f	aible 🗀 pluie	e forte	
Météo des 3 dern	iers jours	sec		peu de pluie	e 🗀		pluvieux			très pluvieux 🗆		
Météo des 20 der	niers jours	sec		peu de pluie	e 🗆		pluvieux			très pluvieux 🗆		
T° extérieure :		2 à 4°										
				Description	on point	de me						
Type d'ouvrage or	u point de mes	sure :					G	iéométr	ie (pro	f, diam, repère, c	ote/sol)	
puits												
forage							_		HS=	+0,43 m/sol		
piézomètre										NS= 39,90 m/rep		
autre		:								FOND=	1 40,4	5 m/rep
Point particulier :												
Duma nu/-1-1-1				: C								
Purge préalable				oui 🔲			non Dábit		3.,	Malaura a saturalta		litura a
Mode de purge :	baller			Durée :	20.1		Débit :			Volume extrait :	. 0. 40	litres
				Avant :	39,	90	Après :	n.m		Repère utilisé :	+0,43	m/soi
				Mesures in	oitu ot	ohoori	rotiono	mesı	ire			
Débit naturel ou d	a fanationnam	ont :		wesures in	-Situ et		e en fonct	ionnom	ont :	oui 🔲	non	
Niveau statique	39,						e utilisé	ionnem	0,43		non	
Température eau	33,	11,0	°C			Odeu			Aucun			
pH		7,32				Saveu			Aucun			
Conductivité		639	μS/cm			Coule			Limpic			
Redox		122	mV			Limpid			Claire			
O ₂ dissous		9,65	mg/l	91,2	%				Olano			
02 0.00000	I	3,00	1119/1	31,2	70							
				P	rélèvem	ent						
Heure: 12h40)											
Type de préleveu												
Zone prélevée :	vers 40	m										
Nombre de flacon												
Analyses prévues												
Dispositions partic	culières :											
Observations :												


Feuille de terrain et rendu

	Généralités											
Affaire :	P	03369		Nom :			SERPOL					
Opérateur :		NPR		Site :		ISDN	D de Pend	ol (38)		Pz 6		
Date :	21	/03/18		Heure :			11h00					
				<u> </u>					•			
				Condition	s de pr	élèven	nent					
Météo du jour		beau		couvert			sec		pluie fa	aible Duie forte		
Météo des 3 derni	ers jours	sec		peu de pluie			pluvieux			très pluvieux		
Météo des 20 deri		sec		peu de pluie			pluvieux			très pluvieux		
T° extérieure :		2 à 4° C	;				•			·		
		•									,	
				Descriptio	n point	de me	sure					
Type d'ouvrage ou	u point de mes	sure :		<u> </u>			Ge	éométri	e (prof,	diam, repère, cote/sol)	
puits	. \square											
forage									HS=	+0,7 m/sol		
piézomètre										NS= 35,86 m/rep		
autre		:) m/rep	
Point particulier :												
											<u>, </u>	
Purge préalable :				oui E			non \square					
Mode de purge :	pompe PP45			Durée :	30	min.	Débit :		m ³ /h	Volume extrait :	litres	
				Avant :	35,86	m/rep	Après :	non			m/sol	
				•		•		mesı	ıré	•	<u>, </u>	
				Mesures in-	situ et d	bserv	ations					
Débit naturel ou d	e fonctionnem	ent :				Pomp	e en fonct	ionneme	ent :	oui 🔲 non		
Niveau statique	35,86	m/sol					e utilisé			m/sol		
Température eau		10,8	°C			Odeu	ſ		Néant			
pН		7,39				Save	ır		Non te	sté		
Conductivité		683	μS/cm			Coule	ur		Transp	parent		
Redox		117	mV			Limpid	dité		Claire			
O ₂ dissous		9,33	mg/l	86,6	%							
	•			•					•			
				Pr	élèvem	ent						
Heure: 11h00)											
Type de préleveur	r: pompe	PP45										
Zone prélevée :	vers 38	m										
Nombre de flacon	s: 2											
Analyses prévues	: COT											
Dispositions partic	culières :											
Observations :												
1												

ANNEXE 3: ARRETE PREFECTORAL

PRÉFECTURE DE L'ISÈRE

S)

DIRECTION DES ACTIONS INTERMINISTERIELLES

PUREAU DE L'ENVIRONNEMENT

GRENOBLE, LE

TEL 04.76.60.48.54.5

rasier n 22 0 22

ARRETE Nº 2006-01064

LE PREFET DE L'ISERE, Chevalier de la Légion d'Honneur, Officier de l'Ordre National du Mérite,

VU le Code de l'Environnement (partie législative) annexé à l'Ordonnance n° 2000-914, du 18 septembre 2000, notamment son Livre V, Titre 1^{er} (I.C.P.E.) ;

VU la loi n° 92-3, du 3 janvier 1992, dite "loi sur l'eau", modifiée ;

VU le décret n° 53-578, du 20 mai 1953, modifié ;

VU le décret n° 77-1133, du 21 septembre 1977 relatif aux Installations Classées, modifié par le décret n° 2005-1170 du 13 septembre 2005, ;

VU l'arrêté N°79-10405 en date du 26 novembre 1979, ayant autorisé le SICTOM de LA BIEVRE à exploiter une décharge contrôlée d'ordures ménagères et autres résidus urbains située sur la commune de PENOL, au lieu-dit « Les Burettes » ;

VU l'arrêté n° 69-1316 en date du 5 avril 1989, ayant autorisé l'extension (sur les parcelles n°s 13, 61, 62 et 63 ,section ZD et la parcelle n°36, section ZK du plan cadastral) de la décharge contrôlée d'ordures ménagères exploité à PENOL par le SICTOM de LA BIEVRE ;

VU l'arrêté n°2000-3357en date du 17 mai 2000, imposant au SICTOM de LA BIEVRE des prescriptions complémentaires relatives à la mise en conformité des conditions d'exploitation de son centre de stockage de déchets ménagers ;

VU le dossier concernant de demande présentée le 2 mai 2005 par M. le Président du SICTOM de LA BIEVRE en vue de procéder à la réhabilitation des casiers n°s 1 et 2 de son centre de stockage de déchets ultimes sis à PENOL, au lieu-dit « Les Burettes » ;

VU le rapports du Directeur Régional de l'Industrie, de la Recherche et de l'Environnement Rhône-Alpes , Inspecteur des Installations Classées, en date des 23 août 2005 ;;

VU l'avis de Mme le Chef de la Mission Inter-services de l'Eau (MISE), en date du 14 novembre 2005 :

VU l'avis du Directeur Départemental des Affaires Sanitaires et Sociales, en date du 25 novembre 2005 :

12. PLACE DE VERDUN - B.P. 1046 - 38021 GRENOBLE CEDEX 1 - 管 04.76.60 34.00 - 图 04.78.51.03.86 - ©: WWW.isere pref.gouv.ft

VU le rapport du Directeur Régional de l'Industrie, de la Recherche et de l'Environnement Rhône-Alpes, Inspecteur des Installations Classées, en date du 14 novembre 2005 ;

VU la lettre, en date du 22novembre 2005, invitant le demandeur à se faire entendre par le Conseil Départemental d'Hygiène et lui communiquant les propositions de l'Inspecteur des Installations Classées;

VU la lettre adressée le 2 décembre 2005 à M. le Président du SICTOM de LA BIEVRE et l'invitant à transmettre les résultats d'analyses de la nappe souterraine à partir des piézomètres existants (« point zéro »),comme suite aux observations émises par les membres du Conseil Départemental d'Hygiène ;

VU la lettre en date du 26 décembre 2005, précisant à M le Président du SICTOM de LA BIEVRE que l'examen de son dossier a été ajourné lors de la séance du Conseil Départemental d'Hygiène du 1^{er} décembre 2005 pour compléments d'information (analyses piézométriques) et l'invitant à se faire entendre à la séance du jeudi 5 janvier 2005 ;

VU les résultats de la campagne d'analyse des eaux souterraines remis le 20décembre 2005 par le Syndicat précité ;

VU l'avis favorable du Conseil Général de l'Isère, en date du 3 janvier 2006 ;

VU l'avis du Conseil Départemental d'Hygiène, en date du 5 janvier 2006 ;

VU la lettre en date du 6 janvier 2006, transmettant au requérant le projet d'arrêté complémentaire concernant son établissement ;

VU la réponse du pétitionnaire en date du 10 janvier 2006, précisant que ce projet d'arrêté n'appelle aucune observation particulière de sa part ;

CONSIDERANT qu'il convient, conformément aux dispositions de l'article 18 du décret du 21 septembre 1977 susvisé, d'imposer à M. le Président du SICTOM de LA BIEVRE des prescriptions complémentaires fixant les conditions de réhabilitation des casiers n°s 1 et 2 de son centre de stockage des dèchets ménagers situé à PENOL, en vue de garantir les intérêts visés à l'article L511-1 du Code de l'Environnement;

SUR proposition du Secrétaire Général de la Préfecture de l'Isère ;

ARRETE

ARTICLE 1er -Monsieur le Président du SICTOM de LA BIEVRE est tenu de respecter strictement les prescriptions complémentaires annexées au présent arrêté et fixant les conditions de réhabilitation des casiers n°s 1 et 2 (vide de fouilles) de son centre de stockage de déchets ménagers et assimilés situé à PENOL, au lieu-dit « Les Burettes »..

ARTICLE 3 - L'exploitant devra déclarer sans délai les accidents ou incidents survenus du fait du fonctionnement de cette installation qui seraient de nature à porter atteinte aux intérêts mentionnés à l'article L 511-1 du Code de l'Environnement .En cas d'accident, il sera tenu de lui remettre un rapport répondant aux exigences de l'article 38 du décret n°77-1133 du 21 septembre 1977susvisé.

ARTICLE 4 - Conformément aux dispositions de l'article 20 du décret du 21 septembre 1977 susvisé, tout exercice d'une activité nouvelle classée, toute transformation, toute extension de l'exploitation devra, avant sa réalisation, être porté à la connaissance du Préfet avec tous ses éléments d'appréciation.

Tout transfert dans un autre emplacement, d'une installation soumise à autorisation, devra faire l'objet d'une demande préalable au Préfet.

ARTICLE-5 En cas d'arrêt définitif de l'installation, l'exploitant est tenu de notifier au Préfet la date de cet arrêt au moins six mois avant celui-ci, en joignant un dossier comprenant le plan mis à jour des terrains d'emprise de l'installation, ainsi qu'un mémoire sur l'état du site précisant les mesures prises ou prévues pour assurer la mise en sécurité de ce site, conformément aux dispositions de l'article 34-1 du décret n° 77-1133 du 21 septembre 1977, modifié par l'article 11 du décret n° 2005-1170 du 13 septembre 2005.

Ces mesures comportent notamment :

- --l'évacuation ou l'élimination des produits dangereux et, pour les installations autres que les installations de stockage de déchets, celle des déchets présents sur le site,
- --des interdictions ou limitations d'accès au site,
- --la suppression des risques d'incendie ou d'explosion,
- --la surveillance des effets de l'installation sur son environnement.

En outre, l'exploitant est tenu de placer le site de l'installation dans un état tel qu'il ne puisse porter atteinte aux intérêts mentionnés à l'article L 511-1 du Code de l'Environnement et qu'il permette un usage futur du site déterminé selon les dispositions prévues par les articles 34-2 et 34-3 du décret n° 2005-1170 du 13 septembre 2005.

ARTICLE 6 - Un extrait du présent arrêté complémentaire sera tenu à la disposition de tout intéressé et sera affiché à la porte de la mairie de PENOL, pendant une durée minimum d'un mois. Le même extrait sera affiché, en permanence, de façon visible, dans l'installation, par les soins de l'exploitant. Un avis sera inséré par les soins du Préfet de l'Isère et aux frais de l'exploitant, dans deux journaux locaux ou régionaux diffusés dans tout le département.

ARTICLE 7 — En application de l'article L 514-6 du Code de l'Environnement, cet arrêté peut être déféré au Tribunal Administratif de Grenoble, d'une part par l'exploitant ou le demandeur dans un délai de deux mois à compter de sa notification, d'autre part par les tiers dans un délai de quatre ans à compter de sa publication ou de son affichage.

ARTICLE 8 - Le présent arrêté doit être conservé et présenté à toute réquisition.

ARTICLE 9 - Le Secrétaire Général de la Préfecture de l'Isère, le Sous-Préfet de VIENNE, le Maire de PENOL et l'Inspecteur des Installations Classées, sont chargés, chacun en ce qui le concerne, de l'exécution du présent arrêté qui sera notifié au SICTOM de LA BIEVRE.

FAIT à GRENOBLE, le 27 JAN 2006

Dominique BLAIS

LE FREFET Pour le P**GE** le Secrétal e Géner

4. DISPOSITIONS RELATIVES AUX EAUX

4.1 - Principe

Sont interdits tous déversements, écoulements, rejets, dépôts directs ou indirects d'effluents susceptibles d'incommoder le voisinage, de porter atteinte à la santé publique ainsi qu'à la conservation de la faune et de la flore, de nuire à la conservation des constructions et réseaux d'assainissement, et au bon fonctionnement des installations d'épuration, de dégager en égout directement ou indirectement des gaz ou vapeurs toxiques ou inflammables.

En particulier, tout déversement sur le sol ou dans le sous-sol est interdit.

Toutes dispositions doivent être prises pour éviter tout déversement accidentel susceptible d'être à l'origine d'une pollution des eaux.

4.2 - Eaux de ruissellement extérieures

Du fait du relief, le débit des eaux de ruissellement extérieures au site est très limité. Cellesci seront collectées avec les eaux de ruissellement intérieures.

4.3 - Eaux de ruissellement intérieures

Casier 3 : création d'un fossé étanche sur les cotés Nord, Est et Sud avec une pente générale de 1% et déversement dans la carrière.

Casier 4 et 5 : création d'un fossé étanche sur les cotés Nord, Ouest et sud raccordé pour la partie est des casiers aux fossés du casier 3.

Pour les autres cotés, les fossés seront prolongés par des goulottes béton jusqu'en pied de talus et l'ensemble dirigé vers la carrière.

Casiers 1 et 2 : création d'un fossé étanche sur les cotés

Les eaux doivent transiter avant rejet au milieu naturel par un bassin de stockage étanche dimensionné pour capter au moins les ruissellements consécutifs à un événement pluvieux de fréquence décennale, permettant une décantation et un contrôle de leur qualité.

Compte-tenu de l'exploitation simultané de la décharge et de la carrière, un soin particulier est apporté aux eaux de ruissellement des parties communes afin qu'il ne puisse y avoir contact entre le massif de déchets et celles-ci ou infiltration vers le massif de déchets. (création systématique de fossés afin d'éloigner ces eaux du pied des digues et des zones remblayées).

4.4 - Lixiviats

Les lixiviats issus des casiers 1, 2, 5 et de la tranchée drainante entre les casiers 4 et 5 sont raccordés à une capacité de stockage de 3000 m3

Ces lixiviats sont traités par une installation bio-physico-chimique d'une capacité de 2m3/h . La quantité et la qualité des lixiviats et des lixiviats traités est suivie dans les conditions suivantes :

Une fois par trimestre une analyse sera effectuée sur les éléments suivants :

Volume, MEST, COT, DCO, DBOs, azote global, ammoniaque, phosphore total, phénol, métaux totaux (dont Cr^s, Cd, Pb, Hg), As, fluor et composés, CN libres, hydrocarbures totaux, composés halogériés (en AOX et EOX), substances toxiques bio-accumulables ou nocives pour l'environnement, conductivité, résistivité.

La fréquence pourra devenir annuelle si l'évaluation des données indique que l'on obtient les mêmes résultats avec des intervalles plus longs, et après accord de l'inspection des installations classées.

Une fois par an, les analyses seront effectuées par un laboratoire agréé.

Les lixiviats bruts ne peuvent être mélangés aux lixiviats traités avant rejet.

Les lixiviats traités peuvent être rejetés au milieu naturel si les valeurs limites suivantes sont respectées ;

```
DCO < 200 mg/f
DBO5 < 30 mg/l
MEST < 20 mg/l
COT < 70 mg/t
Azote global < 20 mg/l (moyenne mensuelle)
Phosphore total < 10 mg/l (moyenne mensuelle)
Phénois < 0,1 mg/i
Métaux totaux < 15 mg/l
Cr6+ < 0.1 \text{ mg/}
Cd
      < 0,2 mg/l
РЪ
      < 0,5 mg/l
Hg
      < 0.05 \text{ mg/l}
       < 0,1 mg/l
Fluor et composés < 15 mg/l
CN libres < 0.1 mg/l
Hydrocarbures totaux < 5 mg/l
Composés organiques halogénés < 1 mg/l
```

4.5 - Maîtrise des niveaux de lixiviats

Chaque puits est jaugé mensuellement. Une hauteur d'eau supérieure à 0,30 mêtre entraînera un pompage systématique et un nouveau contrôle 24 heures plus tard. Un registre de surveillance consignera toutes les mesures.

4.6 - Contrôle des eaux souterraines

Le contrôle des eaux souterraines est effectué sur les piezomètres suivants :

Référence amont : puit CUMA à Sardieu

Références avail : piézomètres F2, F5 et un troisième à créer au sud du casier 2

Le programme de surveillance est le suivant :

-Tous les trimestres ; pH, potentiel d'oxydo-réduction, résistivité, COT, relevé des niveaux piézométriques rattachés au NGF accompagné d'une carte interprétative des conditions piézomètriques du jour..

-Tous les ans :

- Analyse physico-chimique : pH, potentiel d'oxydoréduction, résistivité, NO_2 , NO_3 , NH^{4+} , CF SO_4 , PO_4 , K*, Na*, Ca^2 , Mg^2 , Pb, Cu, Cr, Ni, Zn, Mn, Sn, Cd, Hg, Dco, COT, AOX, PCB, HAP, BTEX.
- Analyse biologique : DBO5.
- Analyse bactériologique il coliformes fécaux, coliformes totaux, streptocoques fécaux, présence de salmonelles,

La première analyse annuelle est réalisée des notification de l'arrêté.

Tous les quatre ans elle est réalisée par un laboratoire agréé.

En cas de dégradation significative de la qualité des eaux souterraines, il sera fait application des dispositions de l'article 41 de l'arrêté ministériel du 9 septembre 1997.

4.7 - Contrôle des eaux superficielles

Tous les trimestres, une analyse du pH et une mesure de résistivité seront effectuées sur les eaux de ruissellement.

Le prélèvement sera réalisé à l'aval de tous les déversements en provenance du site du stockage. En cas d'anomalie, une analyse identique à celle des lixiviats sera effectuée.

4.8 - Registre du bilan hydrique

Un bilan hydrique annuel est établi conformément à l'article 43 de l'arrêté ministériel du 9 septembre 1997.

4.9 - Conditions d'aménagement

Les divers équipements de traitement et de valorisation des lixiviats et du biogaz seront placés sur une dalle en béton. La forme de cette dalle devra permettre de recueillir les eaux pluviales et les fuites éventuelles pour les diriger vers un regard afin qu'elles soient traitées avec les lixiviats.

SERPOL ISDND DE PENOL

Surveillance de la qualité des eaux souterraines – Campagne de juin 2018

Rapport d'EODD Ingénieurs Conseils

SERPOL

Téléphone : 04 78 70 33 55 2 Chemin du Génie - BP 80 Adresse:

69657 VENISSIEUX CEDEX Télécopie : 04 78 70 27 20

M. Nicolas Seyve

(Responsable secteur

nicolas.seyve@serpol.fr Gestion Globale des Centres Destinataire: Email: jerome.effantin@serpol.fr

d'Enfouissement)

M. Jérôme Effantin (resp.

d'exploitation)

Surveillance de la qualité des eaux souterraines de l'ISDND de Penol – Campagne de juin 2018

RAPPORT d'EODD Ingénieurs Conseils

IDE	NTIFICA	TION		MAITRISE DE	LA QUALITE			
N° Contrat	Indice	Révisio	n	Chef de projet	Coréférence			
P03369	1	30/08/20	18	L. Maillard				
Nombre de pag	ges (hors	annexes)	19	30/08/2018	G. Lacour			
Nombre	e d'annex	es	3					

Vos contacts et interlocuteurs pour le suivi de ce dossier :

Parc Gratte-Ciel \bowtie : 13-19, rue Jean Bourgey

69100 Villeurbanne

2: 04.72.76.06.90

급: 04 72.76.06.99

I.maillard@eodd.fr Chef de projet : L. Maillard

Directeur métier stockage et valorisation des déchets :

G. Lacour g.lacour@eodd.fr

www.eodd.fr

P03369 / Emission du 30/08/2018

SOMMAIRE

1.	INTRODUCTION	5
1.1	CONTEXTE DE L'ETUDE	5
1.2	REFERENTIELS ET ACCREDITATIONS	6
1.3	SOURCES D'INFORMATION	6
1.4	LIMITES DE L'ETUDE	7
2.	INVESTIGATIONS DE TERRAIN	8
2.1	METHODES ET TECHNIQUES RETENUES	8
3.	RESULTATS	10
3.1	SURVEILLANCE DU NIVEAU DE LA NAPPE	10
3.2	EVOLUTION DE LA PIEZOMETRIE DEPUIS FEVRIER 2007	12
3.3	RESULTATS DES MESURES IN SITU ET DES ANALYSES EN LABORATOIRE	12
3.3	3.1 Mesures In Situ	14
3.3	3.2 Analyses en laboratoire	
3.3	3.3 Comparaison avec les autres campagnes	15
4.	ANNEXES	19

ANNEXE 2: FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES

ANNEXE 3: ARRETE PREFECTORAL

22

23

LISTE DES FIGURES

FIGURE 1: LOCALISATION DU SITE (EXTRAIT IGN 1/25000)	5
FIGURE 2 : CARTE PIEZOMETRIQUE AU 27 JUIN 2018	11
FIGURE 3: EVOLUTION DE LA PIEZOMETRIE DEPUIS 2007, EN MNGF	12
FIGURE 4: EVOLUTION DE LA CONDUCTIVITE DES EAUX SOUTERRAINES	15
FIGURE 5: EVOLUTION DU POTENTIEL D'OXYDO-REDUCTION DES EAUX SOUTERRAINES	16
FIGURE 6: EVOLUTION DU PH DES EAUX SOUTERRAINES	17
FIGURE 7: EVOLUTION DU CARBONE ORGANIQUE TOTAL DANS LES EAUX SOUTERRAINES	18
LISTE DES TABLEAUX	
Tableau 1 : Sources d'information	7
TABLEAU 2 : NORMES DES ANALYSES REALISEES EN LABORATOIRE	9
TABLEAU 3: NIVEAU DE LA NAPPE AUTOUR DE L'ISDND DE PENOL (CAMPAGNE DU 27 JUIN 2018)	10
TABLEAU 4 : SYNTHESE DES RESULTATS DES MESURES IN SITU ET DES RESULTATS D'ANALYSES POUR L	ES EAU
SOUTERRAINES PRELEVEES LE 27 JUIN 2018, AVEC RAPPEL DES RESULTATS ANTERIEURS	13
LISTE DES ANNEXES	
ANNEXE 1: BULLETINS D'ANALYSES EN LABORATOIRE	20

P03369 / Emission du 30/08/2018 4

1. INTRODUCTION

1.1 CONTEXTE DE L'ETUDE

La société SERPOL exploite pour le compte du SICTOM de la Bièvre le CSDU des Burettes, localisé sur la commune de PENOL (38).

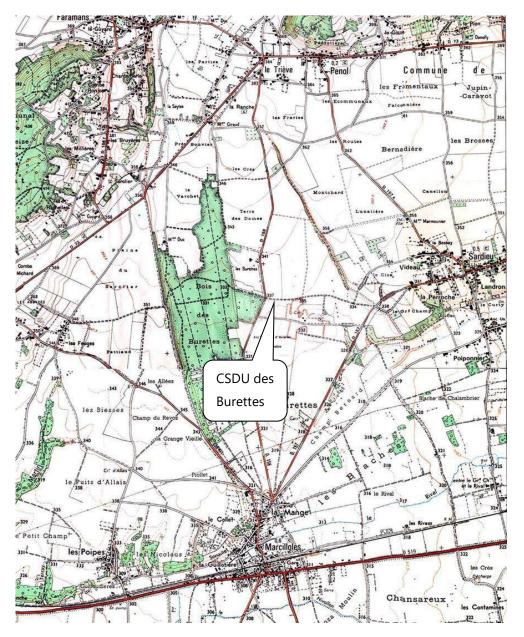


Figure 1: Localisation du site (extrait IGN 1/25000)

Conformément aux prescriptions de l'article 4 de l'arrêté Préfectoral n°2006-01064 du 27 janvier 2006 relatif à l'exploitation du site, des analyses d'eaux souterraines doivent être réalisées trimestriellement sur les points de contrôle mis en place en amont et en aval du site.

Dans ce cadre, EODD Ingénieurs Conseils a été mandaté pour réaliser le suivi de l'année 2018 des eaux souterraines.

Le présent rapport concerne la campagne de prélèvement de juin 2018.

P03369 / Emission du 30/08/2018

1.2 REFERENTIELS ET ACCREDITATIONS

La présente mission a été réalisée selon les référentiels suivants :

 la norme NF X31-615 de Décembre 2017 sur les prélèvements et l'échantillonnage des eaux souterraines dans un forage

Les analyses ont été sous-traitées au laboratoire Wessling, certifié par le COFRAC¹ (attestations d'accréditation n°1-5578 rév. 6 et n°1-1364 rév. 15). Les méthodes d'analyses sont récapitulées au paragraphe 2.3 (Tableau 2).

1.3 SOURCES D'INFORMATION

Les différentes sources d'information consultées pour la réalisation de ce rapport sont les suivantes :

Titre	Source / Auteur	Référence
Arrêté préfectoral de poursuite d'exploitation en date du 17 mai 2000	Préfecture de l'Isère	n°2000- 3357
Arrêté préfectoral en date du 27 janvier 2006	Préfecture de l'Isère	n°2006- 01064
Arrêté préfectoral complémentaire en date du 16 avril 2009	Préfecture de l'Isère	n°2009- 02631
Société SERPOL – Contrôle de la qualité des eaux souterraines et des lixiviats au droit du C.E.T de Penol – campagne 11/2004	2ie	R 2004- 4969
Société SERPOL – Contrôle de la qualité des eaux souterraines et des lixiviats au droit du CSDU de Penol – campagne 03/2005	CSD AZUR	AZ02330
Société SERPOL – Contrôle de la qualité des eaux souterraines au droit du CSDU de Penol – campagne 06/2005	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 09/2005 et 12/2005	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines et des lixiviats au droit du CSDU de Penol – Synthèse 2005 -	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 04/2006, 07/2006, 10/2006 et 12/2006	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des lixiviats du bassin au droit du CSDU de Penol – campagne 12/2006	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 04/2007, 08/2007, 10/2007 et 12/2007	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 03/2008, 06/2008, 09/2008 et 12/2008	CSD AZUR	LY3313.100
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 03/2009, 06/2009, 09/2009 et 12/2009	CSD AZUR	LY3313.102

¹ COmité FRançais d'ACréditation.

P03369 / Emission du 30/08/2018

-

Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2010, 06/2010, 09/2010 et 12/2010	CSD AZUR	LY3313.103
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2011, 06/2011, 09/2011 et 12/2011	CSD INGENIEURS	LY3313.104
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2012, 06/2012, 09/2012 et 12/2012	CSD INGENIEURS	LY3313.105
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2013, 06/2013, 09/2013 et 12/2013	CSD INGENIEURS	LY3313.106
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagne de 03/2014, 06/2014, 09/2014 et 12/2014	EODD INGENIEURS CONSEILS	LY3313.107
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2015, 06/2015, 09/2015 et 12/2015	EODD INGENIEURS CONSEILS	P00594
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2016, 06/2016, 09/2016 et 12/2016	EODD INGENIEURS CONSEILS	P01440
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2017	EODD INGENIEURS CONSEILS	P02611
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2018	EODD INGENIEURS CONSEILS	P03369
Carte topographique au 1/25 000 n° 3331 O de Meyzieux/Montluel	IGN	[22]

Tableau 1 : Sources d'informations

1.4 LIMITES DE L'ETUDE

Les résultats de ce rapport rendent compte de la qualité de l'eau souterraine prélevée dans les piézomètres de surveillance au 27 juin 2018.

Le programme de surveillance est mené dans un but précis : assurer un suivi dans le temps de la qualité des eaux souterraines pour vérifier l'absence d'anomalies de concentration des substances recherchées.

La surveillance de la qualité des eaux permet de quantifier l'impact éventuel du site sur les eaux souterraines. En revanche, la mission confiée à EODD ne comprend pas d'analyse interprétative ni de recherche d'origines d'éventuelles anomalies qui pourraient être détectées.

2. INVESTIGATIONS DE TERRAIN

2.1 METHODES ET TECHNIQUES RETENUES

L'arrêté préfectoral prévoit la réalisation de prélèvements d'eaux souterraines sur quatre ouvrages de captage présents sur le site :

- Puits CUMA (amont hydraulique),
- Piézomètre PzF2 (référence aval),
- Piézomètre Pz5 (référence aval),
- Piézomètre Pz6 (ouvrage situé au Sud du casier 2).

Le puits CUMA n'étant plus utilisable pour les prélèvements depuis des travaux de réaménagement en 2011, un prélèvement a été effectué (en commun accord avec la société SERPOL) au droit du piézomètre PzF3, en remplacement de celui dans le puits CUMA.

Les prélèvements sur les autres piézomètres ont été réalisés après renouvellement des eaux du tube d'équipement jusqu'à stabilisation de leurs paramètres physico-chimiques, conformément aux recommandations de la norme NF X31-615 de Décembre 2017 sur les prélèvements et l'échantillonnage des eaux souterraines dans un forage.

Les purges ont été réalisées par pompage au moyen d'une pompe de prélèvement électrique (pompe immergée), hormis pour le Pz5 pour lequel une purge manuelle au moyen d'un bailer a été préférée, compte tenu de la faible capacité en eau de cet ouvrage.

Les échantillons ont été conditionnés dans des flaconnages dédiés et stockés dans une glacière munie d'éléments réfrigérants avant d'être acheminés au laboratoire Wessling.

2.2 PARAMETRES A ANALYSER / METHODES ANALYTIQUES - FREQUENCES DE MESURES ET DE PRELEVEMENTS

Conformément aux prescriptions relatives au contrôle des eaux souterraines précisées dans l'arrêté préfectoral n°2006-01064 du 27 janvier 2006, des analyses d'eaux souterraines doivent être réalisées sur les points de contrôle mis en place en amont et en aval du site. Le programme spécifié dans cet arrêté préfectoral doit être complété par celui précisé dans l'arrêté ministériel du 15 février 2016 relatif aux installations de stockage de déchets non dangereux (selon article 24).

P03369 / Emission du 30/08/2018

Les analyses in situ et en laboratoire, listées ci-dessous, sont réalisées conformément aux exigences réglementaires sur tous les échantillons prélevés, et selon les fréquences et normes analytiques suivantes :

Paramètres	AP site 27/01/06	AP site 27/01/06	AM 15/02/16	AM 15/02/16	Méthode d'analyse	PzF3	PzF2	Pz5	Pz6
Fréquence	annuel	trimestriel	Bisannuel : basses et hautes eaux	Tous les 5 ans					
Conductivité / résistivité	X (In Situ)	X (In Situ)	X (In Situ)			Х	Х	Χ	Χ
pН	X (In Situ)	X (In Situ)	X (In Situ)			Х	Х	Χ	Χ
Potentiel d'oxydoréduction	X (In Situ)	X (In Situ)	X (In Situ)			Х	Х	Х	Х
Radioactivité : analyse par spectrométrie gamma des chaînes de l'uranium et du thorium				Х	NF EN ISO 10-703	х	х	х	х
DCO	Х		Х		ISO 15705 (H 45)	Х	Х	Χ	Χ
DBO5	X		X		NF EN 1899-1	X	Х	X	X
COT	X	Х	X		DIN EN 1484 (H3)	X	X	X	X
Ammonium	X	,	X		DIN EN ISO 11732	X	X	X	X
Nitrites	X		X		DIN EN ISO 10304- 1	Х	Х	Х	Х
Nitrates	Х		Х		DIN EN ISO 10304-	Х	Х	Х	Х
NTK			X		EN 25663	Х	Х	Х	Х
Pb, Cu, Cr, Ni, Zn, Mn, Sn, Cd	Х		X (métaux totaux)		EN ISO 17294	Х	Х	Х	Х
Fe, As			X (métaux totaux)		EN ISO 11885	Х	Х	Х	Х
Mercure	Х		X (métaux totaux)		EN 1483 - ISO 17294	Х	X	Х	Х
AOX	Х		Х		DIN EN ISO 9562 mod.	Х	Х	Х	Х
CAV dont BTEX	Х		Х		NF EN ISO 11423- 1	Х	Х	Х	Х
PCB	Х		X		NF EN ISO 6468	Х	Х	Х	Х
HAP	X		X		d'ap. NFT 90-115	X	X	X	X
Chlorures	X		X		DIN EN ISO 10304-	X	Х	Х	Х
Sulfates	Х		X		DIN EN ISO 10304-	Х	Х	Х	Х
Orthophosphates	Х		Х		NF EN 1189	Х	Х	Х	Χ
Potassium	X		X		DIN EN ISO 17294- 2	Х	X	Х	X
Sodium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Calcium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Magnésium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
MES			Х		NF EN 872	Х	Х	Х	Χ
Coliformes à 37°C	Х		X		BGesBl 10/95(A)	X	X	X	X
Coliformes thermotolérants à 44°C	X		X		BGesBl 10/95(A)	Х	Х	Х	X
Enterocoques intestinaux	Х		Х		BGesBl 10/95(A)	Х	Х	Х	Х
Salmonelles	Х		Х		EN ISO 19250	Х	Х	Χ	Х
Escherichia coli			X		Non précisé	X	X	X	Х

Tableau 2 : Normes des analyses réalisées en laboratoire

La campagne de juin 2018 correspond à une campagne semestrielle en période de hautes eaux. Le programme d'analyse est celui de l'AP du site complété de celui de l'AM du 15/02/2016, intégrant l'analyse de radioactivité devant être réalisée tous les 5 ans.

3. RESULTATS

3.1 SURVEILLANCE DU NIVEAU DE LA NAPPE

Le niveau de la nappe a été mesuré le 27 juin 2018 au moyen d'une sonde piézométrique au niveau de quatre points de contrôle : PzF2, PzF3, Pz5 et Pz6.

Les résultats obtenus sont indiqués dans le tableau 3 ainsi que sur la Figure 2 ci-après :

	Puits CUMA	PzF3	PzF2	Pz5	Pz6
cote TN (m NGF)	333,76	334,76	331,188	332,49	333,06
Cote du repère utilisé					
pour les mesures (m	Non mesuré	335,34	331,67	332,92	333,76
NGF)					
Niveau statique par	Non mesuré	37,17	36,08	37,92	34,17
rapport au repère (m)	Non mesure	37,17	30,00	37,32	34,17
niveau nappe (m NGF)	/	298,17	295,59	295	299,59

Tableau 3 : Niveau de la nappe autour de l'ISDND de Penol (campagne du 27 juin 2018)

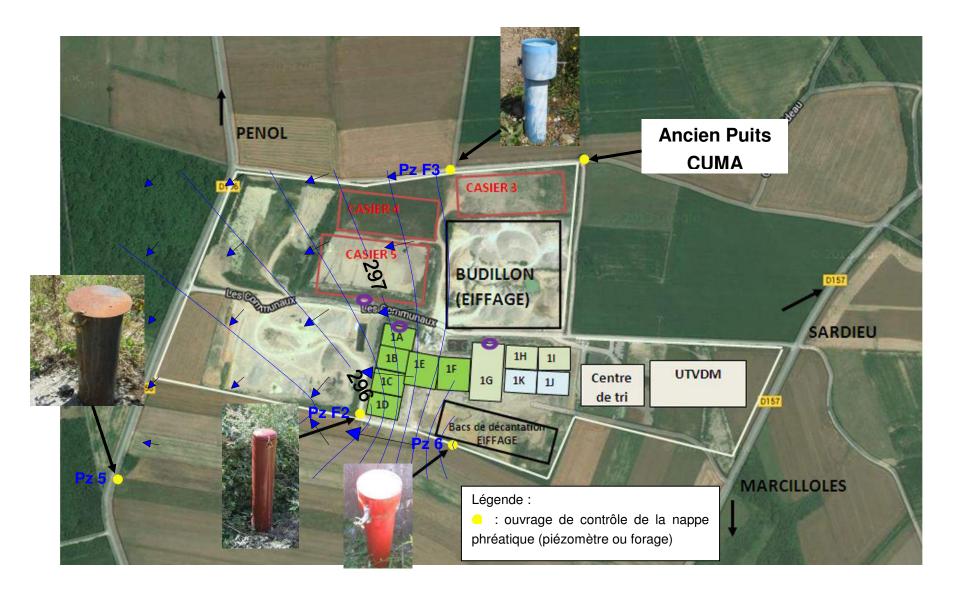


Figure 2 : Carte piézométrique au 27 juin 2018

3.2 EVOLUTION DE LA PIEZOMETRIE DEPUIS FEVRIER 2007

L'évolution depuis février 2007 des niveaux statiques mesurés au droit de chaque ouvrage de contrôle est précisée sur le graphique ci-après :

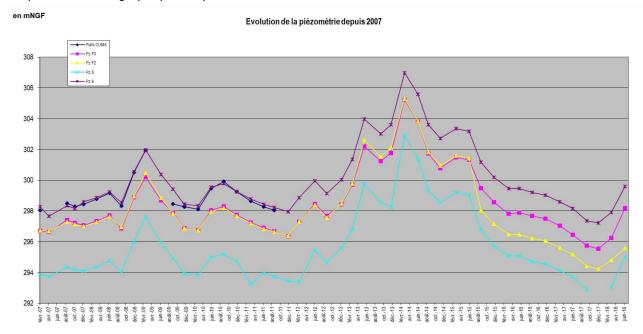


Figure 3 : Evolution de la piézométrie depuis 2007, en m NGF

3.3 RESULTATS DES MESURES IN SITU ET DES ANALYSES EN LABORATOIRE

Les résultats des mesures in situ ainsi que les résultats d'analyses en laboratoire sont présentés dans le tableau suivant :

EAUX SOUTERRAINES																																													1 janvier 2007
	Unité																																										Arrêté décer 2008	mbre	Ann
Nom Echantillon	1	Puits Pz F	Pz5	Puits CUMA	Pz F2	Pz5	Puits CUM A	Pz F2	Pz5	Pz6	Puits P2	z F2 F	Pz5 Pzi	Pz F3	Pz F2	Pz5	Pz F3	Pz F2	Pz5	Pz F3	Pz F2 P:	5 Pz F3	Pz F2	Pz5	Pz6	Pz F3	z F2 Pz	5 Pz6	Pz F3	Pz F2	Pz5	Pz6 Pz	F3 Pz F	F2 Pz5	Pz6	Pz F3	Pz F2	Pz5	Pz6	Pz F3	Pz F2	Pz5	Pz6		
Date de prélèvement		07/12/2			21/12/2006		CUMA	20/02/20		- 1		27/12/200		-	07/09/20			13/09/2012	-		/06/2013			2/2013			20/06/2014			18/06/20			- 1	8/06/2016			22/06				27/06/		-		
Type d'eau	5	sout. sou	sout.		sout.		sout.	sout.	sout.	sout.			out. sou	t. sout.	sout.	sout.		sout.	sout.	sout.	sout. so	ut. sout.		sout.	sout.	sout. s	out. sou	ıt. sout.	sout.	sout.	sout.	out. so	ut. sou	ut. sou	t. sout.	sout.	sout.	sout.	sout.	sout.	sout.	sout. s	out.		
jour des normes : METRES CHIMIQUES ET PHYSICO-	CHIMIOUES	CLOBALIV																																										févr-07	fé
rac en 17, de 18to		12,1 11,5	10,1	11,6	10,9	10,3	13,2	12,2	13,2	11,8	9,7	9	7,1 9,9	14,7	15,8	15,8	13,8	14,1	13,9	14,5	15,6 15	,6 11,7	12,1	12,6	12,2	15	15,7 16,	7 15,7	16,2	18,4	20,3	17,6 16	5,1 17,	2 16,1	1 17,1	16,9	16,8	21,5	15,9	13,5	14,7	14,1	13,2	25	
Ütç.		6,84 6,91		7,57	7,06	7,68	7,97	7,88	7,89	7,86	7,87 8,	,12 7	,97 7,6	7,25	7,03	6,86	6,87	7,24	7,26	6,87	6,99 6,	9 7,15	7,31	7,37	7,48	7,71	8,24 7,7	6 7,68	7,47	7,44	7,46	7,44 7,	48 7,4	8 7,42	7,46	7,49	7,29			7,08			6,98	6,5 - 9	
199 - It folg.	programme.	596 607 8,28 10,2						621 4,92					19 4.0								616 6									604 0,6								622 0,7				675 9,66		180µS≤Cond.≤1000µS	S
$v(a) = v(1, t) + v(a) \mathcal{R}(t_0)$		203 262						193			108 1	54 1	105 105	238	218	208	118	100	111	181	7,6	3,5	161	180	170	141				-34									148	129		129			
coar Let ta (TT)	11100	0,58 0,72	,-	0,5			na				0,5 <	0,5 <	0,5 <0,	<0,6	<0,6	<0,6					0,7 0			<0,5	<0,5			5 <0,5				<0,5 0,			,.	,-	10,0	1	<0,5	1,2	.,,.	1,1	-,-	2	
2) - 2 (2) (000 3 - 200 (2) (000		<20 <20	<20	<15		<15 <2	na na	na na	na na	na na			<15 <15		<15	<15 <10	<15 <10		<15	<15	<15 <	5 na 3 na	na na	na na		<15 <3	<15 <1:	5 <15				<15 <			5 24 <3			<15	<15	<10	<10	<10	<10		
		0,27 0,15	0,47	<0,01					na				0,01 <0,0				<0,01	<0,01	<0,01	0,011	<0,01 0,0	29 na	na	na				0,012							2 0,02			<0,01	<0,01	<0,01	<0,01	<0,01 <	:0,01		
S ET NON METAUX	mg/l	na na	na	na	na	na	na	na	na	na	na r	na	na na	na	na	na	na	na	na	na	na n	a na	na	na	na	na	na na	na na	na	na	na	na n	ia na	a na	na	na	na	na	na	6,8	<2,0	400	24		
m METAUX	ma/l «	<0,03 <0,03	0.12	< 0.04	<0.04	0.6	na	na	na	na	na 0	05 <	0.05 <0.0	5 <0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1 <0	1 na	na	na	na	<0.1	<0.1 <0.	1 <0.1	<0.1	<0,1	<0.1	0.1 0	1 0.1	1 0.1	0.1	0.1	0.1	0.3	0.1	<0.1	<0.1	<0.1	<0.1 0	1.5 0.1	
	ma/l «	<0,02 <0,0	0,03	0,03	<0,02	<0,02	na	na	na	na	na 0,	,07 <	0,01 <0,0	1 0,01	<0,01	<0,01	<0,01	0,04	<0,01	<0,05	<0,05 <0	05 na	na	na	na	<0,05 <	:0,05 <0,0	05 <0,05	<0,05	<0,05	<0,05 <	0,05 <0,	,05 <0,0	05 <0,0	5 <0,05	<0,05	<0,05	<0,05	,	10,00	-0,00	<0,05 <	,	0,5	
		14,23 45 na na	46,26 na	43,6 na	_	50,6		na na			1.144	46	51 49 na na		45		40 na	46 na			46 4		na				48 47 na na	7 51 n na				42 4 na n			42 na				40 na	46 2.5	42 <2.0		43 5i	50 50	
7		na na 22,2 19,4				na 20,9		na na	na na	na	na r	na 21			na 21	na 20	na 26			26	na n 21 2	2 na	na na	na na	na	19	18 17	na na 16					na na	a na 9 19	na 20		19	19		2,5	<2,0 28		20	250	
504	mg/I 1	13,18 12,5	12,61	15	13	10	na	na	na	na	na ·	13	13 16	16	15	15	16	15	15	15	13 1	4 na	na	na	na	14	14 13	14	15	14	14	14 1	7 16	3 16	17	15	16	16	17	16			18	250	
S ET METAUX DISSOUS	ma/l	0,05 <0,0	0,05	0,64	0,2	0,42	na	na	na	na	na 0,	,09 <	0,03 <0,0	3 <0,01	<0,01	<0,01	0,05	0,27	0,04	0,04	0,03 0,	05 na	na	na	na	<0,04	0,16 <0,0	0,06	<0,04	<0,04	<0,04	0,04 <0	,04 0,0	9 0,06	0,06	<0,04	<0,04	3,1	<0,04	<0,04	<0,04	0,05 <	:0,04		1
3 ET METAOX DI33003	μα/I	<2 <2	<2	<1	<1	<1	na	na	na	na	na <	1,5 <	1,5 <1,	<0,5	<0,5	<0,5	<1,5	<1,5	<1,5	<1,5	<1,5 <1	,5 na	na	na	na	<1,5	<1,5 <1,	5 <1,5	<1,5	<1,5	<1,5	<1,5 <1	,5 <1,	.5 <1,5	5 <1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	<1,5	5 5	
	ma/I	136 137,	146,7	<500			na	na	na	na	na 1	30 1	140 16	130	130	130	120	120	130	110	120 1	na na	na	na	na		120 12	0 120	120	120								140	120	120	120	130			
·4 · ·		<10 <10	<10	<5	_	<5 <5	na na		na na			<5 <5	<5 <5		<1	<1	<5 <5	<5 <5	<5 <5		<5 <		na na				<5 <5		<5 <5				.5 <5 0 <5	_			- , .	<5,0 <5.0	<5,0	<5,0	<5,0	<5.0	<5,0 <5.0	50 2000	
	provide to		<50	<10		<10	na		na		1.144		<10 <10				<0,1		<0,1		<10 <		na		1144		<10 <1		<5	<5			10 <10					<10	<10	<10	<10	,	<10	2000	
Pa	mg/I	2,38 2,46				2,52	na	na	na	na			2,9 3,1			2,3		2,5		2,9	2,6 2	6 na	na	na			2,4 2,4						2 11						2,6	2,6			2,6		
is P		<10 <10 <0,5 <0,5			_	<5 <0,2	na na	na na	na			<5 0,1 <			0,2 <0,2		<5 <0.1	<5 <0,1		<0.1	<5 <	5 na 1 na	na na	na na		<5 <0.1	<5 <5 <0,1 <0,	5 <5				<5 1	5 15					310 <0.1	<5,0 <0.1	<5,0 <0.1	<5,0 <0.1		<5,0 <0.1 1	50	
4i			<10	<5		<5	na		na				<10 <1			<2	<10		<10		<10 <		na				<10 <1						10 <10					21	<10	<10	<10		<10	20	
Pb		<10 <10 1.46 1.57	<10	<5		<5 1.1	na na		na				10 <10			<10 1,3	<10	<10 1,7	<10		<10 <		na				<10 <10 1,3 0,9						.8 4.7		<10 5,1		<10 0.8	<10	<10	<10	<10		<10 1	10 10	
		8,83 6,9	- 1,0	9,2		6,9	na		na na		1.00	.,.	8 9,5			6,2	15		6,8		7,2 9		na na				5,7 6,6		11				2 30					1,6 6,4	6,4	7,8			8,1	200	+
	μα/I	10 10	10	<10	<10	<10	na	na	na	na	na <	:50 <	:50 <5) 2	1	3		<50	<50	<50	<50 <	i0 na	na	na	na	<50	<50 <5	0 <50	<50	<50	<50	<50 <	50 <50	0 <50	<50	<50	<50	<50	<50	<50	<50	<50			
•••		na na		na na		na na	na	na na	na				na na		na na		na na		na na	na na	na n	a na	na	na na	na na	na na	na na	na na					a na		na na			na na	na	<3,0	<3,0	<0.05	<3,0 1	10 10	
IS ET METAUX TOTAUX	magn	na na	IId	IId	IIα	Πα	Πα	HQ.	11d	IIG	na i	IIα	ila ila	IId	IId	Πα	Ha	11Q	Па	TIG.	na i	a lia	Πα	11Q	Πα	IId	na ne	i lia	Πα	IId	Πα	na n	ia lia	a liea	IId	Па	IId	ΠQ	па	₹0,05	<0,05	0,05	7,03	0,2	
74		na na				1		na					na na	_							na n							na na				na n			na							<1,5 <	,.	5 5	
v _e to			na na	na na		na na	na na		na na			na na	na na na na		na na	na	na na				na n		na			na na		na na				na n			na na			na na	na na	<5,0	<5,0	<5,0 <	<5,0	50 2000	
n .			na	na		na			na				na na			na	na		na		na n							na na				na n								<10	<10	-0,0	<10	2000	
oo P		na na				na		na					na na		na		na				na n					na		ı na				na n			na					12		0,	39	50	
I::		na na na na		na na	na na	na na	na na		na na			na na	na na na na			na na	na na		na na		na n	a na a na	na na	na na			na na					na n	ia na					na na	na na	<0,5 <10	<0,5 <10	,-	<0,5 1 <10	1 1 20	
b		na na	na	na	na	na	na	na	na	na			na na		na	na	na	na	na	na	na n	a na	na	na			na na	na na	na			na n	ia na					na	na	<10	<10		<10 1	10 10	
		na na na na	na	na		na	na		na	na	na r	na	na na na na		na na	na	na na		na		na n		na	na na		na na	na na	na na	na na	na na			a na					na na		<50 <3.0		140 <3.0	91	10 10	+
		na na													na	na					na n					na na																0,37		0,2	
ANCES ORGANIQUES																																											سبع		
Consideration of the con- cioned EFF	μα/I μα/I	voir anne			oir annexe oir annexe		na na	na na		na na		voir annexe		-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	/- na /- na		na na	na na	-/-	-//-	-/-	-/-	-/-	-/-	-/	//-	/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	1 (Benzène)	1 (1
.,[10.5] =-1	рарт	VOII dillin	AG 1	-	Oil dillioxe	0 1	11d	TIG.	IIα	TIG.	,	VOII GIIIIGA	, ,	-7-	7-	-7-	-7-	-7-	7	-1-	-,-	i iia	Πα	TIQ.	Па	-7-	-77		-7-	-7-	-7-	0,1			(Σ 0,18 (Σ		7-	-7-	-7-	-7-	-1-	7-	7	0,01 (Benzo[a]pyrène	9)
																																des	16) des 1	16) des 1	6) des 16	i)								0,1 (somme benzofblfluoranthène	1 (somm
																																	/	-/-	-/-									benzo[k]fluoranthène.	
																																			s 4 (∑des des les et ∑des									benzo[ghi]pérylène, indeno[1,2,3-	benzo
properties of the following	μα/Ι	voir anne	xe 1	v	oir annexe	e 1	na	na	na	na	١	voir annexe	e 1	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	/- na	na	na	na	-/-	-//	-/-	-/-	-/-	-/-	-/- 6	6)	6)	6)	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	cd]pyrène)	indeno[1
ES BACTERIOLOGIQUES	ar of Chr	-20 -20	36	na	na	22	-30	<30	-20	-20	na -	<1	<1 <1	- 1	- 4	<1	12	>100	и	-1	>100 <	1 00	-1	na	na	<30	-20 -2	0 20	-0.3	<0,3	-0.2	-0.2	20 .21	n2n	20	-20	-20	<30	-20	<1	- 4	<1	<1	0/100 ml	
			<30	na		na	<30		<30		1.144		<1 <1		<1		<1		<1		>100 <							0 <30				<0,3 <.			30				<30	<1	<1	<1	<1	U/100 III	
er Perfect	an or Chris	0 0	1	na	na	na	0	0	0	0	na ·	16	<1 <1		<4	<1	93	91	<1	<1	<1 <	1 na	<30	na	na	<15	<15 <1	5 <15	<0,3	<0,3	<0,3	<0,3 4	3 <30	0 <30	<30	<30	<30	<30	<30	<1	<1		<1	0/100 ml	1
- o 7 p. no (so - 4/17	/ml	na na	na	na	na	na	na	na	na	na		na ence/ abs	na na ence/ abser	na ce/ absenc	na e/ absence	na / absence/	na absence/	na absence/ al	na bsence/ a	na absence/	na n abse	a na nce/	na absence	na /	na at	na bsence/ ab	na na sence/ abser	na na	na / absence/	na absence/ ab	na osence/ ab	na n sence/ abse	a na ence/ absen	nce/absen	na ce/ absence	na e/ absenc	na e/ absence/	na absence/ a	na absence/	<1 absence/ a	<1 absence/	<1 absence/ abs	<1 sence/	0/100 ml	20
	ab	sence absen	e absence	na	na	na	absence	absence a	bsence a	bsence	na !	5L	02 02	5L	5L	5L	5L	5L	5L	5L pr	ésence 5	L na	5L	na	na	5L	5L 5L	. 5L	5L	5L	5L	5L 5	L 5L	_ 5L	5L	5L	5L	5L	5L	25ml	25ml	25ml 2	25ml		
du 11 janvier 2007 relatif aux limites et réf												321-7 et R.	1321-38 du c	ode de la sa	nté publique																														
de l'arrêté du 11 janvier 2007 correspond			quality USS 6	aux uesiinei	oo d id con	I IlQuisi III and	numane, a	TOYCHOSINU DE	co edux co	III III III III III III III III III II											1321-7(II), R.1																								

Tableau 4 : Synthèse des résultats des mesures in situ et des résultats d'analyses pour les eaux souterraines prélevées le 27 juin 2018, avec rappel des résultats antérieurs

La présence de quatre points de mesures autour du site permet de comparer les paramètres analysés en amont et en aval de celui-ci.

3.3.1 MESURES IN SITU

Entre les points PzF3, Pz6, PzF2 et le point Pz5, la campagne de juin 2017 montre que les valeurs de température, conductivité, potentiel d'oxydo-réduction et oxygène dissous restent du même ordre de grandeur.

3.3.2 ANALYSES EN LABORATOIRE

Les résultats des analyses en laboratoire (analyses bactériologiques et radiologiques exclues) montrent l'absence de problématique vis-à-vis de tous les composés recherchés², hormis ponctuellement vis-à-vis du fer si l'on considère les résultats d'analyse obtenus sur métaux totaux. Ces derniers montrent à l'aplomb de Pz5 et de Pz6 un dépassement des valeurs références utilisées (limites et références de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées (Annexe I de l'arrêté du 11 janvier 2007)).

Il convient de préciser qu'en raison de la faible capacité en eau du piézomètre Pz5 (moins d'un mètre d'eau dans l'ouvrage), les eaux prélevées sont des eaux de première purge, présentant vraisemblablement un déficit de représentativité (eaux troubles, chargées en matières en suspension).

Concernant les analyses bactériologiques, il n'y a pas de problématique du site d'après les résultats de cette dernière campagne. En effet, soit il n'a pas été retrouvé de germe dans l'échantillon (pour les salmonelles), soit les résultats sont inférieurs aux limites de détection du laboratoire (pour les autres paramètres microbiologiques). Par ailleurs, toutes les valeurs sont similaires entre les points de contrôle.

A titre indicatif, les valeurs limites disponibles sont les suivantes :

- 0 germe de coliforme à 37°C / 100 ml : limite précisée dans l'Annexe I de l'arrêté du 11 janvier 2007, correspondant aux limites et références de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées.
- Entérocoques : 0 germe / 100 ml (Annexe I de l'arrêté du 11 janvier 2007) ; 10000 germes / 100 ml : limite précisée dans l'Annexe II de l'arrêté du 11 janvier 2007 correspondant aux limites de qualité des eaux brutes de toute origine utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées.
- Escherichia coli : 0 germe / 100 ml (Annexe I de l'arrêté du 11 janvier 2007) ; 20000 germes / 100 ml (Annexe II de l'arrêté du 11 janvier 2007).

² Toutes les concentrations mesurées (hormis fer en Pz5 et Pz6) sont inférieures (ou égales) :

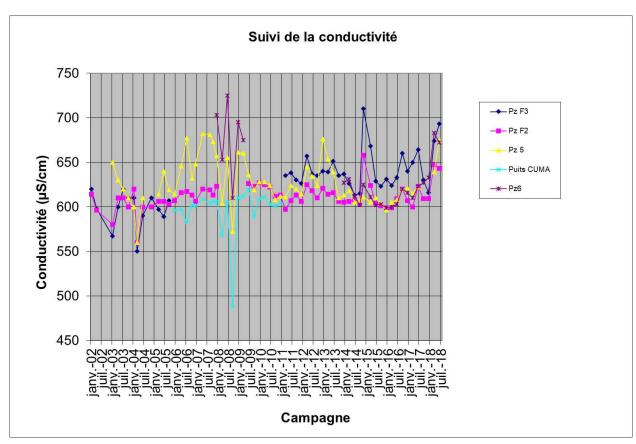
⁻ aux seuils de détection du laboratoire ;

⁻ et/ou aux valeurs références de qualité des eaux brutes et des eaux destinées à la consommation humaine (arrêté du 11 janvier 2007, Annexe I / Annexe II) ;

⁻ et/ou aux valeurs seuils précisées dans l'arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines.

- Absence de salmonelles / 5000 ml : limite précisée dans l'Annexe III de l'arrêté du 11 janvier 2007 correspondant aux limites de qualité des eaux douces superficielles utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées (Groupe A1).

On rappelle que ces limites relatives à des eaux de consommation, ou des eaux de production d'eau destinée à la consommation humaine sont particulièrement restrictives.

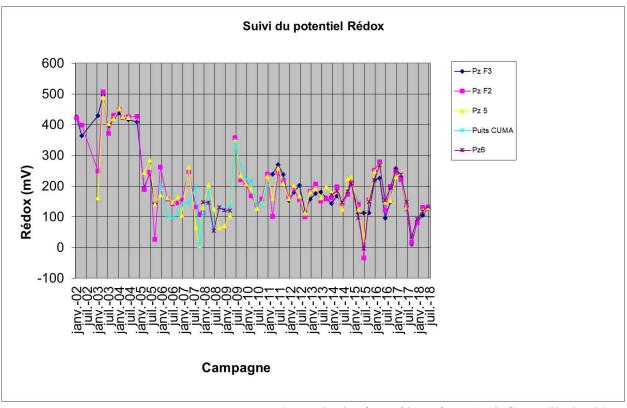

 Aucune anomalie radiologique n'a été mise en évidence dans l'ensemble des échantillons analysés (cf. résultats et commentaires en Annexe I de ce rapport).

Pour l'ensemble des échantillons analysés, les résultats des analyses effectuées mettent en évidence pour les radioéléments des chaines de l'uranium et du thorium, des valeurs inférieures ou de l'ordre de grandeur des limites de détection de la méthode d'analyse mise en œuvre.

Concernant le potassium 40, les activités volumiques mises en évidence dans l'ensemble des échantillons, restent faibles (comprises entre moins de 0,086 et 0,38 Bq.l⁻¹).

3.3.3 COMPARAISON AVEC LES AUTRES CAMPAGNES

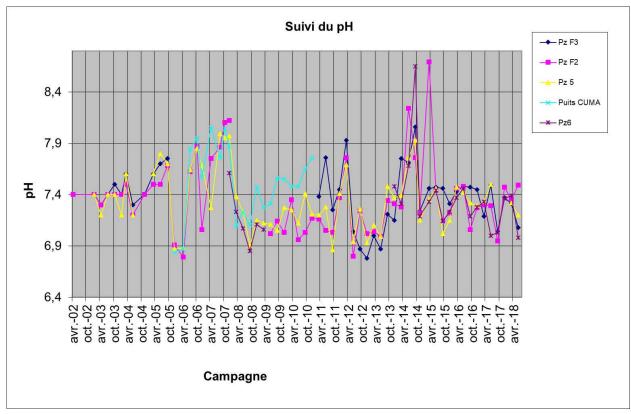
Précision importante : à partir de la campagne de décembre 2005, le piézomètre PzF3 a été remplacé par le Puits CUMA (positionné en amont hydraulique du site). Le Puits CUMA n'étant plus opérationnel depuis mars 2011, c'est à nouveau le piézomètre PzF3 qui a fait l'objet d'une surveillance.



(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 4 : Evolution de la conductivité des eaux souterraines

On peut constater une tendance à l'augmentation des valeurs de conductivité depuis juin 2015. A noter depuis décembre 2017 que la valeur en Pz6 dépasse fréquemment celle mesurée en PzF3 (référence amont hydraulique).



(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 5 : Evolution du potentiel d'oxydo-réduction des eaux souterraines

Campagne de juin 2015 mise à part, et plus récemment celle de septembre 2017, lors desquelles des mesures particulièrement basses de potentiel rédox ont été relevées (caractéristiques d'un milieu réducteur), les valeurs dernièrement mesurées sont généralement comprises entre 80 et 280 mV.

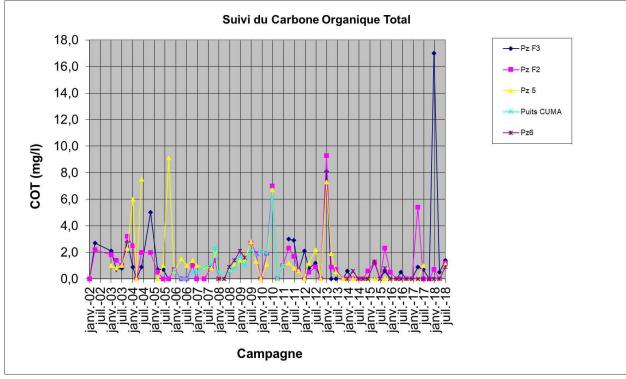

(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 6 : Evolution du pH des eaux souterraines

Les dernières mesures de juin 2018 montrent des valeurs de pH homogènes, proches de la neutralité, pour l'ensemble des eaux prélevées. Les valeurs de pH plus basiques relevées en PzF2 en juin 2014 (8,24) et mars 2015 (8,69) ne sont pas réapparues depuis.

L'évolution du COT, seul paramètre analysé trimestriellement, est présentée dans le graphique ci-après.

(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 7: Evolution du carbone organique total dans les eaux souterraines

En juin 2018, les concentrations en COT mesurées sont toutes inférieures à limite de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées (Annexe I de l'arrêté du 11 janvier 2007). La teneur la plus élevée est relevée au droit de la référence amont PzF3 (1,4 mg/l). Il n'y a donc pas d'impact significatif du site vis-à-vis de ce paramètre sur cette campagne.

SERPOL - Site de Penol (38)

Surveillance des eaux souterraines - Campagne de juin 2018

4. ANNEXES

ANNEXE 1: BULLETINS D'ANALYSES EN LABORATOIRE	20
ANNEXE 2: FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES	22
Annexe 3 : arrete prefectoral	23

ANNEXE 1 : BULLETINS D'ANALYSES EN LABORATOIRE

WESSLING: ANALYSES CHIMIQUES ET MICROBIOLOGIQUES

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 [0]4 74 99 96 20 · Fax +33 [0]4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Laboratoire WESSLING, 40 rue du Ruisseau, 38070 Saint-Quentin-Fallavier Cedex

EODD INGENIEURS CONSEILS Monsieur Laurent MAILLARD Parc Gratte-ciel 13/19 rue Jean Bourgey 69100 VILLEURBANNE Rapport d'essai n° : ULY18-010532-1
Commande n° : ULY-07792-18
Interlocuteur : J. Moncorgé
Téléphone : +33 474 999-633
eMail : Jonathan.Moncorge@wessling.fr

Rapport d'essai

ULY-0503-1-18 P03369

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai, sous réserve du flaconnage reçu (hors flaconnage Wessling), du respect des conditions de conservation des échantillons jusqu'au laboratoire d'analyses et du temps imparti entre le prélèvement et l'analyse préconisé dans les normes suivies.

Les méthodes couvertes par l'accréditation EN ISO 17025 sont marquées d'un A dans le tableau récapitulatif en fin de rapport au niveau des normes.

Les résultats obtenus par ces méthodes sont accrédités sauf avis contraire en remarque.

La portée d'accréditation COFRAC n° 1-1364 essais est disponible sur www.cofrac.fr pour les résultats accrédités par les laboratoires Wessling de Lyon.

Les essais effectués par le laboratoire de Paris sont accrédités par le COFRAC sous le numéro 1-5578.

Les essais effectués par les laboratoires allemands sont accrédités par le DAKKS sous le numéro D-PL-14162-01-00 (www.as.dakks.de).

Les essais effectués par le laboratoire hongrois de Budapest sont accrédités par le NAT sous le numéro NAT-1-1398 (www.nat.hu).

Les essais effectués par le laboratoire polonais de Krakow sont accrédités par le PCA sous le numéro AB 918 (www.pca.gov.pl).

Ce rapport d'essai ne peut-être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING (EN ISO 17025).

Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai.

La conclusion ne tient pas compte des incertitudes et n'est pas couverte par l'accréditation.

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 09.07.2018

N° d'échantillon Désignation d'échantillon	Unité	18-102824-01 PzF2	18-102824-02 PzF3	18-102824-03 PzF5	18-102824-04 PzF6
Doorgination a contamination					
o-Phosphate (PO4)	mg/l E/L	<0,04	<0.04	0,05	<0,04
Coliformes thermotolérants 44°C	/ml	<1	<1	<1	<1
Enterobactéries 37°C	/ml	<1	<1	<1	<1
Escherichia coli B glucuronidase + 44°C	/ml	<1	<1	<1	<1
Coliformes 37°C	/ml	<1	<1	<1	<1
Salmonella spp./ 25 ml		non détecté	non détecté	non détecté	non détecté
Paramètres globaux / Indices					
AOX	μg/l E/L	<10	<10	<10	<10
DCO (homogénéisé)	mg/l E/L	<10	<10	<10	<10
Carbone organique total (COT)	mg/l E/L	1,2	1,4	1,1	0,9
DBO5+ATH (homogénéisé)	mg/l E/L	<3,0	<3,0	<3,0	<3,0
Cations, anions et éléments non métalliques					
Chlorures (CI)	mg/l E/L	22	28	21	20
Nitrates (NO3)	mg/l E/L	46	42	46	43
Sulfates (SO4)	mg/l E/L	16	16	23	18
Nitrites (NO2)	mg/l E/L	<0,05	<0,05	<0,05	<0,05
Ammonium (NH4)	mg/l E/L	<0,1	<0,1	<0,1	<0,1
Azote ammoniacal (NH4-N)	mg/l E/L	<0,078	<0,078	<0,078	<0,078
Azote Kjeldahl (NTK)	mg/l E/L	2,5	<2,0	2,3	<2,0
Eléments					
Sodium (Na)	mg/l E/L	7,8	12	7,1	8,1
Magnésium (Mg)	mg/l E/L	2,6	2,7	2,6	2,6
Potassium (K)	mg/l E/L	1,0	1,0	1,2	1,1
Calcium (Ca)	mg/l E/L	120	120	130	120
Chrome (Cr)	μg/l E/L	<5,0	<5,0	<5,0	<5,0
Manganèse (Mn)	μg/l E/L	<5,0	<5,0	<5,0	<5,0
Nickel (Ni)	μg/l E/L	<10	<10	<10	<10
Cuivre (Cu)	μg/l E/L	<5,0	<5,0	<5,0	<5,0
Zinc (Zn)	μg/l E/L	<50	<50	<50	<50
Arsenic (As)	μg/l E/L	<3,0	<3,0	<3,0	<3,0
Cadmium (Cd)	μg/I E/L	<1,5	<1,5	<1,5	<1,5
Plomb (Pb)	μg/l E/L μg/l E/L	<10	<10	<10	<10
Étain (Sn)	μg/I E/L	<10	<10	<10	<10
Mercure (Hg) Fer (Fe)	μg/I Ε/L	<0,1 <0,05	<0,1 <0,05	<0,1 <0,05	<0,1 <0,05
	mg/r =/=	10,00	10,00	10,00	10,00
Benzène et aromatiques (CAV - BTEX)					
Benzène	μg/l E/L	<0,5	<0,5	<0,5	<0,5
Toluène	μg/l E/L	<1,4	<0,5	<0,5	<0,5
Ethylbenzène	μg/I E/L	<0,5	<0,5	<0,5	<0,5
o-Xylène	μg/I E/L	<0,5	<0,5	<0,5	<0,5
m-, p-Xylène	μg/I E/L	<0,5	<0,5	<0,5	<0,5
Cumène	μg/I E/L	<0,5	<0,5	<0,5	<0,5
Mésitylène - Ethylteluène	μg/l E/L μg/l E/L	<0,5 <0,5	<0,5 <0,5	<0,5 <0,5	<0,5 <0,5
o-Ethyltoluène	μg/I E/L μg/I E/L	<0,5 <0,5	<0,5	<0,5 <0,5	<0,5 <0,5
m-, p-Ethyltoluène Pseudocumène	μg/I E/L	<0,5 <0,5	<0,5	<0,5	<0,5
Somme des CAV	μg/I E/L	-/-	<0,5 -/-	<0,5 -/-	-/-
Commis des OAV	μg/1 L/L	/-	<i>i</i> =	<i>i</i> =	<i>i</i> =

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

N° d'échantillon Désignation d'échantillon	Unité	18-102824-01 PzF2	18-102824-02 PzF3	18-102824-03 PzF5	18-102824-04 PzF6
•	3 \				
Hydrocarbures aromatiques polycycliques (HAI	•	0.00	0.00	0.00	0.00
Naphtalène	μg/l E/L μg/l E/L	<0,03 <0,02	<0,03 <0,02	<0,02 <0,02	<0,03 <0,02
Acénaphtylène Acénaphtène	μg/I Ε/L	<0.02	<0,02	<0,02	<0,02
Fluorène	μg/I Ε/L	<0,02	<0,02	<0,02	<0,02
Phénanthrène	μg/I E/L	<0.02	<0.02	<0.02	<0,02
Anthracène	μg/I E/L	<0,02	<0,02	<0,02	<0,02
Fluoranthène (*)	μg/l E/L	<0.02	<0.02	<0,02	<0.02
Pyrène	μg/l E/L	<0.02	<0.02	<0,02	<0,02
Benzo(a)anthracène	μg/l E/L	<0,02	<0,02	<0,02	<0,02
Chrysène	μg/l E/L	<0,02	<0,02	<0,02	<0,02
Benzo(b)fluoranthène (*)	μg/l E/L	<0,02	<0,02	<0,02	<0,02
Benzo(k)fluoranthène (*)	μg/l E/L	<0,02	<0,02	<0,02	<0,02
Benzo(a)pyrène (*)	μg/l E/L	<0,02	<0,02	<0,02	<0,02
Dibenzo(ah)anthracène	μg/l E/L	<0,02	<0,02	<0,02	<0,02
Indéno(123-cd)pyrène (*)	μg/l E/L	<0,02	<0,02	<0,02	<0,02
Benzo(ghi)pérylène (*)	μg/l E/L	<0,02	<0,02	<0,02	<0,02
Somme des 4 HAP	μg/l E/L	-/-	-/-	-/-	-/-
Somme des 6 HAP (*)	μg/l E/L	-/-	-/-	-/-	-/-
Somme des HAP	μg/l E/L	-/-	-/-	-/-	-/-
Polychlorobiphényles (PCB)					
PCB n° 28	μg/l E/L	<0,003	<0,003	<0,003	<0,003
PCB n° 52	μg/l E/L	<0,003	<0,003	<0,003	<0,003
PCB n° 101	μg/l E/L	<0,003	<0,003	<0,003	<0,003
PCB n° 118	μg/l E/L	<0,003	<0,003	<0,003	<0,003
PCB n° 138	μg/l E/L	<0,003	<0,003	<0,003	<0,003
PCB n° 153	μg/l E/L	<0,003	<0,003	<0,003	<0,003
PCB n° 180	μg/l E/L	<0,003	<0,003	<0,003	<0,003
Somme des 7 PCB	μg/l E/L	-/-	-/-	-/-	-/-
Analyse physico-chimique					
MES	mg/I E/L	6,8	<2,0	400	24
N° d'échantillon		18-102824-01-1	18-102824-02-1	18-102824-03-1	18-102824-04-1
Désignation d'échantillon	Unité	PzF2	PzF3	PzF5	PzF6
Préparation d'échantillon	Γ//	00/07/2019	00/07/0010	00/07/0010	00/07/0010
Minéralisation à l'eau régale	E/L	02/07/2018	02/07/2018	02/07/2018	02/07/2018
Eléments		5.0	F.0	F.0	F. 0
Chrome (Cr)	μg/l E/L	<5,0	<5,0	<5,0	<5,0
Manganèse (Mn)	μg/l E/L	12	18	37	39
Nickel (Ni)	μg/l E/L	<10	<10 <5,0	<10 <5,0	<10
Cuivre (Cu)	μg/l E/L μg/l E/L	<5,0 <50	<5,0 120	<5,0 140	7,0 91
Zinc (Zn)		<3,0	<3,0	<3,0	<3,0
Arsenic (As) Cadmium (Cd)	μg/l E/L μg/l E/L	<3,0 <1,5	<3,0 <1,5	<3,0 <1,5	<3,0 <1,5
Plomb (Pb)	μg/I Ε/L	<10	<10	<10	<10
Étain (Sn)	μg/I Ε/L	<10	<10	<10	<10
Mercure (Hg)	μg/I Ε/L	<0,5	<0,5	<0,5	<0,5
Fer (Fe)	mg/I E/L	0,1	<0,05	0,37	0,39
ı cı (ı c <i>)</i>	IIIg/I L/L	υ, ι	<0,00	0,07	0,35

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 09.07.2018

Informations sur les échantillons

N° d'échantillon :	18-102824-01	18-102824-01-1	18-102824-02	18-102824-02-1	18-102824-03
Date de réception :	29.06.2018	29.06.2018	29.06.2018	29.06.2018	29.06.2018
Désignation :	PzF2	PzF2	PzF3	PzF3	PzF5
Type d'échantillon :	Eau propre	Eau propre	Eau propre	Eau propre	Eau propre
Date de prélèvement :	27.06.2018		27.06.2018		27.06.2018
Heure de prélèvement :	-/-	-/-	-/-	-/-	-/-
Récipient :	6*1LPE Stérile + 2*500PE + 250V + (250V + 100PE + 60PE) HNO3 + (3*60PE + 1HS)H2SO4 + 3*60PE + 3HS		6*1LPE Stérile + 2*500PE + 250V + (250V + 100PE + 60PE) HNO3 + (3*60PE + 1HS)H2SO4 + 3*60PE + 3HS		6*1LPE Stérile + 2*500PE + 250V + (250V + 100PE + 60PE) HNO3 + (3*60PE + 1HS)H2SO4 + 3*60PE + 3HS
Température à réception (C°) :	5.5°C		5.5°C		5.5°C
Début des analyses :	29.06.2018	29.06.2018	29.06.2018	29.06.2018	29.06.2018
Fin des analyses :	09.07.2018	06.07.2018	09.07.2018	06.07.2018	09.07.2018
N° d'échantillon :	18-102824-03-1	18-102824-04	18-102824-04-1		
Date de réception :	29.06.2018	29.06.2018	29.06.2018		
Désignation :	PzF5	PzF6	PzF6		
Type d'échantillon :	Eau propre	Eau propre	Eau propre		
Date de prélèvement :		27.06.2018			
Heure de prélèvement :	-/-	-/-	-/-		
Récipient :		6*1LPE Stérile + 2*500PE + 250V + (250V + 100PE + 60PE) HNO3 + (3*60PE + 1HS)H2SO4 + 4*60PE + 3HS			
Température à réception (C°) :		5.5°C			
Début des analyses :	29.06.2018	29.06.2018	29.06.2018		
Fin des analyses :	06.07.2018	09.07.2018	06.07.2018		

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 09.07.2018

Informations sur les méthodes d'analyses

Paramètre	Norme	Laboratoire
Ammonium (NH4)	NF EN ISO 11732(A)	Wessling Lyon (F)
Composés organiques adsorbables (AOX) sur eau / lixiviat	Méth. interne: " AOX NF EN ISO 9562"(A)	Wessling Lyon (F)
Azote (Kjeldahl) sur eau / lixiviat (conservation à 3°C+-2°C)	NF EN 25663(A)	Wessling Lyon (F)
Benzène et aromatiques (CAV-BTEX)	NF ISO 11423-1(A)	Wessling Lyon (F)
Carbone organique total (COT)	NF EN 1484(A)	Wessling Lyon (F)
Demande biologique en oxygène (DBO) avec ATH, homogén.	NF EN 1899-1(#)	Wessling Lyon (F)
ST-DCO	ISO 15705(A)	Wessling Lyon (F)
НАР	Méth. interne :"HAP-PCB NF EN ISO 6468 / NF ISO 18287 / NF T 90-115 / NF ISO 10382"(#)	Wessling Lyon (F)
MES (Filtre Muntkell GF047C)	NF EN 872(A)	Wessling Lyon (F)
Anions dissous (filtration à 0,2 μ)	Méth. interne : "ANIONS NF EN ISO 10304-1"(A)	Wessling Lyon (F)
o-Phosphate (P)	NF EN ISO 6878(A)	Wessling Lyon (F)
PCB	NF EN ISO 6468(A)	Wessling Lyon (F)
Dénombrement des Coliformes totaux	NF ISO 4832(A)	Wessling Paris (F)
Dénombrement des coliformes thermotolérants à 44° C	NF V08-060(A)	Wessling Paris (F)
Dénombrement des Entérobactéries	NF ISO 21528-2(A)	Wessling Paris (F)
Dénombrement E.Coli (Bêta-Glucuronidase positive) à 44°C	NF ISO 16649-2(A)	Wessling Paris (F)
Recherche Salmonella spp	NF EN ISO 6579-1(A)	Wessling Paris (F)
Métaux sur eau / lixiviat (ICP-MS)	NF EN ISO 17294-2(A)	Wessling Lyon (F)
Métaux sur eau / lixiviat (ICP-MS)	NF EN ISO 17294-2(A)	Wessling Lyon (F)
Minéralisation à l'eau régale pour métaux totaux	NF EN ISO 15587-1(A)	Wessling Lyon (F)

(#)L'absence d'accréditation provient du délai de mise en analyse par rapport au prélèvement supérieur aux exigences normatives.

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 [0]4 74 99 96 20 · Fax +33 [0]4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 09.07.2018

Informations sur les méthodes d'analyses

Commentaires:

18-102824-01

Les conditions de transports (durée et température) n'ont pas été respectées pour cet échantillon. Commentaires des résultats:

DBO2-3-5-10 (E/L), DBO5+ATH (homogénéisé): Stabilisation de l'échantillon par congélation avant analyse. MES E/L, MES: Résultat sous réserve : Valeur de MES approximative en raison du Résidu Sec inférieur à2 mg Métaux (E/L), Calcium (Ca): Résultat hors champ d'accréditation car situé hors du domaine de calibration remarque valable pour tous les echantillons

18-102824-02

Les conditions de transports (durée et température) n'ont pas été respectées pour cet échantillon. Commentaires des résultats:

DBO2-3-5-10 (E/L), DBO5+ATH (homogénéisé): Stabilisation de l'échantillon par congélation avant analyse. MES E/L, MES: Résultat sous réserve : Valeur de MES approximative en raison du Résidu Sec inférieur à2 mg 18-102824-03

Les conditions de transports (durée et température) n'ont pas été respectées pour cet échantillon.

Commentaires des résultats:

DBO2-3-5-10 (E/L), DBO5+ATH (homogénéisé): Stabilisation de l'échantillon par congélation avant analyse. 18-102824-04

Les conditions de transports (durée et température) n'ont pas été respectées pour cet échantillon.

Commentaires des résultats:

DBO2-3-5-10 (E/L), DBO5+ATH (homogénéisé): Stabilisation de l'échantillon par congélation avant analyse.

18-102824-04-1

Commentaires des résultats:

Métaux (E/L), Cuivre (Cu): Résultat hors champ d'accréditation dû à la contamination du blanc de minéralisation

Pour parfaire la lecture de vos résultats, les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice. Les métaux réalisés après minéralisation sont les éléments totaux. Sans minéralisation, II s'agit des éléments dissous.

En absence de date de prélèvement, la date de réception des échantillons au laboratoire a été prise en compte pour calculer le délai d'analyse.

Résultat sous réserve : absence de date de prélèvement.

Signataire Rédacteur

Signataire Technique

Jonathan MONCORGE

Anne-Christine WAYMEL
Responsable Qualité

Chargé de Clientèle

A

ALGADE: ANALYSES RADIOLOGIQUES

Bessines, le 24 août 2018

PA

N/Réf.: 66/EODD 60-0 2-07 18 V1-LL (It)

EODD Le Parc Gratte-Ciel 15/19, rue Jean Bourgey 69100 VILLEURBANNE

À l'attention de M. Laurent MAILLARD

Monsieur,

Veuillez trouver ci-joint les résultats des analyses radiologiques effectuées dans des échantillons d'eaux souterraines prélevés par vos soins, et reçus au laboratoire d'ALGADE le 3 juillet 2018 (points de prélèvement référencés PZF2, PZF3, PZ5 et PZ6).

Comme prévu à l'article 24 de l'arrêté du 15 février 2016 relatif aux installations de stockage de déchets non dangereux et dans notre proposition technique et commerciale EODD 60-0 1-06 02 18-LL du 6 février 2018, les échantillons fournis ont fait l'objet d'une analyse par spectrométrie gamma permettant de connaître l'activité volumique des radioéléments des chaînes de l'uranium et du thorium ainsi que du potassium 40 exprimée en Bq.l-1.

Pour l'ensemble des échantillons analysés, les résultats des analyses effectuées mettent en évidence pour les radioéléments des chaines de l'uranium et du thorium, des valeurs inférieures ou de l'ordre de grandeur des limites de détection de la méthode d'analyse mise en œuvre.

Concernant le potassium 40, les activités volumiques mises en évidence dans l'ensemble des échantillons, restent faibles (comprises entre moins de 0,086 et 0,38 Bq.l⁻¹).

Aucune anomalie radiologique n'a été mise en évidence dans l'ensemble des échantillons analysés.

Je reste à votre disposition pour tout renseignement utile.

Veuillez agréer, Monsieur, l'expression de nos salutations distinguées.

L. LAVERGNAS Chargé d'affaires

P.J: 4 rapports d'essais

ALGADE

Laboratoire Environnement et Dosimétrie (LED) Avenue du Brugeaud - 87250 Bessines-sur-Gartempe

Rapport d' Essais

Page 1 / 2

Edité le : 17/08/2018 ALG1807-47-V1

A l'attention du chargé d'affaire Laurent LAVERGNAS

Pour le client EODD M. Laurent MAILLARD

Le Parc Gratte-Ciel 15/19 rue Jean Bourgey 69100 VILLEURBANNE

FRANCE

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 2 pages. La reproduction de ce rapport d'essai n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification Echantillon: ALG1807-47

Identification dossier : ALG18-710 Libellé Echantillon Client : PZF2

Matrice : Eau usée

Date de prélèvement : Non précisé

N° d'affaire : EODD 60

Référence Contrat : ALGC18-42

Date réception laboratoire : 03/07/2018

Paramètre	Résultats A	Unité	Incertitude élargie U(A) k=2	Limite de Détection LD	Date de la mesure	Méthode	Norme	cofrac
nalyse réalisée par : LED								
Thallium 208	<0,0061	Bq/I	· # 0	0.013	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 210	<0,051	Bq/I		0.1	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 212	0.0149	Bq/I	0.0049	0.011	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 214	0.019	Bq/I	0.008	0.022	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Bismuth 214	0.028	Bq/I	0.011	0.03	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Radium 226	0.022	Bq/I	0.006	0.03	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Radium 228	0.033	Bq/I	0.013	0.042	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Actinium 228	0.033	Bq/I	0.013	0.042	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 230	<0,44	Bq/I		0.92	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 232	0.033	Bq/I	0.013	0.042	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 234	<0,043	Bq/I	-	0.1	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Uranium 235	<0,043	Bq/I		0.089	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Uranium 238	<0,043	Bq/I	-	0.1	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Potassium 40	0.14	Bq/I	0.1	0.26	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#

U238 déduit du Th234, Ra226 déduit du Pb214 et du Bi214, Ra228 déduit de l'Ac228, Th232 déduit de l'Ac228

Laboratoire Environnement et Dosimétrie (LED) Avenue du Brugeaud - 87250 Bessines-sur-Gartempe

Rapport d' Essais

Page 2 / 2

Edité le : 17/08/2018 ALG1807-47-V1

Expression des résultats :

Si A est inférieur ou égal à SD alors le résultat est exprimé sous la forme : < SD

Si A>SD alors le resultat est exprimé sous la forme : A±U(A)

Avec SD: Seuil de décision, LD: Limite de détection, A: Activité, U(A): Incertitude élargie associée à A.

Claude Gibaud

Responsable Technique Laboratoire

Laboratoire Environnement et Dosimétrie (LED) Avenue du Brugeaud - 87250 Bessines-sur-Gartempe

Rapport d' Essais

Page 1 / 2

Edité le : 17/08/2018 ALG1807-48-V1

A l' attention du chargé d'affaire Laurent LAVERGNAS

Pour le client EODD M. Laurent MAILLARD

Le Parc Gratte-Ciel 15/19 rue Jean Bourgey 69100 VILLEURBANNE

FRANCE

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 2 pages. La reproduction de ce rapport d'essai n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification Echantillon: ALG1807-48

Identification dossier: ALG18-710 Libellé Echantillon Client: PZF3

Libelle Editaritillori Cilerit

Matrice : Eau usée

Date de prélèvement : Non précisé

N° d'affaire : EODD 60

Référence Contrat : ALGC18-42

Date réception laboratoire : 03/07/2018

Paramètre	Résultats A	Unité	Incertitude élargie U(A) k=2	Limite de Détection LD	Date de la mesure	Méthode	Norme	cofrac
nalyse réalisée par : LED								
Thallium 208	0.0059	Bq/I	0.0024	0.0068	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 210	0.061	Bq/I	0.022	0.053	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 212	0.004	Bq/I	0.0031	0.0077	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 214	0.051	Bq/I	0.011	0.017	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Bismuth 214	0.047	Bq/I	0.011	0.023	14/08/2018	Spectromêtrie Gamma	NF EN ISO 10703	#
Radium 226	0.049	Bq/I	0.008	0.023	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Radium 228	<0,021	Bq/I	(*)	0.045	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Actinium 228	<0,021	Bq/I		0.045	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 230	<0,28	Bq/I		0.59	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 232	<0,021	Bq/I		0.045	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 234	<0,025	Bq/I	-	0.062	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Uranium 235	<0,028	Bq/I	-	0.06	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Uranium 238	<0,025	Bq/I	¥	0.062	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Potassium 40	0.12	Bq/I	0.09	0.19	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#

U238 déduit du Th234, Ra226 déduit du Pb214 et du Bi214, Ra228 déduit de l'Ac228, Th232 déduit de l'Ac228

Laboratoire Environnement et Dosimétrie (LED) Avenue du Brugeaud - 87250 Bessines-sur-Gartempe

Rapport d' Essais

Page 2 / 2

Edité le : 17/08/2018 ALG1807-48-V1

Expression des résultats :

Si A est inférieur ou égal à SD alors le résultat est exprimé sous la forme : < SD

Si A>SD alors le resultat est exprimé sous la forme : A±U(A)

Avec SD : Seuil de décision, LD : Limite de détection, A : Activité, U(A) : Incertitude élargie associée à A.

Claude Gibaud

Responsable Technique Laboratoire

Laboratoire Environnement et Dosimétrie (LED) Avenue du Brugeaud - 87250 Bessines-sur-Gartempe

Rapport d' Essais

Page 1 / 2

Edité le : 17/08/2018 ALG1807-49-V1

A l'attention du chargé d'affaire Laurent LAVERGNAS

Pour le client EODD M. Laurent MAILLARD

Le Parc Gratte-Ciel 15/19 rue Jean Bourgey 69100 VILLEURBANNE

FRANCE

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 2 pages. La reproduction de ce rapport d'essai n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification Echantillon: ALG1807-49

Identification dossier : ALG18-710

Libellé Echantillon Client : PZ5

Matrice : Eau usée

Date de prélèvement : Non précisé

N° d'affaire : EODD 60

Référence Contrat : ALGC18-42

Date réception laboratoire : 03/07/2018

Paramètre	Résultats A	Unité	Incertitude élargie U(A) k=2	Limite de Détection LD	Date de la mesure	Méthode	Norme	cofrac
nalyse réalisée par : LED								
Thallium 208	<0,0072	Bq/I		0.015	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 210	0.12	Bq/I	0.06	0.15	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 212	0.029	Bq/I	0.007	0.013	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 214	0.025	Bq/I	0.015	0.034	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Bismuth 214	0.035	Bq/I	0.018	0.045	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Radium 226	0.029	Bq/I	0.011	0.045	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Radium 228	<0,03	Bq/I		0.062	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Actinium 228	<0,03	Bq/I	-	0.062	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 230	<0,55	Bq/I		1,1	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 232	<0,03	Bq/I	5 4 9	0.062	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 234	<0,054	Bq/I	-	0.13	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Uranium 235	<0,052	Bq/I		0.11	14/08/2018	Spectromètrie Gamma	NF EN ISO 10703	#
Uranium 238	<0,054	Bq/I	(5)	0.13	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Potassium 40	0.38	Bq/I	0.12	0.27	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#

U238 déduit du Th234, Ra226 déduit du Pb214 et du Bi214, Ra228 déduit de l'Ac228, Th232 déduit de l'Ac228

Laboratoire Environnement et Dosimétrie (LED) Avenue du Brugeaud - 87250 Bessines-sur-Gartempe

Rapport d' Essais

Page 2 / 2

Edité le : 17/08/2018 ALG1807-49-V1

Expression des résultats :

Si A est inférieur ou égal à SD alors le résultat est exprimé sous la forme : < SD

Si A>SD alors le resultat est exprimé sous la forme : A±U(A)

Avec SD: Seuil de décision, LD: Limite de détection, A: Activité, U(A): Incertitude élargie associée à A.

Claude Gibaud

Responsable Technique Laboratoire

Laboratoire Environnement et Dosimétrie (LED) Avenue du Brugeaud - 87250 Bessines-sur-Gartempe

Rapport d' Essais

Page 1 / 2

Edité le : 17/08/2018 ALG1807-50-V1

A l' attention du chargé d'affaire Laurent LAVERGNAS

Pour le client EODD M. Laurent MAILLARD

Le Parc Gratte-Ciel 15/19 rue Jean Bourgey 69100 VILLEURBANNE

FRANCE

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 2 pages. La reproduction de ce rapport d'essai n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Identification Echantillon: ALG1807-50

Identification dossier: ALG18-710

Libellé Echantillon Client: PZ6

Matrice : Eau usée

Date de prélèvement : Non précisé

N° d'affaire : EODD 60

Référence Contrat : ALGC18-42

Date réception laboratoire : 03/07/2018

Paramètre	Résultats A	Unité	Incertitude élargie U(A) k=2	Limite de Détection LD	Date de la mesure	Méthode	Norme	cofrac
nalyse réalisée par : LED								
Thallium 208	<0,0047	Bq/I	-	0.0097	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 210	<0,047	Bq/I	-	0.095	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 212	0.008	Bq/I	0.006	0.012	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Plomb 214	0.024	Bq/I	0.008	0.017	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Bismuth 214	0.019	Bq/I	0.007	0.021	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Radium 226	0.021	Bq/I	0.005	0.021	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Radium 228	<0,02	Bq/I	*	0.042	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Actinium 228	<0,02	Bq/I	-	0.042	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 230	<0,41	Bq/I	1940	0.86	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 232	<0,02	Bq/I	929	0.042	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Thorium 234	<0,04	Bq/l	5	0.096	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Uranium 235	<0,037	Bq/I		0.082	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Uranium 238	<0,04	Bq/I	-	0.096	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#
Potassium 40	<0,086	Bq/I	-	0.18	14/08/2018	Spectrométrie Gamma	NF EN ISO 10703	#

U238 déduit du Th234, Ra226 déduit du Pb214 et du Bi214, Ra228 déduit de l'Ac228, Th232 déduit de l'Ac228

Laboratoire Environnement et Dosimétrie (LED) Avenue du Brugeaud - 87250 Bessines-sur-Gartempe

Rapport d' Essais

Page 2 / 2

Edité le : 17/08/2018 ALG1807-50-V1

Expression des résultats :

Si A est inférieur ou égal à SD alors le résultat est exprimé sous la forme : < SD

Si A>SD alors le resultat est exprimé sous la forme : A±U(A)

Avec SD : Seuil de décision, LD : Limite de détection, A : Activité, U(A) : Incertitude élargie associée à A.

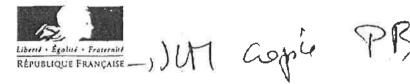
Claude Gibaud

Responsable Technique Laboratoire

ANNEXE 2 : FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES

			0/-	í na lití a						FOLIANTILLON		
Affaire .		Gene	véralités						ECHANTILLON			
Affaire :		03369		Nom :			SERPOL		5 50			
Opérateur :	NPR			Site:		ISDNL	de Pend	ol (38)		Pz F3		
Date :	27	7/06/18		Heure :			9h00					
				Condition		م دید خاک	a a mal					
M444 a also lasses		la a a		Condition	ns de pre	eieven			ا داداد	fallala		
Météo du jour	. !	beau		couvert	 		sec pluie faible pluie forte					
Météo des 3 derniers jours sec				peu de pluie			pluvieux			très pluvieux		
Météo des 20 derniers jours sec T° extérieure : 25 à 30				peu de pluie			pluvieux			très pluvieux		
T° extérieure :		25 a 50										
				Description	on point	de me	sure					
Type d'ouvrage ou p	oint de mes	sure :						Géomét	rie (pro	f, diam, repère, cote/sol)		
puits									- (1-	, ,		
forage								П	HS=	+0,58 m/sol		
piézomètre									∇	NS= 37,17 m/rep		
autre		:								FOND= 45,10 m/rep		
Point particulier :							dia. ext.	: 125 m	m (PVC			
									,	,		
Purge préalable :				oui 💌			non \square					
Mode de purge : por	mpe PP45			Durée :	30	min.	Débit :		m ³ /h	Volume extrait : litres		
				Avant :	37,17	m/rep	Après :	non	m/rep	Repère utilisé : +0,58 m/sol		
								mes	uré			
				Mesures in	-situ et o	bserv	ations					
Débit naturel ou de f	onctionnem	nent :					e en fond	tionnen	nent :	oui 🔲 non 🖿		
Niveau statique	37,17	m/sol				Repè	re utilisé		0,58	m/sol		
Température eau		13,5	°C			Odeu	r		Néan	t		
pH		7,08				Save			Non to	esté		
Conductivité		693	μS/cm			Coule	ur		_	parent		
Redox		129	mV			Limpi	dité		Claire	1		
O ₂ dissous		9,29	mg/l	108	%							
				P	rélèveme	ent						
Heure: 9h30												
Type de préleveur :	pompe	PP45										
Zone prélevée :	vers 42	m										
Nombre de flacons :	17											
Analyses prévues :		DOE CO	T Ammo	nium Nitritoo	Nitrotoo	NIZT	Mátauv t	totouv o	t diagon	a AOV CAV dont BTEV BCB		
										s, AOX, CAV dont BTEX, PCB, gnésium, MES, Coliformes à 37		
										Escherichia coli + radiactivité		
	,				,	,			,			
Dispositions particuli	ères :											
Observations:												

			Oźmź							FOLIANTILLON		
A CC a la se		200000	Gene	ralités	I		OFPRO		ECHANTILLON			
Affaire :	ŀ	P03369		Nom : Site :		1001	SERPO		_			
Opérateur :		NPR				ISDN	D de Pe			Pz F2		
Date :	27/06/18			Heure :			11h00					
				O a maliki a								
NACIC III		beau	_	Conditio	ons de p	reieve				()		
Météo du jour							faible pluie forte					
Météo des 3 derniers jours sec Météo des 20 derniers jours sec				peu de pluie pluvieux						très pluvieux		
		peu de plui	e 		pluvieux	X <u> </u>		très pluvieux				
T° extérieure :		25 à 30										
				Descripti	an nain	L al a						
Type d'ouvrage ou point de mesure : Géo										of diam vanàva acta/act)		
	point de me	sure:						Geom	etrie (pro	of, diam, repère, cote/sol)		
puits								г	1 uo l	0.401.7.1		
forage							_		HS=	+0,48 m/sol		
piézomètre		_					_		∇	NS= 36,08 m/rep		
autre		-								FOND=l 43,50 m/rep		
Point particulier :												
Dunna mućalahla												
Purge préalable : Mode de purge : po	- DD45			oui Durée :	20	mai in	non L Débit :		3 //	Volume extrait : litres		
Mode de purge : po	ompe PP45					min.						
				Avant :	36,08	m/rep	Après :	noi		Repère utilisé : +0,48 m/sol		
				Mesures in	a oitu ot	ahaar	votiono	me	suré			
Débit naturel ou de	fonotionnor	mont :		Wesules II	i-Situ et			otionno	mont:	oui 🔲 non		
		m/sol					e en fon re utilisé	Clionne		48 m/sol		
Niveau statique Température eau	30,00	14,7	°C			Odeu			Néan			
pH		7,49				Save			Non t			
Conductivité		643	μS/cm			Coule			_	sparent		
Redox		127	μο/cili mV			Limpi				•		
O ₂ dissous		9,,08	mg/l	104	· ·					aire, présence légère de petite _ particules végétales		
O ₂ 0133003		9,,00	ilig/i	104	/0					particulos vogotalos		
					Prélèvem	ent						
Heure: 11h30					Televell	iciit						
Type de préleveur :	pompe	DD45										
Zone prélevée :	vers 42											
Nombre de flacons		. 111										
Analyses prévues :			00T A	NPI	21 N 121 .		UZT AAC			See a AOV OAV de d'ETEV		
Allalyses prevues .										ssous, AOX, CAV dont BTEX, Calcium, Magnésium, MES,		
					•	•				ques intestinaux, Escherichia coli		
	Comon	11100 a 07	, 00011	noo a momi	Stororant		ioactivité			quos intestinada, Essinonena sen		
Dispositions particu	liòroc :											
Dispositions particu	ileres .											
Observations:												
	xtension de	stockage	e (déchets	inertes à pri	ori) à pro	oximité	immédi	ate du r	iézo Pzl	F2		
]		J.Jonage	(u pii	, a pic					· -		


Généralités										ECHANTILLON	
Affaire :	F	P03369	GCC	Nom :		SERPOL			LOUGHTIELON		
Opérateur :		NPR				ISDN	ID de Pen			Pz 5	
Date:	2	27/06/18					12h00			1	
2 6.13		.,		Heure :							
				Condition	ns de pr	élève	ment				
Météo du jour		beau		couvert			sec		pluie f	faible Duie forte D	
Météo des 3 dernie	rs jours	sec		peu de pluie	e 🗆		pluvieux			très pluvieux	
	Météo des 20 derniers jours sec			peu de pluie			pluvieux			très pluvieux 🖂	
T° extérieure :	T° extérieure :						<u>.</u>				
				Description	on point	de m	esure				
Type d'ouvrage ou i	point de me	sure :					(3éométr	ie (pro	f, diam, repère, cote/sol)	
puits											
forage							_ ا	$-\!$	HS=	+0,43 m/sol	
piézomètre										NS= 37,92 m/rep	
autre		:								FOND= 40,90 m/rep	
Point particulier :											
-											
Purge préalable :				oui 🗆			non 🖿		2	T	
Mode de purge : ba	ailer			Durée :		min.	Débit :	n.m		Volume extrait : litres	
				Avant :	39,9	90	Après :		Repère utilisé : +0,43 m/sol		
								mesu	ıré		
				Mesures in-	·situ et d						
Débit naturel ou de					Pompe en fonctionne					oui non	
Niveau statique	3/	,92 		T	!					m/sol	
Température eau		14,1	°C		!	Odeu			Aucur		
pH	$-\!$	7,2		<u> </u>	!	Save			Aucur		
Conductivité		675	μS/cm		!	Coule			Limpid		
Redox	$-\!\!\!\!\!+\!\!\!\!\!-$	129	mV	ł		Limpi	dite		Claire	!	
O ₂ dissous		9,66	mg/l	108	%				<u> —</u>		
				Di	61 àvom	2.54					
10b1E				FI	rélèvem	ent					
Heure: 12h15	: Bailer										
Type de préleveur : Zone prélevée :	vers 40) m									
Nombre de flacons) [[[
Analyses prévues :				NI:Lui	· NI:4w	N			مالم الم	AOV OAV dest DTEV	
Alialyses pievues .	200									ssous, AOX, CAV dont BTEX, Calcium, Magnésium, MES,	
										oques intestinaux, Escherichia	
	000	/////OG & G.	, 00	11100 a t.101			adioactivit		_11(0,00	Adoo intootingax, Eoonone	
Dispositions particu	ıliàras ·										
Dispositions parties											
Observations:											

			Géné	éralités						ECHANTILLON				
Affaire :	P	03369	dene	Nom :	l		SERPO							
Opérateur :		NPR			1	ISDN	ID de Per		Pz 6					
Date:		27/06/18				1001	10h00	101 (00)		l '-~				
Date .		700/10		Heure :	1		101100							
				Conditio	ns de pr	élève	ment							
Météo du jour		beau		couvert			sec		pluie	faible Duie forte D				
				peu de plu	ie 🗀		pluvieux			très pluvieux				
Météo des 20 der	peu de plu				très pluvieux 🖂									
T° extérieure :					'									
L.		25 à 30												
				Descripti	on point	de m	esure							
Type d'ouvrage ou	u point de me	sure :		<u>-</u>	•		e (prof	, diam, repère, cote/sol)						
puits	. \square									· · · · · · · · · · · · · · · · · · ·				
forage								П	HS=	+0,7 m/sol				
piézomètre									∇	NS= 34,17 m/rep				
autre		•								FOND= 40,40 m/rep				
Point particulier :														
January Paradolior														
Purge préalable	•			oui E			non \square							
Mode de purge :				Durée :	30	min.	Débit :		m ³ /h	Volume extrait : litres				
mode de parge :	ротрот то			Avant :			Après :	non		Repère utilisé : +0,7 m/sol				
Avaiit : 34,1							mesuré							
				Mesures in	-situ et d	bser	vations							
Débit naturel ou d	e fonctionnen	nent :				Pomp	ent :	oui 🔲 non 🔳						
Niveau statique		m/sol					re utilisé		0,7 m/sol					
Température eau	2 1,11	13,2	°C			Odeu			+	Néant				
рН		6,98				Save			_	Non testé				
Conductivité		672	μS/cm			Coule			+	parent				
Redox		133	mV			Limpi			Claire					
O ₂ dissous		9,43	mg/l		8 %									
	l .	-, -	<u> </u>											
				Р	rélèvem	ent								
Heure: 10h30)													
Type de préleveur		PP45												
Zone prélevée :	vers 38													
Nombre de flacon														
Analyses prévues		DROS C	OT Amm	onium Nitr	itae Nitre	toe N	IKT Máta	uv totau	v at die	sous, AOX, CAV dont BTEX,				
i iii.ai.yeee pi e i aee	,									alcium, Magnésium, MES,				
										ques intestinaux, Escherichia				
			,				dioactivit			,				
Dispositions partic	rulières :													
Diopositiono partit	Jano: 00 :													
Observations :														
2220. (4.10110 .														

ANNEXE 3: ARRETE PREFECTORAL

PRÉFECTURE DE L'ISÈRE

S)

DIRECTION DES ACTIONS INTERMINISTERIELLES

PUREAU DE L'ENVIRONNEMENT

GRENOBLE, LE

TEL 04.76.60.48.54.5

rssier n 22 072

ARRETE Nº 2006-01064

LE PREFET DE L'ISERE, Chevalier de la Légion d'Honneur, Officier de l'Ordre National du Mérite,

VU le Code de l'Environnement (partie législative) annexé à l'Ordonnance n° 2000-914, du 18 septembre 2000, notamment son Livre V, Titre 1^{er} (I.C.P.E.) ;

VU la loi n° 92-3, du 3 janvier 1992, dite "loi sur l'eau", modifiée ;

VU le décret n° 53-578, du 20 mai 1953, modifié ;

VU le décret n° 77-1133, du 21 septembre 1977 relatif aux Installations Classées, modifié par le décret n° 2005-1170 du 13 septembre 2005, ;

VU l'arrêté N°79-10405 en date du 26 novembre 1979, ayant autorisé le SICTOM de LA BIEVRE à exploiter une décharge contrôlée d'ordures ménagères et autres résidus urbains située sur la commune de PENOL, au lieu-dit « Les Burettes » ;

VU l'arrêté n° 69-1316 en date du 5 avril 1989, ayant autorisé l'extension (sur les parcelles n°s 13, 61, 62 et 63 ,section ZD et la parcelle n°36, section ZK du plan cadastral) de la décharge contrôlée d'ordures ménagères exploité à PENOL par le SICTOM de LA BIEVRE ;

VU l'arrêté n°2000-3357en date du 17 mai 2000, imposant au SICTOM de LA BIEVRE des prescriptions complémentaires relatives à la mise en conformité des conditions d'exploitation de son centre de stockage de déchets ménagers ;

VU le dossier concernant de demande présentée le 2 mai 2005 par M. le Président du SICTOM de LA BIEVRE en vue de procéder à la réhabilitation des casiers n°s 1 et 2 de son centre de stockage de déchets ultimes sis à PENOL, au lieu-dit « Les Burettes » ;

VU le rapports du Directeur Régional de l'Industrie, de la Recherche et de l'Environnement Rhône-Alpes , Inspecteur des Installations Classées, en date des 23 août 2005 ;;

VU l'avis de Mme le Chef de la Mission Inter-services de l'Eau (MISE), en date du 14 novembre 2005 :

VU l'avis du Directeur Départemental des Affaires Sanitaires et Sociales, en date du 25 novembre 2005 :

12. PLACE DE VERDUN - B.P. 1046 - 38021 GRENOBLE CEDEX 1 - 管 04.76.60 34.00 - 图 04.78.51.03.86 - 电: WWW.isere pref.gouv.ft

VU le rapport du Directeur Régional de l'Industrie, de la Recherche et de l'Environnement Rhône-Alpes, Inspecteur des Installations Classées, en date du 14 novembre 2005 ;

VU la lettre, en date du 22novembre 2005, invitant le demandeur à se faire entendre par le Conseil Départemental d'Hygiène et lui communiquant les propositions de l'Inspecteur des Installations Classées;

VU la lettre adressée le 2 décembre 2005 à M. le Président du SICTOM de LA BIEVRE et l'invitant à transmettre les résultats d'analyses de la nappe souterraine à partir des piézomètres existants (« point zéro »),comme suite aux observations émises par les membres du Conseil Départemental d'Hygiène ;

VU la lettre en date du 26 décembre 2005, précisant à M le Président du SICTOM de LA BIEVRE que l'examen de son dossier a été ajourné lors de la séance du Conseil Départemental d'Hygiène du 1^{er} décembre 2005 pour compléments d'information (analyses piézométriques) et l'invitant à se faire entendre à la séance du jeudi 5 janvier 2005 ;

VU les résultats de la campagne d'analyse des eaux souterraines remis le 20décembre 2005 par le Syndicat précité ;

VU l'avis favorable du Conseil Général de l'Isère, en date du 3 janvier 2006 ;

VU l'avis du Conseil Départemental d'Hygiène, en date du 5 janvier 2006 ;

VU la lettre en date du 6 janvier 2006, transmettant au requérant le projet d'arrêté complémentaire concernant son établissement ;

VU la réponse du pétitionnaire en date du 10 janvier 2006, précisant que ce projet d'arrêté n'appelle aucune observation particulière de sa part ;

CONSIDERANT qu'il convient, conformément aux dispositions de l'article 18 du décret du 21 septembre 1977 susvisé, d'imposer à M. le Président du SICTOM de LA BIEVRE des prescriptions complémentaires fixant les conditions de réhabilitation des casiers n°s 1 et 2 de son centre de stockage des déchets ménagers situé à PENOL, en vue de garantir les intérêts visés à l'article L511-1 du Code de l'Environnement;

SUR proposition du Secrétaire Général de la Préfecture de l'Isère ;

ARRETE

ARTICLE 1er -Monsieur le Président du SICTOM de LA BIEVRE est tenu de respecter strictement les prescriptions complémentaires annexées au présent arrêté et fixant les conditions de réhabilitation des casiers n°s 1 et 2 (vide de fouilles) de son centre de stockage de déchets ménagers et assimilés situé à PENOL, au lieu-dit « Les Burettes »..

ARTICLE 3 - L'exploitant devra déclarer sans délai les accidents ou incidents survenus du fait du fonctionnement de cette installation qui seraient de nature à porter atteinte aux intérêts mentionnés à l'article L 511-1 du Code de l'Environnement .En cas d'accident, il sera tenu de lui remettre un rapport répondant aux exigences de l'article 38 du décret n°77-1133 du 21 septembre 1977susvisé.

ARTICLE 4 - Conformément aux dispositions de l'article 20 du décret du 21 septembre 1977 susvisé, tout exercice d'une activité nouvelle classée, toute transformation, toute extension de l'exploitation devra, avant sa réalisation, être porté à la connaissance du Préfet avec tous ses éléments d'appréciation.

Tout transfert dans un autre emplacement, d'une installation soumise à autorisation, devra faire l'objet d'une demande préalable au Préfet.

ARTICLE-5 En cas d'arrêt définitif de l'installation, l'exploitant est tenu de notifier au Préfet la date de cet arrêt au moins six mois avant celui-ci, en joignant un dossier comprenant le plan mis à jour des terrains d'emprise de l'installation, ainsi qu'un mémoire sur l'état du site précisant les mesures prises ou prévues pour assurer la mise en sécurité de ce site, conformément aux dispositions de l'article 34-1 du décret n° 77-1133 du 21 septembre 1977, modifié par l'article 11 du décret n° 2005-1170 du 13 septembre 2005.

Ces mesures comportent notamment :

- --l'évacuation ou l'élimination des produits dangereux et, pour les installations autres que les installations de stockage de déchets, celle des déchets présents sur le site,
- --des interdictions ou limitations d'accès au site,
- --la suppression des risques d'incendie ou d'explosion,
- --la surveillance des effets de l'installation sur son environnement.

En outre, l'exploitant est tenu de placer le site de l'installation dans un état tel qu'il ne puisse porter atteinte aux intérêts mentionnés à l'article L 511-1 du Code de l'Environnement et qu'il permette un usage futur du site déterminé selon les dispositions prévues par les articles 34-2 et 34-3 du décret n° 2005-1170 du 13 septembre 2005..

ARTICLE 6 - Un extrait du présent arrêté complémentaire sera tenu à la disposition de tout intéressé et sera affiché à la porte de la mairie de PENOL, pendant une durée minimum d'un mois. Le même extrait sera affiché, en permanence, de façon visible, dans l'installation, par les soins de l'exploitant. Un avis sera inséré par les soins du Préfet de l'Isère et aux frais de l'exploitant, dans deux journaux locaux ou régionaux diffusés dans tout le département.

ARTICLE 7 - En application de l'article L 514-6 du Code de l'Environnement, cet arrêté peut être déféré au Tribunal Administratif de Grenoble, d'une part par l'exploitant ou le demandeur dans un délai de deux mois à compter de sa notification, d'autre part par les tiers dans un délai de quatre ans à compter de sa publication ou de son affichage.

ARTICLE 8 - Le présent arrêté doit être conservé et présenté à toute réquisition.

ARTICLE 9 - Le Secrétaire Général de la Préfecture de l'Isère, le Sous-Préfet de VIENNE, le Maire de PENOL et l'Inspecteur des Installations Classées, sont chargés, chacun en ce qui le concerns, de l'exécution du présent arrêté qui sera notifié au SICTOM de LA BIEVRE.

FAIT à GRENOBLE, le 27 JAN 2006

LE PREFET
Pour le Page
le Secrétal e Géner

Dominique BLAIS

4. DISPOSITIONS RELATIVES AUX EAUX

4.1 - Principe

Sont interdits tous déversements, écoulements, rejets, dépôts directs ou indirects d'effluents susceptibles d'incommoder le voisinage, de porter atteinte à la santé publique ainsi qu'à la conservation de la faune et de la flore, de nuire à la conservation des constructions et réseaux d'assainissement, et au bon fonctionnement des installations d'épuration, de dégager en égout directement ou indirectement des gaz ou vapeurs toxiques ou inflammables.

En particulier, tout déversement sur le sol ou dans le sous-sol est interdit.

Toutes dispositions doivent être prises pour éviter tout déversement accidentel susceptible d'être à l'origine d'une pollution des eaux.

4.2 - Eaux de ruissellement extérieures

Du fait du relief, le débit des eaux de ruissellement extérieures au site est très limité. Cellesci seront collectées avec les eaux de ruissellement intérieures.

4.3 - Eaux de roissellement intérieures

Casier 3 : création d'un fossé étanche sur les cotés Nord, Est et Sud avec une pente générale de 1% et déversement dans la carrière.

Casier 4 et 5 : création d'un fossé étanche sur les cotés Nord, Ouest et sud raccordé pour la partie est des casiers aux fossés du casier 3.

Pour les autres cotés, les fossés seront prolongés par des goulottes béton jusqu'en pied de talus et l'ensemble dirigé vers la carrière.

Casiers 1 et 2 : création d'un fossé étanche sur les cotés

Les eaux doivent transiter avant rejet au milieu naturel par un bassin de stockage étanche dimensionné pour capter au moins les ruissellements consécutifs à un événement pluvieux de fréquence décennale, permettant une décantation et un contrôle de leur qualité.

Compte-tenu de l'exploitation simultané de la décharge et de la carrière, un soin particulier est apporté aux eaux de ruissellement des parties communes afin qu'il ne puisse y avoir contact entre le massif de déchets et celles-ci ou infiltration vers le massif de déchets. (création systématique de fossés afin d'éloigner ces eaux du pied des digues et des zones remblayées).

4.4 - Lixiviats

Les lixiviats issus des casiers 1, 2, 5 et de la tranchée drainante entre les casiers 4 et 5 sont raccordés à une capacité de stockage de 3000 m3

Ces lixiviats sont traités par une installation bio-physico-chimique d'une capacité de 2m3/h . La quantité et la qualité des lixiviats et des lixiviats traités est suivie dans les conditions suivantes :

Une fois par trimestre une analyse sera effectuée sur les éléments suivants :

Volume, MEST, COT, DCO, DBOs, azote global, ammoniaque, phosphore total, phénol, métaux totaux (dont Cr^s, Cd, Pb, Hg), As, fluor et composés, CN libres, hydrocarbures totaux, composés halogériés (en AOX et EOX), substances toxiques bio-accumulables ou nocives pour l'environnement, conductivité, résistivité.

La fréquence pourra devenir annuelle si l'évaluation des données indique que l'on obtient les mêmes résultats avec des intervalles plus longs, et après accord de l'inspection des installations classées.

Une fois par an, les analyses seront effectuées par un laboratoire agréé.

Les lixiviats bruts ne peuvent être mélangés aux lixiviats traités avant rejet.

Les lixiviats traités peuvent être rejetés au milieu naturel si les valeurs limites suivantes sont respectées :

```
DCO < 200 mg/f
DBO5 < 30 mg/l
MEST < 20 mg/l
COT < 70 mg/t
Azote global < 20 mg/l (moyenne mensuelle)
Phosphore total < 10 mg/l (moyenne mensuelle)
Phénois < 0,1 mg/i
Métaux totaux < 15 mg/l
Cr6+ < 0.1 \text{ mg/}
Cd
      < 0,2 mg/l
РЪ
     < 0,5 mg/l
Hg
      < 0.05 \text{ mg/l}
       < 0,1 mg/l
Fluor et composés < 15 mg/l
CN libres < 0.1 mg/l
Hydrocarbures totaux < 5 mg/l
Composés organiques halogénés < 1 mg/l
```

4.5 - Maîtrise des niveaux de lixiviats

Chaque puits est jaugé mensuellement. Une hauteur d'eau supérieure à 0,30 mêtre entraînera un pompage systématique et un nouveau contrôle 24 heures plus tard. Un registre de surveillance consignera toutes les mesures.

4.6 - Contrôle des eaux souterraines

Le contrôle des éaux souterraines est effectué sur les piezomètres suivants :

Référence amont : puit CUMA à Sardieu

Références avail : piézomètres F2, F5 et un troisième à créer au sud du casier 2

Le programme de surveillance est le suivant :

-Tous les trimestres ; pH, potentiel d'oxydo-réduction, résistivité, COT, relevé des niveaux piézométriques rattachés au NGF accompagné d'une carte interprétative des conditions piézomètriques du jour..

-Tous les ans :

- Analyse physico-chimique : pH, potentiel d'oxydoréduction, résistivité, NO_2 , NO_3 , NH^{4*} , CF SO_4^{2*} , PO_4^{3*} , K*, Na*, Ca^{2*} , Mg^{2*} , Pb, Cu, Cr, Ni, Zn, Mn, Sn, Cd, Hg, Dco, COT, AOX, PCB, HAP, BTEX.
- Analyse biologique : DBO5.
- Analyse bactériologique il coliformes fécaux, coliformes totaux, streptocoques fécaux, présence de salmonelles,

La première analyse annuelle est réalisée des notification de l'arrêté.

Tous les quatre ans elle est réalisée par un laboratoire agréé.

En cas de dégradation significative de la qualité des eaux souterraines, il sera fait application des dispositions de l'article 41 de l'arrêté ministériel du 9 septembre 1997.

4.7 - Contrôle des eaux superficielles

Tous les trimestres, une analyse du pH et une mesure de résistivité seront effectuées sur les eaux de ruissellement.

Le prélèvement sera réalisé à l'aval de tous les déversements en provenance du site du stockage. En cas d'anomalie, une analyse identique à celle des lixiviats sera effectuée.

4.8 - Registre du bilan hydrique

Un bilan hydrique annuel est établi conformément à l'article 43 de l'arrêté ministériel du 9 septembre 1997.

4.9 - Conditions d'aménagement

Les divers équipements de traitement et de valorisation des lixiviats et du biogaz seront placés sur une dalle en béton. La forme de cette dalle devra permettre de recueillir les eaux pluviales et les fuites éventuelles pour les diriger vers un regard afin qu'elles soient traitées avec les lixiviats.

SERPOL ISDND DE PENOL

Surveillance de la qualité des eaux souterraines – Campagne d'août 2018

Rapport d'EODD Ingénieurs Conseils

SERPOL

Téléphone : 04 78 70 33 55 2 Chemin du Génie - BP 80 Adresse:

69657 VENISSIEUX CEDEX Télécopie : 04 78 70 27 20

M. Nicolas Seyve

(Responsable secteur

nicolas.seyve@serpol.fr Gestion Globale des Centres Destinataire: Email: jerome.effantin@serpol.fr

d'Enfouissement)

M. Jérôme Effantin (resp.

d'exploitation)

Surveillance de la qualité des eaux souterraines de l'ISDND de Penol - Campagne d'août 2018

RAPPORT d'EODD Ingénieurs Conseils

IDENTIFICATION				MAITRISE DE LA QUALITE			
N° Contrat	Indice	Révisio	on	Chef de projet	Coréférence		
P03369	1	05/09/20)18	L. Maillard			
Nombre de pag	Nombre de pages (hors annexes)		18	05/09/2018	G. Lacour		
Nombre d'annexes			3				

Vos contacts et interlocuteurs pour le suivi de ce dossier :

Parc Gratte-Ciel 13-19, rue Jean Bourgey

69100 Villeurbanne

04.72.76.06.90

급: 04 72.76.06.99

I.maillard@eodd.fr Chef de projet : L. Maillard

Directeur métier stockage et valorisation des déchets :

G. Lacour g.lacour@eodd.fr

www.eodd.fr

SOMMAIRE

1.	INTRODUCTION	5
1.1	CONTEXTE DE L'ETUDE	5
1.2	REFERENTIELS ET ACCREDITATIONS	6
1.3	Sources d'information	6
1.4	LIMITES DE L'ETUDE	7
2.	INVESTIGATIONS DE TERRAIN	8
2.1	METHODES ET TECHNIQUES RETENUES	8
3.	RESULTATS	10
3.1	SURVEILLANCE DU NIVEAU DE LA NAPPE	10
3.2	EVOLUTION DE LA PIEZOMETRIE DEPUIS FEVRIER 2007	12
3.3	RESULTATS DES MESURES IN SITU ET DES ANALYSES EN LABORATOIRE	13
3.3	3.1 Mesures In Situ	13
3.3	3.2 Analyses en laboratoire	
3.3	3.3 Comparaison avec les autres campagnes	13
4.	ANNEXES	18

ANNEXE 1: BULLETINS D'ANALYSES EN LABORATOIRE

ANNEXE 3: ARRETE PREFECTORAL

ANNEXE 2: FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES

19

20

21

LISTE DES FIGURES

FIGURE 1: LOCALISATION DU SITE (EXTRAIT IGN 1/25000)	5
FIGURE 2 : CARTE PIEZOMETRIQUE AU 30 AOUT 2018	11
FIGURE 3: EVOLUTION DE LA PIEZOMETRIE DEPUIS 2007, EN M NGF	12
FIGURE 4: EVOLUTION DE LA CONDUCTIVITE DES EAUX SOUTERRAINES	14
FIGURE 5: EVOLUTION DU POTENTIEL D'OXYDO-REDUCTION DES EAUX SOUTERRAINES	15
FIGURE 6: EVOLUTION DU PH DES EAUX SOUTERRAINES	16
FIGURE 7: EVOLUTION DU CARBONE ORGANIQUE TOTAL DANS LES EAUX SOUTERRAINES	17
LISTE DES TABLEAUX	
Tableau 1 : Sources d'informations	7
TABLEAU 2 : NORMES DES ANALYSES REALISEES EN LABORATOIRE	9
TABLEAU 3 : NIVEAU DE LA NAPPE AUTOUR DE L'ISDND DE PENOL (CAMPAGNE DU 30 AOUT 2018)	10
TABLEAU 4: SYNTHESE DES RESULTATS DES MESURES IN SITU ET DES RESULTATS D'ANALYSES POUR LES	EAU
SOUTERRAINES PRELEVEES LE 30 AOUT 2018	13
LISTE DES ANNEXES	

1. INTRODUCTION

1.1 CONTEXTE DE L'ETUDE

La société SERPOL exploite pour le compte du SICTOM de la Bièvre le CSDU des Burettes, localisé sur la commune de PENOL (38).

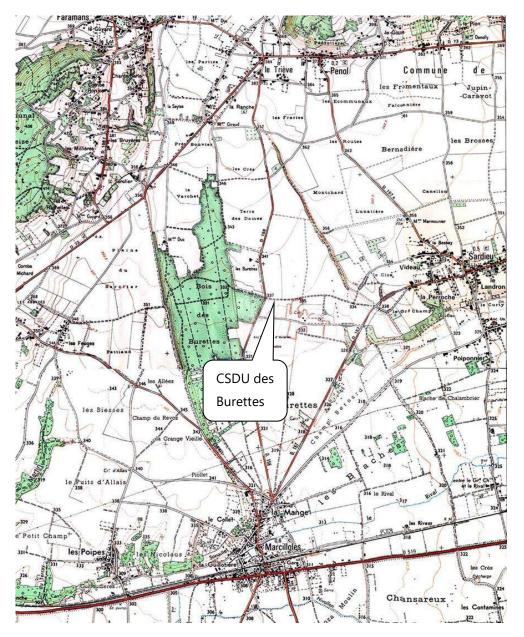


Figure 1: Localisation du site (extrait IGN 1/25000)

Conformément aux prescriptions de l'article 4 de l'arrêté Préfectoral n°2006-01064 du 27 janvier 2006 relatif à l'exploitation du site, des analyses d'eaux souterraines doivent être réalisées trimestriellement sur les points de contrôle mis en place en amont et en aval du site.

Dans ce cadre, EODD Ingénieurs Conseils a été mandaté pour réaliser le suivi de l'année 2018 des eaux souterraines.

Le présent rapport concerne la campagne de prélèvement d'août 2018.

1.2 REFERENTIELS ET ACCREDITATIONS

La présente mission a été réalisée selon les référentiels suivants :

 la norme NF X31-615 de Décembre 2017 sur les prélèvements et l'échantillonnage des eaux souterraines dans un forage

Les analyses ont été sous-traitées au laboratoire Wessling, certifié par le COFRAC¹ (attestations d'accréditation n°1-5578 rév. 6 et n°1-1364 rév. 15). Les méthodes d'analyses sont récapitulées au paragraphe 2.3 (Tableau 2).

1.3 SOURCES D'INFORMATION

Les différentes sources d'information consultées pour la réalisation de ce rapport sont les suivantes :

Titre	Source / Auteur	Référence
Arrêté préfectoral de poursuite d'exploitation en date du 17 mai 2000	Préfecture de l'Isère	n°2000- 3357
Arrêté préfectoral en date du 27 janvier 2006	Préfecture de l'Isère	n°2006- 01064
Arrêté préfectoral complémentaire en date du 16 avril 2009	Préfecture de l'Isère	n°2009- 02631
Société SERPOL – Contrôle de la qualité des eaux souterraines et des lixiviats au droit du C.E.T de Penol – campagne 11/2004	2ie	R 2004- 4969
Société SERPOL – Contrôle de la qualité des eaux souterraines et des lixiviats au droit du CSDU de Penol – campagne 03/2005	CSD AZUR	AZ02330
Société SERPOL – Contrôle de la qualité des eaux souterraines au droit du CSDU de Penol – campagne 06/2005	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 09/2005 et 12/2005	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines et des lixiviats au droit du CSDU de Penol – Synthèse 2005 -	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 04/2006, 07/2006, 10/2006 et 12/2006	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des lixiviats du bassin au droit du CSDU de Penol – campagne 12/2006	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 04/2007, 08/2007, 10/2007 et 12/2007	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 03/2008, 06/2008, 09/2008 et 12/2008	CSD AZUR	LY3313.100
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 03/2009, 06/2009, 09/2009 et 12/2009	CSD AZUR	LY3313.102

¹ COmité FRançais d'ACréditation.

P03369 / Emission du 30/08/2018

-

Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2010, 06/2010, 09/2010 et 12/2010	CSD AZUR	LY3313.103
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2011, 06/2011, 09/2011 et 12/2011	CSD INGENIEURS	LY3313.104
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2012, 06/2012, 09/2012 et 12/2012	CSD INGENIEURS	LY3313.105
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2013, 06/2013, 09/2013 et 12/2013	CSD INGENIEURS	LY3313.106
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagne de 03/2014, 06/2014, 09/2014 et 12/2014	EODD INGENIEURS CONSEILS	LY3313.107
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2015, 06/2015, 09/2015 et 12/2015	EODD INGENIEURS CONSEILS	P00594
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2016, 06/2016, 09/2016 et 12/2016	EODD INGENIEURS CONSEILS	P01440
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2017, 06/2017, 09/2017 et 12/2017	EODD INGENIEURS CONSEILS	P02611
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2018 et 06/2018	EODD INGENIEURS CONSEILS	P03369
Carte topographique au 1/25 000 n° 3331 O de Meyzieux/Montluel	IGN	[22]

Tableau 1 : Sources d'informations

1.4 LIMITES DE L'ETUDE

Les résultats de ce rapport rendent compte de la qualité de l'eau souterraine prélevée dans les piézomètres de surveillance au 30 août 2018.

Le programme de surveillance est mené dans un but précis : assurer un suivi dans le temps de la qualité des eaux souterraines pour vérifier l'absence d'anomalies de concentration des substances recherchées.

La surveillance de la qualité des eaux permet de quantifier l'impact éventuel du site sur les eaux souterraines. En revanche, la mission confiée à EODD ne comprend pas d'analyse interprétative ni de recherche d'origines d'éventuelles anomalies qui pourraient être détectées.

2. INVESTIGATIONS DE TERRAIN

2.1 METHODES ET TECHNIQUES RETENUES

L'arrêté préfectoral prévoit la réalisation de prélèvements d'eaux souterraines sur quatre ouvrages de captage présents sur le site :

- Puits CUMA (amont hydraulique),
- Piézomètre PzF2 (référence aval),
- Piézomètre Pz5 (référence aval),
- Piézomètre Pz6 (ouvrage situé au Sud du casier 2).

Le puits CUMA n'étant plus utilisable pour les prélèvements depuis des travaux de réaménagement en 2011, un prélèvement a été effectué (en commun accord avec la société SERPOL) au droit du piézomètre PzF3, en remplacement de celui dans le puits CUMA.

Les prélèvements sur les autres piézomètres ont été réalisés après renouvellement des eaux du tube d'équipement jusqu'à stabilisation de leurs paramètres physico-chimiques, conformément aux recommandations de la norme NF X31-615 de Décembre 2017 sur les prélèvements et l'échantillonnage des eaux souterraines dans un forage.

Les purges ont été réalisées par pompage au moyen d'une pompe de prélèvement électrique (pompe immergée), hormis pour le Pz5 pour lequel une purge manuelle au moyen d'un bailer a été préférée, compte tenu de la faible capacité en eau de cet ouvrage.

Les échantillons ont été conditionnés dans des flaconnages dédiés et stockés dans une glacière munie d'éléments réfrigérants avant d'être acheminés au laboratoire Wessling.

2.2 PARAMETRES A ANALYSER / METHODES ANALYTIQUES - FREQUENCES DE MESURES ET DE PRELEVEMENTS

Conformément aux prescriptions relatives au contrôle des eaux souterraines précisées dans l'arrêté préfectoral n°2006-01064 du 27 janvier 2006, des analyses d'eaux souterraines doivent être réalisées sur les points de contrôle mis en place en amont et en aval du site. Le programme spécifié dans cet arrêté préfectoral doit être complété par celui précisé dans l'arrêté ministériel du 15 février 2016 relatif aux installations de stockage de déchets non dangereux (selon article 24).

Les analyses in situ et en laboratoire, listées ci-dessous, sont réalisées conformément aux exigences réglementaires sur tous les échantillons prélevés, et selon les fréquences et normes analytiques suivantes :

Paramètres	AP site 27/01/06	AP site 27/01/06	AM 15/02/16	AM 15/02/16	Méthode d'analyse	PzF3	PzF2	Pz5	Pz6
Fréquence	annuel	trimestriel	Bisannuel : basses et hautes eaux	Tous les 5 ans					
Conductivité / résistivité	X (In Situ)	X (In Situ)	X (In Situ)			Χ	Х	Χ	Χ
pН	X (In Situ)	X (In Situ)	X (In Situ)			Х	Х	Χ	Χ
Potentiel d'oxydoréduction	X (In Situ)	X (In Situ)	X (In Situ)			Х	Х	Х	Х
Radioactivité : analyse par spectrométrie gamma des chaînes de l'uranium et du thorium				х	NF EN ISO 10-703	х	х	х	х
DCO	Х		Х		ISO 15705 (H 45)	Х	Х	Х	Χ
DBO5	X		X		NF EN 1899-1	X	X	X	X
COT	X	Х	X		DIN EN 1484 (H3)	X	X	X	X
Ammonium	X		X		DIN EN ISO 11732	X	X	X	X
Nitrites	X		X		DIN EN ISO 10304-	X	X	Х	X
Nitrates	Х		Х		DIN EN ISO 10304-	Х	Х	Х	Х
NTK			Х		EN 25663	Х	Х	Х	Х
Pb, Cu, Cr, Ni, Zn, Mn, Sn, Cd	Х		X (métaux totaux)		EN ISO 17294	Х	X	Х	X
Fe, As			X (métaux totaux)		EN ISO 11885	Х	Х	Х	Х
Mercure	Х		X (métaux totaux)		EN 1483 - ISO 17294	Х	X	Х	Х
AOX	Х		Х		DIN EN ISO 9562 mod.	Х	Х	Х	Х
CAV dont BTEX	Х		Х		NF EN ISO 11423- 1	Х	Х	Х	Х
PCB	Х		Х		NF EN ISO 6468	Х	Х	Х	Х
HAP	X		X		d'ap. NFT 90-115	X	X	X	X
Chlorures	X		X		DIN EN ISO 10304-	Х	X	Х	Х
Sulfates	Х		Х		DIN EN ISO 10304-	Х	Х	Х	Х
Orthophosphates	Х		Х		NF EN 1189	Х	Х	Х	Χ
Potassium	Х		х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Sodium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Calcium	Х		х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Magnésium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
MES			X		NF EN 872	Х	Х	Х	Х
Coliformes à 37°C	Х		X		BGesBl 10/95(A)	X	X	X	X
Coliformes thermotolérants à 44°C	X		X		BGesBl 10/95(A)	Х	X	Х	Х
Enterocoques intestinaux	Х		х		BGesBl 10/95(A)	Х	Х	Х	Х
Salmonelles	Х		Х		EN ISO 19250	Х	Х	Χ	Х
Escherichia coli			X		Non précisé	Х	Х	Χ	Χ

Tableau 2 : Normes des analyses réalisées en laboratoire

La campagne d'août 2018 correspond à une campagne trimestrielle avec comme unique paramètre suivi en laboratoire le COT.

3. RESULTATS

3.1 SURVEILLANCE DU NIVEAU DE LA NAPPE

Le niveau de la nappe a été mesuré le 30 août 2018 au moyen d'une sonde piézométrique au niveau de quatre points de contrôle : PzF2, PzF3, Pz5 et Pz6.

Les résultats obtenus sont indiqués dans le tableau 3 ainsi que sur la Figure 2 ci-après :

	Puits CUMA	PzF3	PzF2	Pz5	Pz6
cote TN (m NGF)	333,76	334,76	331,188	332,49	333,06
Cote du repère utilisé					
pour les mesures (m	Non mesuré	335,34	331,67	332,92	333,76
NGF)					
Niveau statique par	Non mesuré	37,58	35,48	38,32	34,54
rapport au repère (m)	Non mesure	37,30	55,46	50,52	54,54
niveau nappe (m NGF)	/	297,76	296,19	294,60	299,22

Tableau 3 : Niveau de la nappe autour de l'ISDND de Penol (campagne du 30 août 2018)

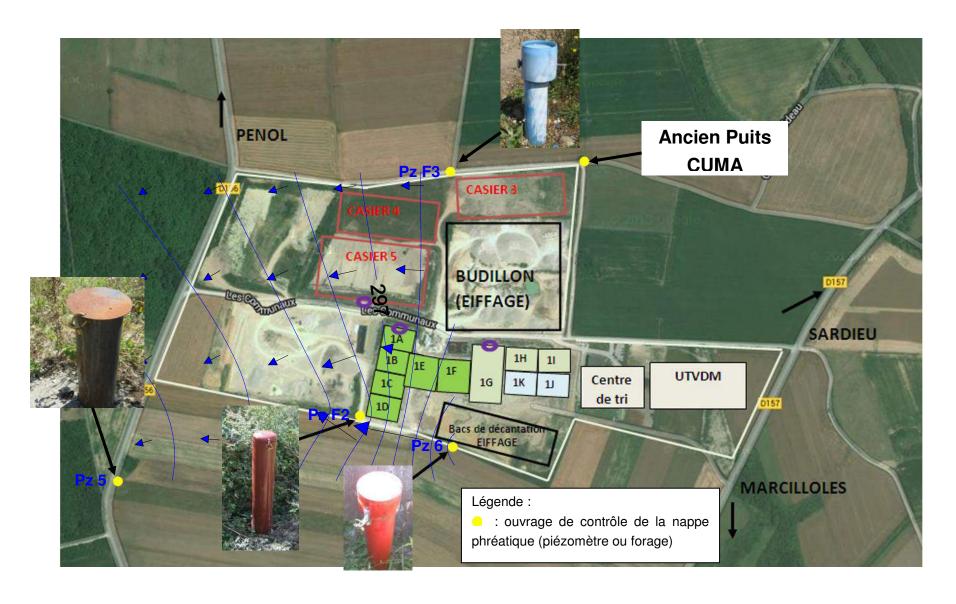


Figure 2 : Carte piézométrique au 30 août 2018

3.2 EVOLUTION DE LA PIEZOMETRIE DEPUIS FEVRIER 2007

L'évolution depuis février 2007 des niveaux statiques mesurés au droit de chaque ouvrage de contrôle est précisée sur le graphique ci-après :

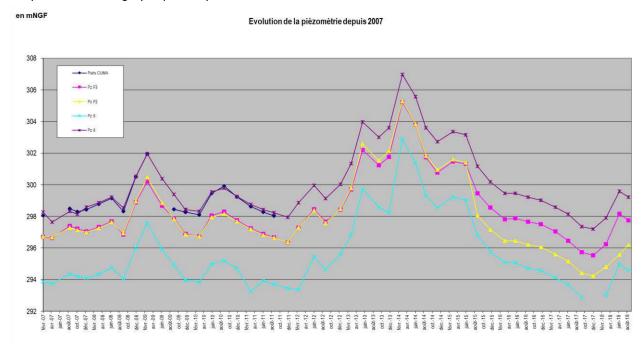


Figure 3 : Evolution de la piézométrie depuis 2007, en m NGF

3.3 RESULTATS DES MESURES IN SITU ET DES ANALYSES EN LABORATOIRE

Les résultats des mesures in situ ainsi que les résultats d'analyses en laboratoire sont présentés dans le tableau suivant :

	SUIVI D'ANALYSES AOUT 2018					
Eaux Souterraines	Unité	Référence amont hydraulique	Sud casier 2	Référence aval	Référence aval	(mg/l)
Nom Echantillon		PzF3	Pz6	PzF2	Pz5	
Date de prélèvement			30 août 20)18	•	
Type d'eau		sout.	sout.	sout.	sout.	
PARAMETRES						
PHYSICOCHIMIQUES						
Température	°C	13,9	13,8	18,1	14,5	
рН	-	7,21	7,12	7,40	7,05	
Conductivité électrique	μS/cm	674	653	617	664	
Oxygène dissous	mg/l	8,78	9,5	8,42	9,67	
Potentiel d'oxydo-réduction	mV	27	45	85	84	
Carbone organique total (COT)	mg/l	1,8	1,3	2,0	3,1	10

^{*} Arrêté Ministériel du 11 janvier 2007 – Annexe II : limites de qualité des eaux brutes de toute origine utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées, fixées pour l'application des dispositions prévues aux articles R. 1321-7 (II), R.1321-17 et R. 1321-42 du code de la santé publique.

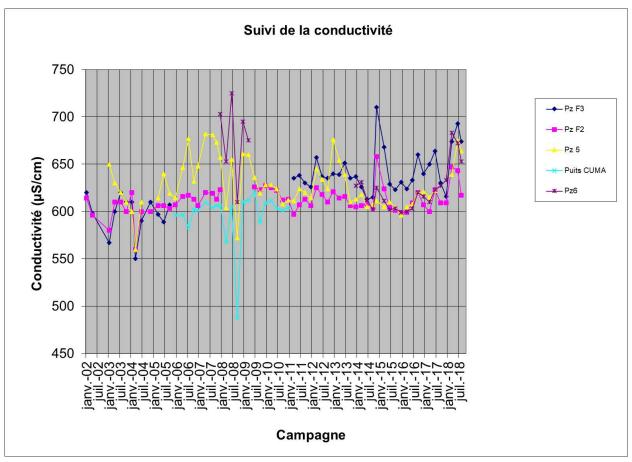
Tableau 4 : Synthèse des résultats des mesures in situ et des résultats d'analyses pour les eaux souterraines prélevées le 30 août 2018

La présence des quatre points de mesures autour du site permet de comparer les paramètres analysés en amont et en aval de celui-ci.

3.3.1 MESURES IN SITU

Entre les points PzF3, Pz6, PzF2 et le point Pz5, la campagne d'août 2018 montre que les valeurs de température, conductivité, potentiel d'oxydo-réduction et oxygène dissous restent du même ordre de grandeur.

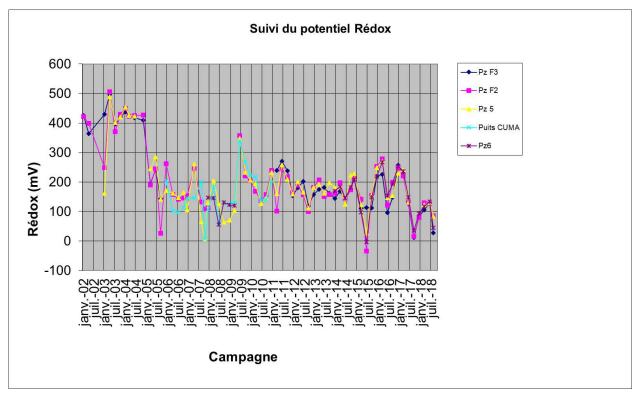
3.3.2 ANALYSES EN LABORATOIRE


Les concentrations en COT mesurées en août 2018 sur les 4 points de contrôle sont inférieures à la valeur seuil de l'arrêté du 11 janvier 2007 (Annexe II).

On rappelle que cette limite relative à des eaux de production d'eau destinée à la consommation humaine reste particulièrement restrictive.

3.3.3 COMPARAISON AVEC LES AUTRES CAMPAGNES

Précision importante : à partir de la campagne de décembre 2005, le piézomètre PzF3 a été remplacé par le Puits CUMA (positionné en amont hydraulique du site). Le Puits CUMA n'étant plus opérationnel depuis mars 2011, c'est à nouveau le piézomètre PzF3 qui a fait l'objet d'une surveillance.



(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 4 : Evolution de la conductivité des eaux souterraines

Les derniers relevés marquent une nouvelle baisse des valeurs de conductivité après une tendance à l'augmentation depuis juin 2015.

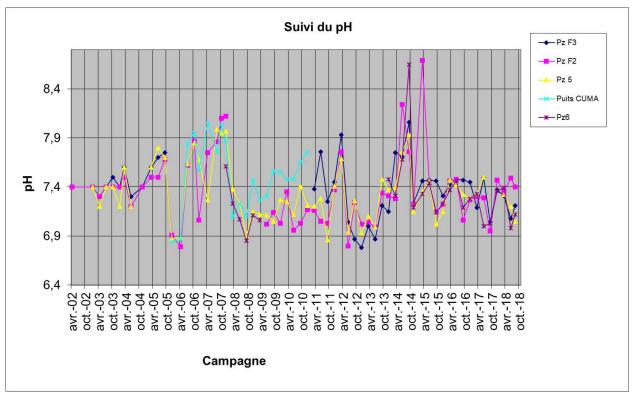

(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 5 : Evolution du potentiel d'oxydo-réduction des eaux souterraines

Les valeurs de potentiel rédox mesurées en août 2018 sont relativement basses (comprises entre 27 et 85 mV), du même ordre de grandeur que celles de septembre 2017.

Au cours du suivi, les valeurs mesurées sont plus généralement comprises entre 80 et 280 mV.

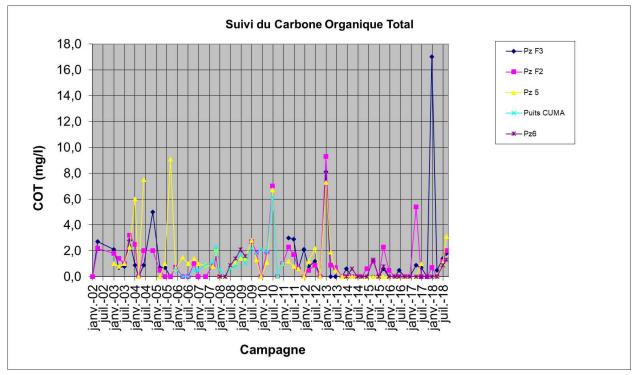

(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 6 : Evolution du pH des eaux souterraines

Les dernières mesures d'août 2018 montrent des valeurs de pH homogènes, proches de la neutralité, pour l'ensemble des eaux prélevées. Les valeurs de pH plus basiques relevées en PzF2 en juin 2014 (8,24) et mars 2015 (8,69) ne sont pas réapparues depuis.

L'évolution du COT, seul paramètre analysé trimestriellement, est présentée dans le graphique ci-après.

(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 7: Evolution du carbone organique total dans les eaux souterraines

En août 2018, les concentrations en COT mesurées sont toutes inférieures à limite de qualité des eaux brutes de toute origine utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées (Annexe II de l'arrêté du 11 janvier 2007). La teneur la plus élevée est relevée au droit de Pz5 (3,1 mg/l). Les valeurs mesurées restent du même ordre de grandeur entre les points de contrôle.

SERPOL - Site de Penol (38)

Surveillance des eaux souterraines - Campagne d'août 2018

4. ANNEXES

ANNEXE 1 : BULLETINS D'ANALYSES EN LABORATOIRE	19
ANNEXE 2 : FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES	20
ANNEXE 3: ARRETE PREFECTORAL	21

ANNEXE 1 : BULLETINS D'ANALYSES EN LABORATOIRE

Laboratoires WESSLING S.A.R.L.

Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 [0]4 74 99 96 20 · Fax +33 [0]4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Laboratoire WESSLING, 40 rue du Ruisseau, 38070 Saint-Quentin-Fallavier Cedex

EODD INGENIEURS CONSEILS Monsieur Laurent MAILLARD Parc Gratte-ciel 13/19 rue Jean Bourgey 69100 VILLEURBANNE Rapport d'essai n° : ULY18-014039-1
Commande n° : ULY-10541-18
Interlocuteur : J. Moncorgé
Téléphone : +33 474 999-633
eMail : Jonathan.Moncorge@wessling.fr
Date : 04.09.2018

Rapport d'essai

P03369

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai, sous réserve du flaconnage reçu (hors flaconnage Wessling), du respect des conditions de conservation des échantillons jusqu'au laboratoire d'analyses et du temps imparti entre le prélèvement et l'analyse préconisé dans les normes suivies.

Les méthodes couvertes par l'accréditation EN ISO 17025 sont marquées d'un A dans le tableau récapitulatif en fin de rapport au niveau des normes.

Les résultats obtenus par ces méthodes sont accrédités sauf avis contraire en remarque.

La portée d'accréditation COFRAC n°1-1364 essais est disponible sur www.cofrac.fr pour les résultats accrédités par les laboratoires Wessling de Lyon. Les essais effectués par le laboratoire de Paris sont accrédités par le COFRAC sous le numéro 1-5578.

Les essais effectués par les laboratoires allemands sont accrédités par le DAKKS sous le numéro D-PL-14162-01-00 (www.as.dakks.de).

Les essais effectués par le laboratoire hongrois de Budapest sont accrédités par le NAT sous le numéro NAT-1-1398 (www.nat.hu).

Les essais effectués par le laboratoire polonais de Krakow sont accrédités par le PCA sous le numéro AB 918 (www.pca.gov.pl).

Ce rapport d'essai ne peut-être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING (EN ISO 17025).

Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai.

La conclusion ne tient pas compte des incertitudes et n'est pas couverte par l'accréditation.

Rapport d'essai n°.: ULY18-014039-1

Projet : P03369

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

St Quentin Fallavier, le 04.09.2018

N° d'échantillon Désignation d'échantillon	Unité	18-138603-01 PZ F3	18-138603-02 PZ 6	18-138603-03 PZ 5	18-138603-04 PZ F2
Paramètres globaux / Indices					
Carbone organique total (COT)	mg/I E/L	1,8	1,3	3,1	2,0

Rapport d'essai n°.: ULY18-014039-1

Projet : P03369

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

St Quentin Fallavier, le 04.09.2018

Informations sur les échantillons

N° d'échantillon :	18-138603-01	18-138603-02	18-138603-03	18-138603-04
Date de réception :	30.08.2018	30.08.2018	30.08.2018	30.08.2018
Désignation :	PZ F3	PZ 6	PZ 5	PZ F2
Type d'échantillon :	Eau résiduaire	Eau résiduaire	Eau résiduaire	Eau résiduaire
Date de prélèvement :	30.08.2018	30.08.2018	30.08.2018	30.08.2018
Heure de prélèvement :	-/-	-/-	-/-	-/-
Récipient :	2HS	2HS	2HS	2HS
Température à réception (C°) :	6°C	6°C	6°C	6°C
Début des analyses :	30.08.2018	30.08.2018	30.08.2018	30.08.2018
Fin des analyses :	03.09.2018	03.09.2018	03.09.2018	03.09.2018

Rapport d'essai n°.: ULY18-014039-1

Projet : P03369

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 04.09.2018

Informations sur les méthodes d'analyses

ParamètreNormeLaboratoireCarbone organique total (COT)NF EN 1484(A)Wessling Lyon (F)

Commentaires:

Pour parfaire la lecture de vos résultats, les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice. Les métaux réalisés après minéralisation sont les éléments totaux. Sans minéralisation, Il s'agit des éléments dissous.

Signataire Rédacteur Signataire Technique

Yann LAFOND

Chargé de Clientèle

Sophie DECOT

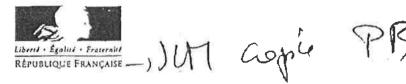
Responsable du Service LIMS

ANNEXE 2 : FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES

		Cáná	د کانا د						FOLIANTILLON
Affaire .	Généralités faire : P03369 Nom : SERPOL						ECHANTILLON		
Affaire :	P03369						1 (00)		D- 50
Opérateur :	NPR		Site:		ISDNI	O de Peno	01 (38)		Pz F3
Date :	30/08/18	ı	Heure :			9h20			
			Conditio	ne de pré	álàvor	nont			
Mátá a du iour	lhagu			iis de pre	elevel			ا ماريام	faible pluie forte
Météo du jour Météo des 3 derniers	beau		couvert oeu de pluie			sec pluvieux		pluie 1	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
Météo des 20 derniers			•			•			très pluvieux
T° extérieure :	rs jours sec		oeu de pluie	<u> </u>		pluvieux			très pluvieux
i exteneure.	110 0								
			Description	on point	de me	SIIre			
Type d'ouvrage ou po	nint de mesure :		Description	on point	ac ilic		J éométr	ie (pro	of, diam, repère, cote/sol)
puits							<u>acometi</u>	ic (pro	i, diam, repere, oote/301/
forage							П	HS=	+0,58 m/sol
piézomètre								l	NS= 37,58 m/rep
autre	 :							$\overline{\nabla}$	FOND= 45,10 m/rep
Point particulier :	<u> </u>					dia. ext.	· 125 mn	n (PVC	· ·
. omi partioulier .						טוע. פאנ.	. 120 11111	. (1 🗸	' <i>1</i>
Purge préalable :		(oui 🔳			non \square			
Mode de purge : por	mpe PP45		Durée :	30	min.	Débit :	0.15	m ³ /h	Volume extrait : 75 litres
meas as parger per			Avant :	37,58		Après :	n.m		Repère utilisé : +0,58 m/sol
		-		0.,00		1.10.00		,.ор	
			Mesures in	-situ et o	bserv	ations			
Débit naturel ou de fo	onctionnement :				Pomp	e en fonc	tionnem	ent :	oui 🔲 non 💌
Niveau statique	37,58 m/rep				Repè	re utilisé		0,58	m/sol
Température eau	13,9	°C			Odeu	r		Néant	t
pН	7,21				Save	ur		Non to	esté
Conductivité	674	μS/cm			Coule	eur		Trans	parent
Redox	27	mV			Limpi	dité		Claire	
O ₂ dissous	8,78	mg/l	87,3	%					
			P	rélèveme	ent				
Heure: 8h50 - 9h	120								
Type de préleveur :	pompe PP45								
Zone prélevée :	vers 42 m								
Nombre de flacons :	2 Head space								
Analyses prévues :	COT								
Dispositions particuli	ères :								
Observations:									

	ECHANTILLON											
Affaire: P03369 Nom: SER								RPOL				
Opérateur :	NPR		Site :	ISDND de Penol (38)					Pz F2			
Date :	30/08/18	Heure :	11h45					1 '				
Jaio .	30730713		1100101									
			Condition	ıs de pı	rélève	ment						
Météo du jour	beau		couvert			sec		pluie	faible Duie forte			
Météo des 3 derniers	peu de pluie	•					très pluvieux					
Météo des 20 dernier	peu de pluie			pluvieux			très pluvieux					
T° extérieure :	pod do pidio			piarioa	·		ti de piavidax					
	l l											
			Description	n point	de m	esure						
Type d'ouvrage ou po	of, diam, repère, cote/sol)											
puits								•	, , , , , ,			
forage							П	HS=	+0,48 m/sol			
piézomètre									NS= 35,48 m/rep			
autre									FOND= 43,85 m/rep			
Point particulier :	<u> </u>								1 6115=1 16,660 1166			
r ont particulor.												
Purge préalable :			oui III			non 🗆						
Mode de purge : pon	npe PP45		Durée :	30	min.	Débit :	0.15	m ³ /h	Volume extrait : 75 litres			
посто по раздел раз	100 11 10		Avant :			Après :	n.m		Repère utilisé : +0,48 m/so			
				00,.0	,	7		,	1,			
			Mesures in-	situ et	obser	vations						
Débit naturel ou de fo	nctionnement :					e en fon	ctionnem	ent :	oui non			
Niveau statique	T					re utilisé		_	0,48 m/sol			
Température eau	18,1	°C			Odeur Néan							
рН	7,40				Saveur Non te							
Conductivité	617	μS/cm						sparent				
Redox	85	mV			Limpi			Claire				
O ₂ dissous	8,42	mg/l	93,80	%				J.a.r.				
02 0.00000	0,12	9/.1	00,00	,,								
			Pr	élèvem	ent							
Heure: 11h15 - 1	1h45											
Type de préleveur :	pompe PP45											
Zone prélevée :	vers 42 m											
Nombre de flacons :	2 Head space											
Analyses prévues :	COT											
, mary coo provided .												
Dispositions particuliè	eres :											
Dispositions partiound	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Observations :												
	ension de stockag	e (déchets i	nertes à prior	ri) à pro	ximité	immédiat	e du niéz	0 P7F	2			
LAN	55.0 45 5.65.kag	- (400110101		, a pio			- 44 pio2		_			

Généralités											ECHANTILLON		
Affaire :	P03369					Nom: SERPOL							
Opérateur :		Site:			ISDN	D de Pen	ol (38)		Pz	5			
Date :	3	Heure :			12h15								
				Co	ndition	s de pr	élèvei	nent					
Météo du jour		beau		couve	ert			sec		pluie f	aible 🔲 pluie	forte	
Météo des 3 derniers jours sec			peu d	e pluie		pluvieux 🖂				très pluvieux 🔲			
Météo des 20 derniers jours sec				peu d	e pluie			pluvieux			très pluvieux 🗆	<u> </u>	
T° extérieure :													
				Des	criptio	n point	de me	esure					
Type d'ouvrage ou point de mesure : Géométrie (prof, diam, repère, cote/sol)													
puits													
forage										HS=	+0,43 m/sol		
piézomètre										∇	NS= 38,32 m/rep		
autre		:									FOND=	40,85	m/rep
Point particulier :													
Purge préalable :				oui				non 🗖					
Mode de purge : b	oailer			Durée	e :		min.	Débit :		m ³ /h	Volume extrait :		litres
				Avant	::	38,32	m/rep	Après :	n.m	m/rep	Repère utilisé :	+0,43	m/sol
				Mesu	res in-	situ et c	bserv	ations					
Débit naturel ou de fonctionnement : oui non													
Niveau statique	38,32	m/rep								0,43	,43 m/sol		
Température eau		14,5	°C				Odeur Auc			Aucun	ie		
рН		7,05					Saveur Au			Aucun	ie		
Conductivité		664	μS/cm								Limpide		
Redox		84	mV				Limpi	dité		Claire	Claire		
O ₂ dissous		9,67	mg/l		87,70	%							
					Pr	élèvem	ent						
Heure: 12h15													
Type de préleveur	: Bailer												
Zone prélevée :	vers 40	m											
Nombre de flacons		d space											
Analyses prévues	: COT												
Dispositions partic	ulières :												
Observations:									_			_	


Feuille de terrain et rendu

			Géne	éralités						ECHANTII	LON	
Affaire :	F	Nom :		SERPOL			LOHANI					
Opérateur :	<u>'</u>	03369 NPR		Site :	D de Pen			Pz 6				
Date:	3	0/08/18		Heure :		102.1	10h40	0. (00)		-		
Dato :		0,00,10					101110			<u>!</u>		
				Condition	s de pr	élèven	nent					
Météo du jour		beau [couvert			sec		pluie 1	faible 🔲 pluie	forte	
Météo des 3 derniers jours sec			peu de pluie		pluvieux		'	très pluvieux				
Météo des 20 derniers jours sec				peu de pluie			pluvieux			très pluvieux 🗀		
T° extérieure :								'				
		•										
				Description	n point	de me	sure					
Type d'ouvrage ou point de mesure : Géométrie (prof, diam, repère, cote/sol)											te/sol)	
puits												
forage									HS=	+0,7 m/sol		
piézomètre									∨ NS= 34,54 m/rep			
autre		:								FOND=	40,80 m/rep	
Point particulier :												
Purge préalable				oui 💌			non \square					
Mode de purge :	pompe PP45	j		Durée :		min.	Débit :	0,15		Volume extrait :	75 litres	
				Avant :	34,54	m/rep	Après :	n.m	m/rep	Repère utilisé :	+0,7 m/sol	
				Mesures in-s	situ et c							
Débit naturel ou c			Pompe en fonctionnemen									
Niveau statique		1 m/rep					re utilisé			0,7 m/sol		
Température eau		13,8	°C						Néant			
рН		7,12				_	Saveur Non to					
Conductivité		653	μS/cm			Coule				ansparent		
Redox		45	mV			Limpi	dité		Claire			
O ₂ dissous		9,5	mg/l	94,70	%							
					/ • \	_						
				Pre	élèveme	ent						
) - 10h40											
Type de préleveu												
Zone prélevée :	vers 38											
Nombre de flacor		d space										
Analyses prévues	: COT											
Diamenti and a second	. P.Y											
Dispositions parti	culleres :											
Observations:												
Observations.												

ANNEXE 3: ARRETE PREFECTORAL

PRÉFECTURE DE L'ISÈRE

S)

DIRECTION DES ACTIONS INTERMINISTERIELLES

PUREAU DE L'ENVIRONNEMENT

GRENOBLE, LE

FAIRE SUIVIE PAR : C VIANGE TEL 04.76.60.48.54.5

rssier n 29 0 22

ARRETE Nº 2006-01064

LE PREFET DE L'ISERE, Chevalier de la Légion d'Honneur, Officier de l'Ordre National du Mérite,

VU le Code de l'Environnement (partie législative) annexé à l'Ordonnance n° 2000-914, du 18 septembre 2000, notamment son Livre V, Titre 1^{er} (I.C.P.E.) ;

VU la loi n° 92-3, du 3 janvier 1992, dite "loi sur l'eau", modifiée ;

VU le décret n° 53-578, du 20 mai 1953, modifié ;

VU le décret n° 77-1133, du 21 septembre 1977 relatif aux Installations Classées, modifié par le décret n° 2005-1170 du 13 septembre 2005, ;

VU l'arrêté N°79-10405 en date du 26 novembre 1979, ayant autorisé le SICTOM de LA BIEVRE à exploiter une décharge contrôlée d'ordures ménagères et autres résidus urbains située sur la commune de PENOL, au lieu-dit « Les Burettes » ;

VU l'arrêté n° 69-1316 en date du 5 avril 1989, ayant autorisé l'extension (sur les parcelles n°s 13, 61, 62 et 63 ,section ZD et la parcelle n°36, section ZK du plan cadastral) de la décharge contrôlée d'ordures ménagères exploité à PENOL par le SICTOM de LA BIEVRE ;

VU l'arrêté n°2000-3357en date du 17 mai 2000, imposant au SICTOM de LA BIEVRE des prescriptions complémentaires relatives à la mise en conformité des conditions d'exploitation de son centre de stockage de déchets ménagers ;

VU le dossier concernant de demande présentée le 2 mai 2005 par M. le Président du SICTOM de LA BIEVRE en vue de procéder à la réhabilitation des casiers n°s 1 et 2 de son centre de stockage de déchets ultimes sis à PENOL, au lieu-dit « Les Burettes » ;

VU le rapports du Directeur Régional de l'Industrie, de la Recherche et de l'Environnement Rhône-Alpes , Inspecteur des Installations Classées, en date des 23 août 2005 ;;

VU l'avis de Mme le Chef de la Mission Inter-services de l'Eau (MISE), en date du 14 novembre 2005 :

VU l'avis du Directeur Départemental des Affaires Sanitaires et Sociales, en date du 25 novembre 2005 :

12. PLACE DE VERDUN - B.P. 1046 - 38021 GRENOBLE CEDEX 1 - 管 04.76.60 34.00 - 图 04.76.51.03.86 - ©: WWW.isere pref.gouv.ft

VU le rapport du Directeur Régional de l'Industrie, de la Recherche et de l'Environnement Rhône-Alpes, Inspecteur des Installations Classées, en date du 14 novembre 2005 ;

VU la lettre, en date du 22novembre 2005, invitant le demandeur à se faire entendre par le Conseil Départemental d'Hygiène et lui communiquant les propositions de l'Inspecteur des Installations Classées;

VU la lettre adressée le 2 décembre 2005 à M. le Président du SICTOM de LA BIEVRE et l'invitant à transmettre les résultats d'analyses de la nappe souterraine à partir des piézomètres existants (« point zéro »),comme suite aux observations émises par les membres du Conseil Départemental d'Hygiène ;

VU la lettre en date du 26 décembre 2005, précisant à M le Président du SICTOM de LA BIEVRE que l'examen de son dossier a été ajourné lors de la séance du Conseil Départemental d'Hygiène du 1^{er} décembre 2005 pour compléments d'information (analyses piézométriques) et l'invitant à se faire entendre à la séance du jeudi 5 janvier 2005 ;

VU les résultats de la campagne d'analyse des eaux souterraines remis le 20décembre 2005 par le Syndicat précité ;

VU l'avis favorable du Conseil Général de l'Isère, en date du 3 janvier 2006 ;

VU l'avis du Conseil Départemental d'Hygiène, en date du 5 janvier 2006 ;

VU la lettre en date du 6 janvier 2006, transmettant au requérant le projet d'arrêté complémentaire concernant son établissement ;

VU la réponse du pétitionnaire en date du 10 janvier 2006, précisant que ce projet d'arrêté n'appelle aucune observation particulière de sa part ;

CONSIDERANT qu'il convient, conformément aux dispositions de l'article 18 du décret du 21 septembre 1977 susvisé, d'imposer à M. le Président du SICTOM de LA BIEVRE des prescriptions complémentaires fixant les conditions de réhabilitation des casiers n°s 1 et 2 de son centre de stockage des dèchets ménagers situé à PENOL, en vue de garantir les intérêts visés à l'article L511-1 du Code de l'Environnement;

SUR proposition du Secrétaire Général de la Préfecture de l'Isère ;

ARRETE

ARTICLE 1er -Monsieur le Président du SICTOM de LA BIEVRE est tenu de respecter strictement les prescriptions complémentaires annexées au présent arrêté et fixant les conditions de réhabilitation des casiers n°s 1 et 2 (vide de fouilles) de son centre de stockage de déchets ménagers et assimilés situé à PENOL, au lieu-dit « Les Burettes »..

ARTICLE 3 - L'exploitant devra déclarer sans délai les accidents ou incidents survenus du fait du fonctionnement de cette installation qui seraient de nature à porter atteinte aux intérêts mentionnés à l'article L 511-1 du Code de l'Environnement .En cas d'accident, il sera tenu de lui remettre un rapport répondant aux exigences de l'article 38 du décret n°77-1133 du 21 septembre 1977susvisé.

ARTICLE 4 - Conformément aux dispositions de l'article 20 du décret du 21 septembre 1977 susvisé, tout exercice d'une activité nouvelle classée, toute transformation, toute extension de l'exploitation devra, avant sa réalisation, être porté à la connaissance du Préfet avec tous ses éléments d'appréciation.

Tout transfert dans un autre emplacement, d'une installation soumise à autorisation, devra faire l'objet d'une demande préalable au Préfet.

ARTICLE-5 En cas d'arrêt définitif de l'installation, l'exploitant est tenu de notifier au Préfet la date de cet arrêt au moins six mois avant celui-ci, en joignant un dossier comprenant le plan mis à jour des terrains d'emprise de l'installation, ainsi qu'un mémoire sur l'état du site précisant les mesures prises ou prévues pour assurer la mise en sécurité de ce site, conformément aux dispositions de l'article 34-1 du décret n° 77-1133 du 21 septembre 1977, modifié par l'article 11 du décret n° 2005-1170 du 13 septembre 2005.

Ces mesures comportent notamment :

- --l'évacuation ou l'élimination des produits dangereux et, pour les installations autres que les installations de stockage de déchets, celle des déchets présents sur le site,
- --des interdictions ou limitations d'accès au site,
- --la suppression des risques d'incendie ou d'explosion,
- --la surveillance des effets de l'installation sur son environnement.

En outre, l'exploitant est tenu de placer le site de l'installation dans un état tel qu'il ne puisse porter atteinte aux intérêts mentionnés à l'article L 511-1 du Code de l'Environnement et qu'il permette un usage futur du site déterminé selon les dispositions prévues par les articles 34-2 et 34-3 du décret n° 2005-1170 du 13 septembre 2005..

ARTICLE 6 - Un extrait du présent arrêté complémentaire sera tenu à la disposition de tout intéressé et sera affiché à la porte de la mairie de PENOL, pendant une durée minimum d'un mois. Le même extrait sera affiché, en permanence, de façon visible, dans l'installation, par les soins de l'exploitant. Un avis sera inséré par les soins du Préfet de l'Isère et aux frais de l'exploitant, dans deux journaux locaux ou régionaux diffusés dans tout le département.

ARTICLE 7 - En application de l'article L 514-6 du Code de l'Environnement, cet arrêté peut être déféré au Tribunal Administratif de Grenoble, d'une part par l'exploitant ou le demandeur dans un délai de deux mois à compter de sa notification, d'autre part par les tiers dans un délai de quatre ans à compter de sa publication ou de son affichage.

ARTICLE 8 - Le présent arrêté doit être conservé et présenté à toute réquisition.

ARTICLE 9 - Le Secrétaire Général de la Préfecture de l'Isère, le Sous-Préfet de VIENNE, le Maire de PENOL et l'Inspecteur des Installations Classées, sont chargés, chacun en ce qui le concerns, de l'exécution du présent arrêté qui sera notifié au SICTOM de LA BIEVRE.

FAIT à GRENOBLE, le 27 JAN 2006

LE FREFET Pour le P**GE** le Secrétal e Géner

Dominique BLAIS

4. DISPOSITIONS RELATIVES AUX EAUX

4.1 - Principe

Sont interdits tous déversements, écoulements, rejets, dépôts directs ou indirects d'effluents susceptibles d'incommoder le voisinage, de porter atteinte à la santé publique ainsi qu'à la conservation de la faune et de la flore, de nuire à la conservation des constructions et réseaux d'assainissement, et au bon fonctionnement des installations d'épuration, de dégager en égout directement ou indirectement des gaz ou vapeurs toxiques ou inflammables.

En particulier, tout déversement sur le sol ou dans le sous-sol est interdit.

Toutes dispositions doivent être prises pour éviter tout déversement accidentel susceptible d'être à l'origine d'une pollution des eaux.

4.2 - Eaux de ruissellement extérieures

Du fait du relief, le débit des eaux de ruissellement extérieures au site est très limité. Cellesci seront collectées avec les eaux de ruissellement intérieures.

4.3 - Eaux de roissellement intérieures

Casier 3 : création d'un fossé étanche sur les cotés Nord, Est et Sud avec une pente générale de 1% et déversement dans la carrière.

Casier 4 et 5 : création d'un fossé étanche sur les cotés Nord, Ouest et sud raccordé pour la partie est des casiers aux fossés du casier 3.

Pour les autres cotés, les fossés seront prolongés par des goulottes béton jusqu'en pied de talus et l'ensemble dirigé vers la carrière.

Casiers 1 et 2 : création d'un fossé étanche sur les cotés

Les eaux doivent transiter avant rejet au milieu naturel par un bassin de stockage étanche dimensionné pour capter au moins les ruissellements consécutifs à un événement pluvieux de fréquence décennale, permettant une décantation et un contrôle de leur qualité.

Compte-tenu de l'exploitation simultané de la décharge et de la carrière, un soin particuller est apporté aux eaux de ruissellement des parties communes afin qu'il ne puisse y avoir contact entre le massif de déchets et celles-ci ou infiltration vers le massif de déchets. (création systématique de fossés afin d'éloigner ces eaux du pied des digues et des zones remblayées).

4.4 - Lixiviats

Les lixiviats issus des casiers 1, 2, 5 et de la tranchée drainante entre les casiers 4 et 5 sont raccordés à une capacité de stockage de 3000 m3

Ces lixiviats sont traités par une installation bio-physico-chimique d'une capacité de 2m3/h . La quantité et la qualité des lixiviats et des lixiviats traités est suivie dans les conditions suivantes :

Une fois par trimestre une analyse sera effectuée sur les éléments suivants :

Volume, MEST, COT, DCO, DBOs, azote global, ammoniaque, phosphore total, phénol, métaux totaux (dont Cr^s, Cd, Pb, Hg), As, fluor et composés, CN libres, hydrocarbures totaux, composés halogériés (en AOX et EOX), substances toxiques bio-accumulables ou nocives pour l'environnement, conductivité, résistivité.

La fréquence pourra devenir annuelle si l'évaluation des données indique que l'on obtient les mêmes résultats avec des intervalles plus longs, et après accord de l'inspection des installations classées.

Une fois par an, les analyses seront effectuées par un laboratoire agréé.

Les lixiviats bruts ne peuvent être mélangés aux lixiviats traités avant rejet.

Les lixiviats traités peuvent être rejetés au milieu naturel si les valeurs limites suivantes sont respectées :

```
DCO < 200 mg/f
DBO5 < 30 mg/l
MEST < 20 mg/l
COT < 70 mg/t
Azote global < 20 mg/l (moyenne mensuelle)
Phosphore total < 10 mg/l (moyenne mensuelle)
Phénois < 0,1 mg/i
Métaux totaux < 15 mg/l
Cr6+ < 0.1 \text{ mg/}
Cd
      < 0,2 mg/l
РЪ
      < 0,5 mg/l
Hg
      < 0.05 \text{ mg/l}
       < 0,1 mg/l
Fluor et composés < 15 mg/l
CN libres < 0.1 mg/l
Hydrocarbures totaux < 5 mg/l
Composés organiques halogénés < 1 mg/l
```

4.5 - Maîtrise des niveaux de lixiviats

Chaque puits est jaugé mensuellement. Une hauteur d'eau supérieure à 0,30 mêtre entraînera un pompage systématique et un nouveau contrôle 24 heures plus tard. Un registre de surveillance consignera toutes les mesures.

4.6 - Contrôle des eaux souterraines

Le contrôle des éaux souterraines est effectué sur les piezomètres suivants :

Référence amont : puit CUMA à Sardieu

Références avail : piézomètres F2, F5 et un troisième à créer au sud du casier 2

Le programme de surveillance est le suivant :

-Tous les trimestres ; pH, potentiel d'oxydo-réduction, résistivité, COT, relevé des niveaux piézométriques rattachés au NGF accompagné d'une carte interprétative des conditions piézomètriques du jour...

-Tous les ans :

- Analyse physico-chimique : pH, potentiel d'oxydoréduction, résistivité, NO_2 , NO_3 , NH^{4*} , CF SO_4^{2*} , PO_4^{3*} , K*, Na*, Ca^{2*} , Mg^{2*} , Pb, Cu, Cr, Ni, Zn, Mn, Sn, Cd, Hg, Dco, COT, AOX, PCB, HAP, BTEX.
- Analyse biologique : DBO5.
- Analyse bactériologique il coliformes fécaux, coliformes totaux, streptocoques fécaux, présence de salmonelles,

La première analyse annuelle est réalisée des notification de l'arrêté.

Tous les quatre ans elle est réalisée par un laboratoire agréé.

En cas de dégradation significative de la qualité des eaux souterraines, il sera fait application des dispositions de l'article 41 de l'arrêté ministériel du 9 septembre 1997.

4.7 - Contrôle des eaux superficielles

Tous les trimestres, une analyse du pH et une mesure de résistivité seront effectuées sur les eaux de ruissellement.

Le prélèvement sera réalisé à l'aval de tous les déversements en provenance du site du stockage. En cas d'anomalie, une analyse identique à celle des lixiviats sera effectuée.

4.8 - Registre du bilan hydrique

Un bilan hydrique annuel est établi conformément à l'article 43 de l'arrêté ministériel du 9 septembre 1997.

4.9 - Conditions d'aménagement

Les divers équipements de traitement et de valorisation des lixiviats et du biogaz seront placés sur une dalle en béton. La forme de cette dalle devra permettre de recueillir les eaux pluviales et les fuites éventuelles pour les diriger vers un regard afin qu'elles soient traitées avec les lixiviats.

SERPOL ISDND DE PENOL

Surveillance de la qualité des eaux souterraines – Campagne de décembre 2018

Rapport d'EODD Ingénieurs Conseils

SERPOL

Téléphone : 04 78 70 33 55 2 Chemin du Génie - BP 80 Adresse:

69657 VENISSIEUX CEDEX Télécopie : 04 78 70 27 20

M. Nicolas Seyve

(Responsable secteur

nicolas.seyve@serpol.fr Gestion Globale des Centres Destinataire: Email: jerome.effantin@serpol.fr

d'Enfouissement)

M. Jérôme Effantin (resp.

d'exploitation)

Surveillance de la qualité des eaux souterraines de l'ISDND de Penol – Campagne de décembre 2018

RAPPORT d'EODD Ingénieurs Conseils

IDENTIFICATION				MAITRISE DE LA QUALITE			
N° Contrat	Indice	Révision		Révision		Chef de projet	Coréférence
P03369	1	14/12/20	18	L. Maillard	G. Lacour		
Nombre de pag	Nombre de pages (hors annexes)		18	14/12/2018	17/12/2018		
Nombre d'annexes		4					

Vos contacts et interlocuteurs pour le suivi de ce dossier :

Parc Gratte-Ciel 13-19, rue Jean Bourgey

69100 Villeurbanne

04.72.76.06.90

급: 04 72.76.06.99

I.maillard@eodd.fr Chef de projet : L. Maillard

Directeur métier stockage et G. Lacour valorisation des déchets :

g.lacour@eodd.fr

www.eodd.fr

SOMMAIRE

1.	INTRODUCTION	5
1.1		
1.2		
1.3		
1.4		
2.	INVESTIGATIONS DE TERRAIN	8
2.1	METHODES ET TECHNIQUES RETENUES	8
2.2	PARAMETRES A ANALYSER / METHODES ANALYTIQUES - FREQUENCES DE MESURES ET	Γ DE
PRE	ELEVEMENTS	8
3.	RESULTATS	10
3.1	SURVEILLANCE DU NIVEAU DE LA NAPPE	10
3.2	EVOLUTION DE LA PIEZOMETRIE DEPUIS FEVRIER 2007	12
3.3		
3.3		
3.3	3.2 Analyses en laboratoire	
3.3	3.3 Comparaison avec les autres campagnes	15
4	ANNEXES	19

LISTE DES FIGURES

FIGURE 1: LOCALISATION DU SITE (EXTRAIT IGN 1/25000)	5
FIGURE 2 : CARTE PIEZOMETRIQUE AU 5 DECEMBRE 2018	11
FIGURE 3: EVOLUTION DE LA PIEZOMETRIE DEPUIS 2007, EN M NGF	12
FIGURE 4: EVOLUTION DE LA CONDUCTIVITE DES EAUX SOUTERRAINES	15
FIGURE 5: EVOLUTION DU POTENTIEL D'OXYDO-REDUCTION DES EAUX SOUTERRAINES	16
FIGURE 6: EVOLUTION DU PH DES EAUX SOUTERRAINES	17
FIGURE 7: EVOLUTION DU CARBONE ORGANIQUE TOTAL DANS LES EAUX SOUTERRAINES	18
LISTE DES TABLEAUX	
Tableau 1 : Sources d'informations	7
TABLEAU 2: NORMES DES ANALYSES REALISEES EN LABORATOIRE	9
TABLEAU 3 : NIVEAU DE LA NAPPE AUTOUR DE L'ISDND DE PENOL (CAMPAGNE DU 5 DECEMBRE 2018)	10
TABLEAU 4 : SYNTHESE DES RESULTATS DES MESURES IN SITU ET DES RESULTATS D'ANALYSES POUR LES	S EAUX
SOUTERRAINES PRELEVEES LE 5 DECEMBRE 2018	13

LISTE DES ANNEXES

ANNEXE 1: BULLETINS D'ANALYSES EN LABORATOIRE	20
ANNEXE 2: FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES	21
Annexe 3 : synthese des resultats d'analyses en laboratoire et mesures in situ depuis $\mathfrak g$	DECEMBRE
2005	22
ANNEXE 4: ARRETE PREFECTORAL	23

1. INTRODUCTION

1.1 CONTEXTE DE L'ETUDE

La société SERPOL exploite pour le compte du SICTOM de la Bièvre le CSDU des Burettes, localisé sur la commune de PENOL (38).

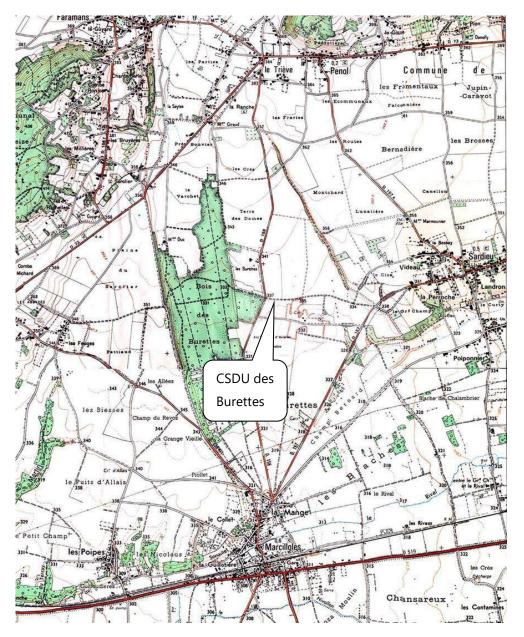


Figure 1: Localisation du site (extrait IGN 1/25000)

Conformément aux prescriptions de l'article 4 de l'arrêté Préfectoral n°2006-01064 du 27 janvier 2006 relatif à l'exploitation du site, des analyses d'eaux souterraines doivent être réalisées trimestriellement sur les points de contrôle mis en place en amont et en aval du site.

Dans ce cadre, EODD Ingénieurs Conseils a été mandaté pour réaliser le suivi de l'année 2018 des eaux souterraines.

Le présent rapport concerne la campagne de prélèvement de décembre 2018.

1.2 REFERENTIELS ET ACCREDITATIONS

La présente mission a été réalisée selon les référentiels suivants :

 la norme NF X31-615 de Décembre 2017 sur les prélèvements et l'échantillonnage des eaux souterraines dans un forage

Les analyses ont été sous-traitées au laboratoire Wessling, certifié par le COFRAC¹ (attestations d'accréditation n°1-5578 rév. 6 et n°1-1364 rév. 15). Les méthodes d'analyses sont récapitulées au paragraphe 2.3 (Tableau 2).

1.3 SOURCES D'INFORMATION

Les différentes sources d'information consultées pour la réalisation de ce rapport sont les suivantes :

Titre	Source / Auteur	Référence
Arrêté préfectoral de poursuite d'exploitation en date du 17 mai 2000	Préfecture de l'Isère	n°2000- 3357
Arrêté préfectoral en date du 27 janvier 2006	Préfecture de l'Isère	n°2006- 01064
Arrêté préfectoral complémentaire en date du 16 avril 2009	Préfecture de l'Isère	n°2009- 02631
Société SERPOL – Contrôle de la qualité des eaux souterraines et des lixiviats au droit du C.E.T de Penol – campagne 11/2004	2ie	R 2004- 4969
Société SERPOL – Contrôle de la qualité des eaux souterraines et des lixiviats au droit du CSDU de Penol – campagne 03/2005	CSD AZUR	AZ02330
Société SERPOL – Contrôle de la qualité des eaux souterraines au droit du CSDU de Penol – campagne 06/2005	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 09/2005 et 12/2005	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines et des lixiviats au droit du CSDU de Penol – Synthèse 2005 -	CSD AZUR	AZ02330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 04/2006, 07/2006, 10/2006 et 12/2006	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des lixiviats du bassin au droit du CSDU de Penol – campagne 12/2006	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 04/2007, 08/2007, 10/2007 et 12/2007	CSD AZUR	LY2330
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 03/2008, 06/2008, 09/2008 et 12/2008	CSD AZUR	LY3313.100
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes 03/2009, 06/2009, 09/2009 et 12/2009	CSD AZUR	LY3313.102

¹ COmité FRançais d'ACréditation.

P03369 / Emission du 14/12/2018

-

Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2010, 06/2010, 09/2010 et 12/2010	CSD AZUR	LY3313.103
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2011, 06/2011, 09/2011 et 12/2011	CSD INGENIEURS	LY3313.104
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2012, 06/2012, 09/2012 et 12/2012	CSD INGENIEURS	LY3313.105
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2013, 06/2013, 09/2013 et 12/2013	CSD INGENIEURS	LY3313.106
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagne de 03/2014, 06/2014, 09/2014 et 12/2014	EODD INGENIEURS CONSEILS	LY3313.107
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2015, 06/2015, 09/2015 et 12/2015	EODD INGENIEURS CONSEILS	P00594
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2016, 06/2016, 09/2016 et 12/2016	EODD INGENIEURS CONSEILS	P01440
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2017	EODD INGENIEURS CONSEILS	P02611
Société SERPOL – Suivi analytique des eaux souterraines au droit du CSDU de Penol – campagnes de 03/2018, 06/2018 et 08/2018	EODD INGENIEURS CONSEILS	P03369
Carte topographique au 1/25 000 n° 3331 O de Meyzieux/Montluel	IGN	[22]

Tableau 1 : Sources d'informations

1.4 LIMITES DE L'ETUDE

Les résultats de ce rapport rendent compte de la qualité de l'eau souterraine prélevée dans les piézomètres de surveillance au 5 décembre 2018.

Le programme de surveillance est mené dans un but précis : assurer un suivi dans le temps de la qualité des eaux souterraines pour vérifier l'absence d'anomalies de concentration des substances recherchées.

La surveillance de la qualité des eaux permet de quantifier l'impact éventuel du site sur les eaux souterraines. En revanche, la mission confiée à EODD ne comprend pas d'analyse interprétative ni de recherche d'origines d'éventuelles anomalies qui pourraient être détectées.

2. INVESTIGATIONS DE TERRAIN

2.1 METHODES ET TECHNIQUES RETENUES

L'arrêté préfectoral prévoit la réalisation de prélèvements d'eaux souterraines sur quatre ouvrages de captage présents sur le site :

- Puits CUMA (amont hydraulique),
- Piézomètre PzF2 (référence aval),
- Piézomètre Pz5 (référence aval),
- Piézomètre Pz6 (ouvrage situé au Sud du casier 2).

Le puits CUMA n'étant plus utilisable pour les prélèvements depuis des travaux de réaménagement en 2011, un prélèvement a été effectué (en commun accord avec la société SERPOL) au droit du piézomètre PzF3, en remplacement de celui dans le puits CUMA.

Lors de cette dernière campagne de décembre 2018, les niveaux piézométriques étaient particulièrement bas. Aussi, il n'a pas été possible de prélever au droit du piézomètre Pz5 qui était totalement sec.

Les prélèvements sur les autres piézomètres ont été réalisés après renouvellement des eaux du tube d'équipement jusqu'à stabilisation de leurs paramètres physico-chimiques, conformément aux recommandations de la norme NF X31-615 de Décembre 2017 sur les prélèvements et l'échantillonnage des eaux souterraines dans un forage.

Les purges ont été réalisées par pompage au moyen d'une pompe de prélèvement électrique (pompe immergée).

Les échantillons ont été conditionnés dans des flaconnages dédiés et stockés dans une glacière munie d'éléments réfrigérants avant d'être acheminés au laboratoire Wessling.

2.2 PARAMETRES A ANALYSER / METHODES ANALYTIQUES - FREQUENCES DE MESURES ET DE PRELEVEMENTS

Conformément aux prescriptions relatives au contrôle des eaux souterraines précisées dans l'arrêté préfectoral n°2006-01064 du 27 janvier 2006, des analyses d'eaux souterraines doivent être réalisées sur les points de contrôle mis en place en amont et en aval du site. Le programme spécifié dans cet arrêté préfectoral doit être complété par celui précisé dans l'arrêté ministériel du 15 février 2016 relatif aux installations de stockage de déchets non dangereux (selon article 24).

Les analyses in situ et en laboratoire, listées ci-dessous, sont réalisées conformément aux exigences réglementaires sur tous les échantillons prélevés, et selon les fréquences et normes analytiques suivantes :

Paramètres	AP site 27/01/06	AP site 27/01/06	AM 15/02/16	AM 15/02/16	Méthode d'analyse	PzF3	PzF2	Pz5	Pz6
Fréquence	annuel	trimestriel	Bisannuel : basses et hautes eaux	Tous les 5 ans	-				
Conductivité / résistivité	X (In Situ)	X (In Situ)	X (In Situ)			Х	Х	Χ	Χ
рН	X (In Situ)	X (In Situ)	X (In Situ)			Х	Х	Χ	Χ
Potentiel d'oxydoréduction	X (In Situ)	X (In Situ)	X (In Situ)			Х	Х	Х	Х
Radioactivité : analyse par spectrométrie gamma des chaînes de l'uranium et du thorium				Х	NF EN ISO 10-703	х	х	х	х
DCO	Х		Х		ISO 15705 (H 45)	Χ	Х	Х	Χ
DBO5	Χ		X		NF EN 1899-1	Х	Х	Х	Χ
COT	Х	X	Х		DIN EN 1484 (H3)	Х	Х	Х	Χ
Ammonium	X		X		DIN EN ISO 11732	X	X	Х	Х
Nitrites	X		X		DIN EN ISO 10304-	Х	Х	Х	Х
Nitrates	Х		Х		DIN EN ISO 10304- 1	Х	Х	Х	Х
NTK			Х		EN 25663	Х	Х	Χ	Χ
Pb, Cu, Cr, Ni, Zn, Mn, Sn, Cd	Х		X (métaux totaux)		EN ISO 17294	Х	Х	Х	Х
Fe, As			X (métaux totaux)		EN ISO 11885	Х	Х	Χ	Χ
Mercure	Х		X (métaux totaux)		EN 1483 - ISO 17294	Х	Х	Х	Х
AOX	Х		Х		DIN EN ISO 9562 mod.	Х	Х	Х	Х
CAV dont BTEX	Х		Х		NF EN ISO 11423- 1	Х	Х	Х	Х
PCB	Χ		X		NF EN ISO 6468	Х	Х	Χ	Χ
HAP	X		X		d'ap. NFT 90-115	Х	Х	Χ	Χ
Chlorures	Х		Х		DIN EN ISO 10304- 1	Х	Х	Х	Х
Sulfates	Х		Х		DIN EN ISO 10304- 1	Х	Х	Х	Х
Orthophosphates	Х		Х		NF EN 1189	Х	Х	Х	Χ
Potassium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Sodium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Calcium	Х		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х
Magnésium X		Х		DIN EN ISO 17294- 2	Х	Х	Х	Х	
MES			Х		NF EN 872	Х	Х	Х	Х
Coliformes à 37°C X Coliformes thermotolérants à 44°C X			X		BGesBl 10/95(A)	X	X	X	X
			X		BGesBI 10/95(A)	Х	Х	Х	Х
Enterocoques intestinaux	Х		Х		BGesBl 10/95(A)	Х	Х	Х	Х
Salmonelles	Х		Х		EN ISO 19250	Х	Х	Х	Χ
Escherichia coli			X		Non précisé	X	X	Х	Х

Tableau 2 : Normes des analyses réalisées en laboratoire

La campagne de décembre 2018 correspond à une campagne semestrielle en période de hautes eaux. Le programme d'analyse est celui de l'AP du site complété de celui de l'AM du 15/02/2016.

3. RESULTATS

3.1 SURVEILLANCE DU NIVEAU DE LA NAPPE

Le niveau de la nappe a été contrôlé le 5 décembre 2018 au moyen d'une sonde piézométrique au niveau de quatre points de contrôle : PzF2, PzF3, Pz5 et Pz6.

Les résultats obtenus sont indiqués dans le tableau 3 ainsi que sur la Figure 2 ci-après :

	Puits CUMA	PzF3	PzF2	Pz5	Pz6
cote TN (m NGF)	333,76	334,76	331,188	332,49	333,06
Cote du repère utilisé					
pour les mesures (m	Non mesuré	335,34	331,67	332,92	333,76
NGF)					
Niveau statique par	Non mesuré	39,32	36,54	sec	34,90
rapport au repère (m)	Non mesure	00,02	30,34	360	34,30
niveau nappe (m NGF)	/	296,02	295,13	sec	298,86

Tableau 3 : Niveau de la nappe autour de l'ISDND de Penol (campagne du 5 décembre 2018)

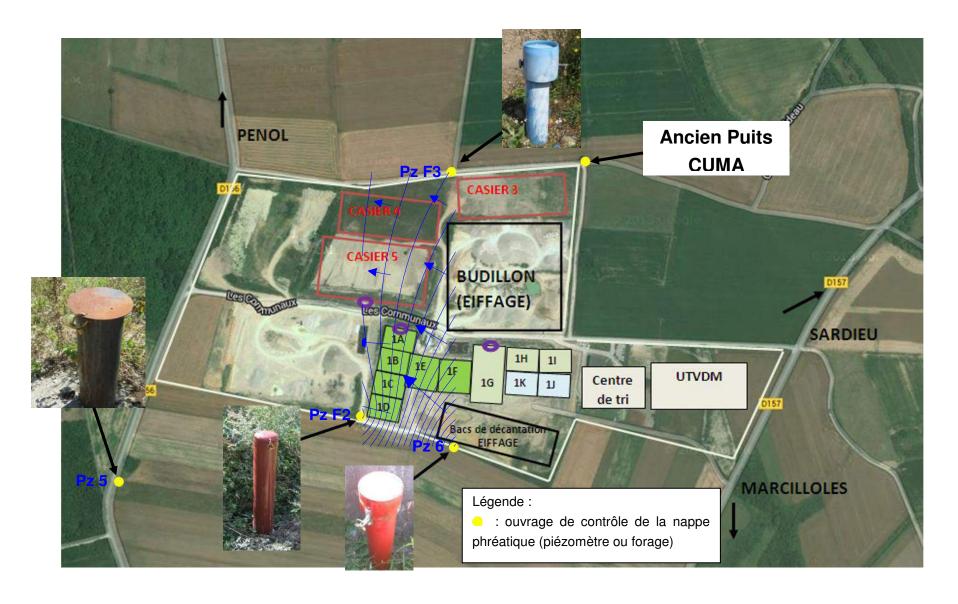


Figure 2 : Carte piézométrique au 5 décembre 2018

3.2 EVOLUTION DE LA PIEZOMETRIE DEPUIS FEVRIER 2007

L'évolution depuis février 2007 des niveaux statiques mesurés au droit de chaque ouvrage de contrôle est précisée sur le graphique ci-après :

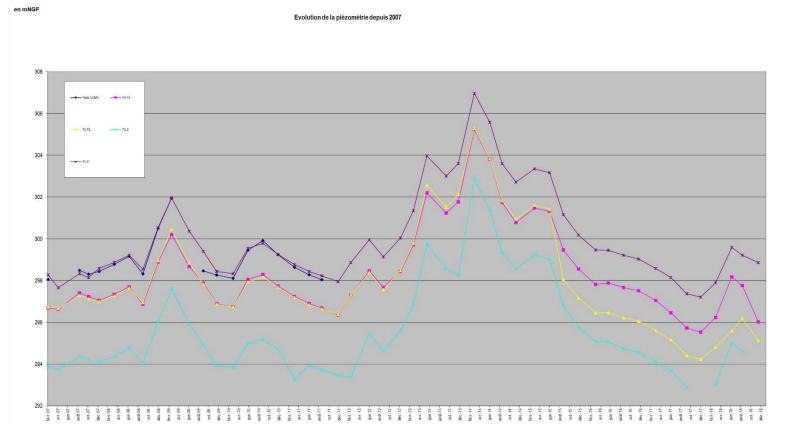


Figure 3 : Evolution de la piézométrie depuis 2007, en m NGF

3.3 RESULTATS DES MESURES IN SITU ET DES ANALYSES EN LABORATOIRE

Les résultats des dernières mesures in situ et analyses en laboratoire sont présentés dans le tableau suivant :

	RESUL	TATS D'ANALYSES			Arrêté du 17	Arrêté du 11 janvier 2007 (1)		
EAUX SOUTERRAINES	Unité				décembre 2008 (2)	Annexe I*	Annexe II**	
Nom Echantillon		Pz F3	Pz F2	Pz6				
Date de prélèvement			05/12/2018					
Type d'eau		sout.	sout.	sout.				
lise à jour des normes : PARAMETRES CHIMIQUES ET PHYSIC	O CHIMIOUE	S CLOP	MIV			févr-07	févr-07	
unperson (a. 10) <i>(in Sito</i>	O-CHIMIQUE.	11,1	12,6	11,5		25	25	
H (in Site)		6,79	7,1	7,02		6,5 - 9	23	
lands divita <i>(In Situ)</i>	μS/cm	662	651	646		180µS≤Cond.≤1000µS		
stobre ditetut <i>(ili Sila)</i>	mq/I	8,76	9,19	9,39			<30%	
Grantiel Zewideneducker (In Sta)	mV	141	80	115			- 10	
Paroune crossique fota (CCT) Demande chim, en C2, E CC)	ma/l ma/l	0,9 <10	<0,5 <10	0,6 <10		2	10	
Constitution of the DS (DE D5)	mq/I	7	<3,0	<3,0				
40X	mq/l	0,015	<0,01	<0,01				
MES	mq/I	190	<2	43				
ANIONS ET NON METAUX								
Atrites	mq/l mq/l	<0,1 <0,05	<0,1 <0,05	<0,1 <0,05	0,5	0,1 0,5	4	
vinnes Vitrates	mq/I	38	<0,05 44	<0,05 40	50	50	100	
szute hjudati i, NTh	mq/I	<2,0	<2,0	<2,0				
horard Ol	ma/I	25	20	18		250	200	
Burelas SC4	mq/l	15	15	18		250	250	
Orthodiusphalast FC4 CATIONS ET METAUX DISSOUS	ma/l	<0,04	<0,04	<0,04				
Sahion C.I	μα/I	<1,5	<1,5	<1,5	5	5	5	
Saguri, Ca	mq/I	120	120	130				
Chronic total Cr	μα/I	<5,0	<5,0	<5,0		50	50	
Yurvie, Qu	μα/I	<5,0	<5,0	<5,0		2000		
Etain, Sn	μq/I	<10	<10	<10				
Pagrédium Mg Pandar édo Mn	mq/l μq/l	3 <5,0	2,8 <5,0	2,9 14		50		
Aerovici Ho	μα/1 μα/1	<0,1	<0,1	<0,1	1	1	1	
diezet. Ni	μα/I	<10	<10	<10		20		
Plomb, Pb	μα/I	<10	<10	<10	10	10	50	
Potensium II.	mq/I	<2,0	<2,0	<2,0				
Boulium, Ma Zinc, Zin	ma/l μα/l	13 <50	8,7 <50	8,2 <50		200	200 5000	
Niceria, As	μα/1 μα/1	<3.0	<3.0	<3.0	10	10	100	
Fer, Fe	ma/I	<0,05	<0,05	0,23		0,2		
CATIONS ET METAUX TOTAUX								
Sunium C.I	μ α/ Ι	<1,5	<1,5	<1,5	5	5	5	
Ehronicitate, Gr Parkhel Gu	μα/I μα/I	<5,0 <5,0	<5,0 <5,0	<5,0 12		50 2000	50	
Etain, Sn	μα/1	<10	<10	<10		2000		
Pandar ésel kin	μα/Ι	<5,0	<5,0	37		50		
Acrosine, Ha	μα/I	<0,5	<0,5	<0,5	1	1	1	
dicat. Ni	μα/I	<10	<10	<10		20		
Plomb, Pb Linc, Zn	μα/I μα/I	<10 <50	<10 <50	<10 <50	10	10	50 5000	
Michiel As	μα/1	<3,0	<3,0	<3,0	10	10	100	
Fer, Fe	mq/I	0,09	0,06	1,4		0,2		
SUBSTANCES ORGANIQUES								
*kirtoeriured aron arigodi, vollatid, HAV	μα/I	-/-	-/-	-/-		1 (Benzène)	1 (Benzène)	
over Encount (myto FDB	μα/I	-/-	-/-	-/-		0,01 (Benzo[a]pyrène) 0,1 (somme benzo[b]fluoranthène, benzo[k]fluoranthène, benzo[ghî]pérylène, indeno[1,2,3-	(somme fluoranthène benzo[b]fluoranthène benzo[k]fluoranthène benzo[a]pyrène, benzo[ghi]pérylène,	
+kliccaltines aronatioses se veveliones HAP	μα/I	-/-	-/-	-/-		cd]pyrène)	indeno[1,2,3-cd]pyrèn	
ANALYSES BACTERIOLOGIQUES To formed 8 37 fc	seme/100 n1	_1	_1	.1		0/100 ml		
to formes a chilo To formes them eto éranto à 44°C	seme/10. nt	<1 <1	<1 <1	<1 <1		0/100 ml		
imáricodus, Heltheuk	seme/100 n1	<1	<1	<1		0/100 ml	10000/100 ml	
schor dre sonBiducuronidete + 44 C	/ml	<1	<1	<1		0/100 ml	20000/100 ml	
Embrac.		absence/ 25ml	absence/ 25ml	absence/ 25ml				
1) Arrêté du 11 janvier 2007 relatif aux limites et rticles R.1321-2, R.1321-3, R.1321-7 et R.1321-		ualité des e	aux brutes		ux destinées à	la consommation humain	ne mentionnées aux	

* Annexe I de l'arrêté du 11 janvier 2007 correspondant aux limites et références de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées

** Annexe II de l'arrêté du 11 janvier 2007 correspondant aux limites de qualité des eaux brutes de toute origine utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées, fixées pour l'application des dispositions prévues aux articles R.1321-7(II), R.1321-17 et R.1321-42

(2) Arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines

grillicatives et dui ables de degladation de retat chilnique des eaux souten allies								
-/-	Non détecté							
na	Non analysé							
en gras	Dépassement de la vi	aleur guide	e corres	spondante				

Tableau 4 : Synthèse des résultats des mesures in situ et des résultats d'analyses pour les eaux souterraines prélevées le 5 décembre 2018

Un tableau de synthèse reprenant les résultats des suivis antérieurs est présenté en annexe 3.

La présence de trois points de mesures autour du site permet de comparer les paramètres analysés en amont et en aval de celui-ci.

3.3.1 MESURES IN SITU

Entre les points PzF3, Pz6 et PzF2, la campagne de décembre 2018 montre que les valeurs de température, conductivité, potentiel d'oxydo-réduction et oxygène dissous restent du même ordre de grandeur.

3.3.2 ANALYSES EN LABORATOIRE

- Les résultats des analyses en laboratoire (analyses bactériologiques exclues) montrent l'absence de problématique vis-à-vis de tous les composés recherchés², hormis ponctuellement vis-à-vis du fer si l'on considère notamment les résultats d'analyse obtenus sur métaux totaux. Ces derniers montrent à l'aplomb de Pz6 un dépassement des valeurs références utilisées (limites et références de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées (Annexe I de l'arrêté du 11 janvier 2007)).
- Concernant les analyses bactériologiques, il n'y a pas de problématique du site d'après les résultats de cette dernière campagne. En effet, soit il n'a pas été retrouvé de germe dans l'échantillon (pour les salmonelles), soit les résultats sont inférieurs aux limites de détection du laboratoire (pour les autres paramètres microbiologiques). Par ailleurs, toutes les valeurs sont similaires entre les points de contrôle.

A titre indicatif, les valeurs limites disponibles sont les suivantes :

- 0 germe de coliforme à 37°C / 100 ml : limite précisée dans l'Annexe I de l'arrêté du 11 janvier 2007, correspondant aux limites et références de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées.
- Entérocoques : 0 germe / 100 ml (Annexe I de l'arrêté du 11 janvier 2007) ; 10000 germes / 100 ml : limite précisée dans l'Annexe II de l'arrêté du 11 janvier 2007 correspondant aux limites de qualité des eaux brutes de toute origine utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées.
- Escherichia coli : 0 germe / 100 ml (Annexe I de l'arrêté du 11 janvier 2007) ; 20000 germes / 100 ml (Annexe II de l'arrêté du 11 janvier 2007).
- Absence de salmonelles / 5000 ml : limite précisée dans l'Annexe III de l'arrêté du 11 janvier 2007 correspondant aux limites de qualité des eaux douces superficielles utilisées pour la production

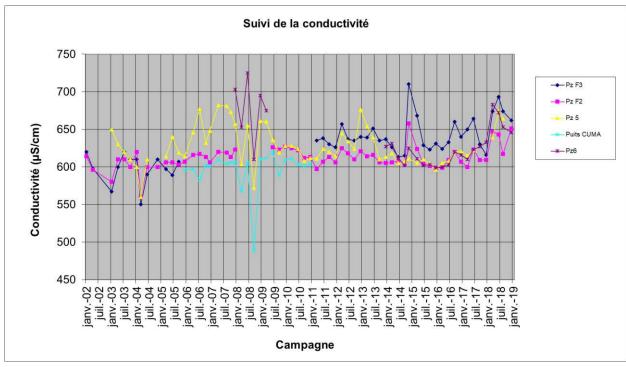
P03369 / Emission du 14/12/2018

² Toutes les concentrations mesurées (hormis fer en Pz6) sont inférieures (ou égales) :

⁻ aux seuils de détection du laboratoire ;

⁻ et/ou aux valeurs références de qualité des eaux brutes et des eaux destinées à la consommation humaine (arrêté du 11 janvier 2007, Annexe I / Annexe II) ;

⁻ et/ou aux valeurs seuils précisées dans l'arrêté du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines.

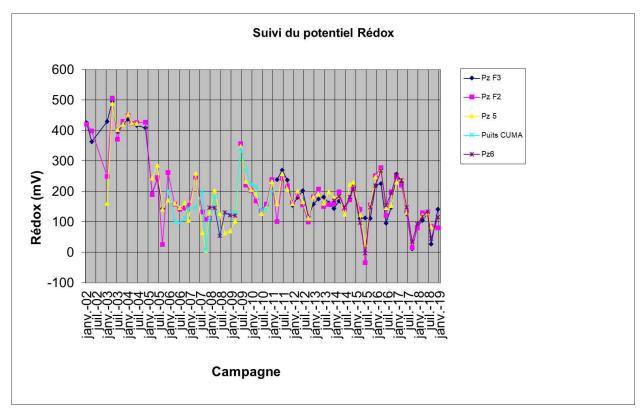


d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées (Groupe A1).

On rappelle que ces limites relatives à des eaux de consommation, ou des eaux de production d'eau destinée à la consommation humaine sont particulièrement restrictives.

3.3.3 COMPARAISON AVEC LES AUTRES CAMPAGNES

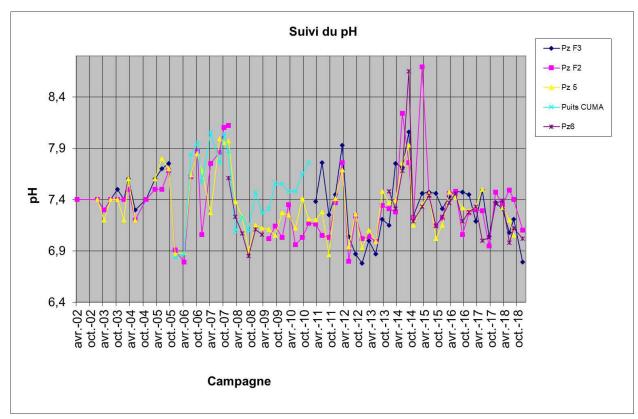
Précision importante : à partir de la campagne de décembre 2005, le piézomètre PzF3 a été remplacé par le Puits CUMA (positionné en amont hydraulique du site). Le Puits CUMA n'étant plus opérationnel depuis mars 2011, c'est à nouveau le piézomètre PzF3 qui a fait l'objet d'une surveillance.



(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 4 : Evolution de la conductivité des eaux souterraines

On peut constater une tendance à l'augmentation des valeurs de conductivité depuis juin 2015. A noter pour décembre 2017 et mars 2018 une valeur en Pz6 plus élevée que celle mesurée en PzF3 (référence amont hydraulique).



(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 5 : Evolution du potentiel d'oxydo-réduction des eaux souterraines

Campagne de juin 2015 mise à part, et plus récemment celle de septembre 2017, lors desquelles des mesures particulièrement basses de potentiel rédox ont été relevées (caractéristiques d'un milieu réducteur), les valeurs dernièrement mesurées sont généralement comprises entre 80 et 280 mV.

(source des données antérieures à mars 2005 : Bureau d'études 2ie)

Figure 6 : Evolution du pH des eaux souterraines

Les dernières mesures de décembre 2018 montrent des valeurs de pH homogènes, proches de la neutralité, pour l'ensemble des eaux prélevées. Les valeurs de pH plus basiques relevées en PzF2 en juin 2014 (8,24) et mars 2015 (8,69) ne sont pas réapparues depuis.

L'évolution du COT, seul paramètre analysé trimestriellement, est présentée dans le graphique ci-après.

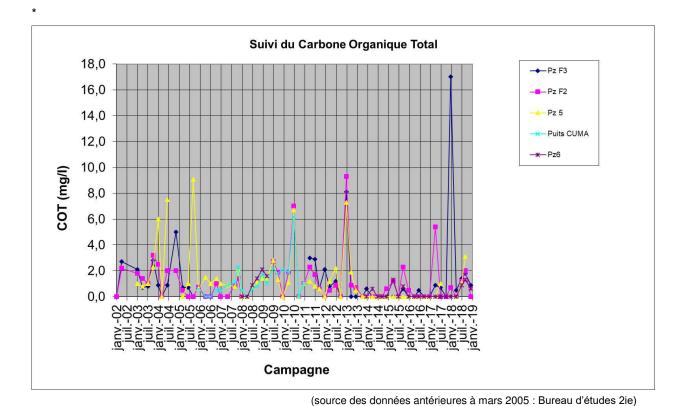


Figure 7 : Evolution du carbone organique total dans les eaux souterraines

En décembre 2018, les concentrations en COT mesurées sont toutes inférieures à limite de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées (Annexe I de l'arrêté du 11 janvier 2007). La teneur la plus élevée est relevée au droit de la référence amont PzF3 (0,9 mg/l). Il n'y a donc pas d'impact significatif du site vis-à-vis de ce paramètre sur cette campagne.

SERPOL - Site de Penol (38)

Surveillance des eaux souterraines - Campagne de décembre 2018

4. ANNEXES

ANNEXE 1: BULLETINS D'ANALYSES EN LABORATOIRE	20
ANNEXE 2 : FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES	21
ANNEXE 3 : SYNTHESE DES RESULTATS D'ANALYSES EN LABORATOIRE ET MESURES IN SITU DEPUIS	DECEMBRE
2005	22
ANNEXE 4 : ARRETE PREFECTORAL	23

ANNEXE 1 : BULLETINS D'ANALYSES EN LABORATOIRE

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 [0]4 74 99 96 20 · Fax +33 [0]4 74 99 96 37
labo@wessling.fr · www.wessling.fr

Laboratoire WESSLING, 40 rue du Ruisseau, 38070 Saint-Quentin-Fallavier Cedex

EODD INGENIEURS CONSEILS Monsieur Laurent MAILLARD Parc Gratte-ciel 13/19 rue Jean Bourgey 69100 VILLEURBANNE Rapport d'essai n° : ULY18-020989-1
Commande n° : ULY-16265-18
Interlocuteur : J. Moncorgé
Téléphone : +33 474 999-633
eMail : Jonathan.Moncorge@wessling.fr
Date : 12.12.2018

Rapport d'essai

P03369

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai, sous réserve du flaconnage reçu (hors flaconnage Wessling), du respect des conditions de conservation des échantillons jusqu'au laboratoire d'analyses et du temps imparti entre le prélèvement et l'analyse préconisé dans les normes suivies.

Les méthodes couvertes par l'accréditation EN ISO 17025 sont marquées d'un A dans le tableau récapitulatif en fin de rapport au niveau des normes.

Les résultats obtenus par ces méthodes sont accrédités sauf avis contraire en remarque.

La portée d'accréditation COFRAC n° 1-1364 essais est disponible sur www.cofrac.fr pour les résultats accrédités par les laboratoires Wessling de Lyon.

Les essais effectués par le laboratoire de Paris sont accrédités par le COFRAC sous le numéro 1-5578.

Les essais effectués par les laboratoires allemands sont accrédités par le DAKKS sous le numéro D-PL-14162-01-00 (www.as.dakks.de).

Les essais effectués par le laboratoire hongrois de Budapest sont accrédités par le NAT sous le numéro NAT-1-1398 (www.nat.hu).

Les essais effectués par le laboratoire polonais de Krakow sont accrédités par le PCA sous le numéro AB 918 (www.pca.gov.pl).

Ce rapport d'essai ne peut-être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING (EN ISO 17025).

Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai.

La conclusion ne tient pas compte des incertitudes et n'est pas couverte par l'accréditation.

Projet : P03369

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 12.12.2018

N° d'échantillon Désignation d'échantillon	Unité	18-197880-01 PzF2	18-197880-02 PzF3	18-197880-03 PzF6	
o-Phosphate (PO4)	mg/I E/L	<0,04	<0,04	<0,04	
Coliformes thermotolérants 44°C	/ml	<1	<1	<1	
Enterobactéries 37°C	/ml	<1 <1	<1 <1	<1 <1	
Escherichia coli B glucuronidase + 44°C Coliformes 37°C	/ml /ml	<1	<1	<1	
Salmonella spp. / 5L	71111	non détecté	non détecté	non détecté	
· ·					
Paramètres globaux / Indices					
AOX	μg/l E/L	<10	15	<10	
DCO (homogénéisé)	mg/l E/L	<10	<10	<10	
Carbone organique total (COT)	mg/I E/L	<0,5	0,9	0,6	
DBO5+ATH (homogénéisé)	mg/l E/L	<3,0	7,0	<3,0	
Cations, anions et éléments non métalliques					
Chlorures (CI)	mg/I E/L	20	25	18	
Nitrates (NO3)	mg/l E/L	44	38	40	
Sulfates (SO4)	mg/l E/L	15	15	18	
Nitrites (NO2)	mg/l E/L	<0,05	<0,05	<0,05	
Ammonium (NH4)	mg/l E/L	<0,1	<0,1	<0,1	
Azote ammoniacal (NH4-N)	mg/l E/L	<0,078	<0,078	<0,078	
Azote Kjeldahl (NTK)	mg/l E/L	<2,0	<2,0	<2,0	
Eléments					
Sodium (Na)	mg/l E/L	8,7	13	8,2	
Magnésium (Mg)	mg/l E/L	2,8	3,0	2,9	
Potassium (K)	mg/l E/L	<2,0	<2,0	<2,0	
Calcium (Ca)	mg/l E/L	120	120	130	
Chrome (Cr)	μg/l E/L	<5,0	<5,0	<5,0	
Manganèse (Mn)	μg/l E/L	<5,0	<5,0	14	
Nickel (Ni)	μg/l E/L	<10	<10	<10	
Cuivre (Cu)	μg/l E/L	<5,0	<5,0	<5,0	
Zinc (Zn)	μg/I E/L	<50	<50	<50	
Arsenic (As)	μg/l E/L	<3,0 <1,5	<3,0 <1,5	<3,0 <1,5	
Cadmium (Cd) Plomb (Pb)	μg/l E/L μg/l E/L	<10	<10	<10	
Étain (Sn)	μg/I E/L	<10	<10	<10	
Mercure (Hg)	μg/l E/L	<0,1	<0,1	<0,1	
Fer (Fe)	mg/l E/L	<0,05	<0,05	0,23	
Benzène et aromatiques (CAV - BTEX)	-				
Benzène	μg/l E/L	<0,5	<0,5	<0,5	
Toluène	μg/I E/L	<0,5	<0,5	<0,5	
Ethylbenzène	μg/I E/L	<0,5	<0,5	<0,5	
o-Xylène	μg/I E/L	<0,5	<0,5	<0,5	
m-, p-Xylène	μg/l E/L	<0,5	<0,5	<0,5	
Cumène	μg/l E/L	<0,5	<0,5	<0,5	
Mésitylène	μg/l E/L	<0,5	<0,5	<0,5	
o-Ethyltoluène	μg/l E/L	<0,5	<0,5	<0,5	
m-, p-Ethyltoluène	μg/l E/L	<0,5	<0,5	<0,5	
Pseudocumène	μg/l E/L	<0,5	<0,5	<0,5	
Somme des CAV	μg/l E/L	-/-	-/-	-/-	

Projet : P03369

Laboratoires WESSLING S.A.R.L. Z.I. de Chesnes Tharabie \cdot 40 rue du Ruisseau BP 50705 \cdot 38297 Saint-Quentin-Fallavier Tél. +33 (0)4 74 99 96 20 \cdot Fax +33 (0)4 74 99 96 37 labo@wessling.fr \cdot www.wessling.fr

N° d'échantillon Désignation d'échantillon	Unité	18-197880-01 PzF2	18-197880-02 PzF3	18-197880-03 PzF6	
Hydrocarbures aromatiques polycycliques (Ha	AP)				
Naphtalène	μg/l E/L	<0,02	<0,02	<0,02	
Acénaphtylène	μg/l E/L	<0,02	<0,02	<0,02	
Acénaphtène	μg/l E/L	<0,02	<0,02	<0,02	
Fluorène	μg/l E/L	<0,02	<0,02	<0,02	
Phénanthrène	μg/l E/L	<0,02	<0,02	<0,02	
Anthracène	μg/l E/L	<0,02	<0,02	<0,02	
Fluoranthène (*)	μg/l E/L	<0,02	<0,02	<0,02	
Pyrène	μg/l E/L	<0,02	<0,02	<0,02	
Benzo(a)anthracène	μg/l E/L	<0,02	<0,02	<0,02	
Chrysène	μg/l E/L	<0,02	<0,02	<0,02	
Benzo(b)fluoranthène (*)	μg/l E/L	<0,02	<0,02	<0,02	
Benzo(k)fluoranthène (*)	μg/l E/L	<0,02	<0,02	<0,02	
Benzo(a)pyrène (*)	μg/l E/L	<0,02	<0,02	<0,02	
Dibenzo(ah)anthracène	μg/l E/L	<0,02	<0,02	<0,02	
Indéno(123-cd)pyrène (*)	μg/l E/L	<0,02	<0,02	<0,02	
Benzo(ghi)pérylène (*)	μg/l E/L	<0,02	<0,02	<0,02	
Somme des 4 HAP	μg/l E/L	-/-	-/-	-/-	
Somme des 6 HAP (*)	μg/l E/L	-/-	-/-	-/-	
Somme des HAP	μg/l E/L	-/-	-/-	-/-	
Polychlorobiphényles (PCB)					
• • • • • •		0.000	0.000	0.000	
PCB n° 28	μg/I E/L	<0,003	<0,003	<0,003	
PCB n° 52	μg/I E/L	<0,003	<0,003 <0,003	<0,003	
PCB n° 101	μg/I E/L	<0,003		<0,003	
PCB n° 118	μg/I E/L	<0,003	<0,003	<0,003	
PCB n° 138	μg/I E/L	<0,003	<0,003	<0,003	
PCB n° 153	μg/I E/L	<0,003	<0,003	<0,003	
PCB n° 180	μg/l E/L μg/l E/L	<0,003	<0,003	<0,003 -/-	
Somme des 7 PCB	μ <u>γ</u> /ι Ε/L	-/-	-/-	-/-	
Analyse physico-chimique					
MES	mg/l E/L	<2,0	190	43	
N° d'échantillon		18-197880-01-1 PzF2 - Métaux	18-197880-02-1 PzF3 - Métaux	18-197880-03-1 PzF6 - Métaux	
Désignation d'échantillon	Unité	Totaux	Totaux	Totaux	
Préparation d'échantillon					
Minéralisation à l'eau régale	E/L	07/12/2018	07/12/2018	07/12/2018	
Eléments					
Chrome (Cr)	μg/l E/L	<5,0	<5,0	<5,0	
Manganèse (Mn)	μg/I E/L	<5,0	<5,0	37	
Nickel (Ni)	μg/I E/L	<10	<10	<10	
Cuivre (Cu)	μg/I E/L	<5,0	<5,0	12	
Zinc (Zn)	μg/I E/L	<50	<50	<50	
Arsenic (As)	μg/l E/L	<3,0	<3,0	<3,0	
Cadmium (Cd)	μg/l E/L	<1,5	<1,5	<1,5	
Plomb (Pb)	μg/I E/L	<10	<10	<10	
Étain (Sn)	μg/I E/L	<10	<10	<10	
Mercure (Hg)	μg/l E/L	<0,5	<0,5	<0,5	
Fer (Fe)	mg/I E/L	0,06	0,09	1,4	

Projet : P03369

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 12.12.2018

Informations sur les échantillons

N° d'échantillon :	18-197880-01	18-197880-01-1	18-197880-02	18-197880-02-1	18-197880-03
Date de réception :	05.12.2018	05.12.2018	05.12.2018	05.12.2018	05.12.2018
Désignation :	PzF2	PzF2 - Métaux Totaux	PzF3	PzF3 - Métaux Totaux	PzF6
Type d'échantillon :	Eau propre	Eau propre	Eau propre	Eau propre	Eau propre
Date de prélèvement :	05.12.2018	05.12.2018	05.12.2018	05.12.2018	05.12.2018
Heure de prélèvement :	11:45	-/-	09:45	-/-	10:45
Récipient :	6*1LPE Stérile + 250V + 2*500PE + 4*60PE + 2HS (250V + 100PE + 60PE)HNO3 + (3*60PE + 1HS)H2SO4		6*1LPE Stérile + 250V + 2*500PE + 4*60PE + 2HS (250V + 100PE + 60PE)HNO3 + (3*60PE + 1HS)H2SO4		6*1LPE Stérile + 250V + 2*500PE + 4*60PE + 2HS (250V + 100PE + 60PE)HNO3 + (3*60PE + 1HS)H2SO4
Température à réception (C°) :	2.2°C	2.2°C	2.2°C	2.2°C	2.2°C
Début des analyses :	05.12.2018	05.12.2018	05.12.2018	05.12.2018	05.12.2018
Fin des analyses :	12.12.2018	12.12.2018	12.12.2018	12.12.2018	12.12.2018

N° d'échantillon :18-197880-03-1Date de réception :05.12.2018Désignation :PzF6 - Métaux
TotauxType d'échantillon :Eau propreDate de prélèvement :05.12.2018Heure de prélèvement :-/-

Récipient :

Température à réception (C°) : 2.2°C
Début des analyses : 05.12.2018
Fin des analyses : 12.12.2018

Projet : P03369

Laboratoires WESSLING S.A.R.L.
Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 (0)4 74 99 96 20 · Fax +33 (0)4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 12.12.2018

Informations sur les méthodes d'analyses

Paramètre Ammonium (NH4)	Norme NF EN ISO 11732(A)	Laboratoire Wessling Lyon (F)
Composés organiques adsorbables (AOX) sur eau / lixiviat	Méth. interne: " AOX NF EN ISO 9562"(A)	Wessling Lyon (F)
Azote (Kjeldahl) sur eau / lixiviat (conservation à 3°C+-2°C)	NF EN 25663(A)	Wessling Lyon (F)
Benzène et aromatiques (CAV-BTEX)	NF ISO 11423-1(A)	Wessling Lyon (F)
Carbone organique total (COT)	NF EN 1484(A)	Wessling Lyon (F)
Demande biologique en oxygène (DBO) avec ATH, homogén.	NF EN 1899-1(A)	Wessling Lyon (F)
ST-DCO	ISO 15705(A)	Wessling Lyon (F)
HAP	Méth. interne :"HAP-PCB NF EN ISO 6468 / NF ISO 18287 / NF T 90-115 / NF ISO 10382"(#)	Wessling Lyon (F)
MES (Filtre Muntkell GF047C)	NF EN 872(A)	Wessling Lyon (F)
Anions dissous (filtration à 0,2 μ)	Méth. interne : "ANIONS NF EN ISO 10304-1"(A)	Wessling Lyon (F)
o-Phosphate (P)	NF EN ISO 6878(A)	Wessling Lyon (F)
PCB	NF EN ISO 6468(A)	Wessling Lyon (F)
Métaux sur eau / lixiviat (ICP-MS)	NF EN ISO 17294-2(A)	Wessling Lyon (F)
Métaux sur eau / lixiviat (ICP-MS)	NF EN ISO 17294-2(A)	Wessling Lyon (F)
Dénombrement des Coliformes totaux	NF ISO 4832(A)	Wessling Paris (F)
Dénombrement des coliformes thermotolérants à 44° C	NF V08-060(A)	Wessling Paris (F)
Dénombrement des Entérobactéries	NF ISO 21528-2(A)	Wessling Paris (F)
Dénombrement E.Coli (Bêta-Glucuronidase positive) à 44°C	NF ISO 16649-2(A)	Wessling Paris (F)
Recherche Salmonella spp	NF EN ISO 6579-1(A)	Wessling Paris (F)
Minéralisation à l'eau régale pour métaux totaux	NF EN ISO 15587-1(A)	Wessling Lyon (F)

(#)L'absence d'accréditation provient du délai de mise en analyse par rapport au prélèvement supérieur aux exigences normatives.

Projet: P03369

Laboratoires WESSLING S.A.R.L.

Z.I. de Chesnes Tharabie · 40 rue du Ruisseau
BP 50705 · 38297 Saint-Quentin-Fallavier
Tél. +33 [0]4 74 99 96 20 · Fax +33 [0]4 74 99 96 37
labo@wessling.fr · www.wessling.fr

St Quentin Fallavier, le 12.12.2018

Informations sur les méthodes d'analyses

Commentaires:

18-197880-01

Les conditions de transport (durée) n'ont pas été respectées.

Commentaires des résultats:

AOX (E/L), AOX: Résultat hors champ d'accréditation : la valeur d'un controle ne correspond pas aux exigences normatives. Pour tout le projet

DBO2-3-5-10 (E/L), DBO5+ATH (homogénéisé): Stabilisation de l'échantillon par congélation avant analyse.

MES E/L, MES: Résultat sous réserve : Valeur de MES approximative en raison du Résidu Sec inférieur à2 mg

Métaux (E/L), Calcium (Ca): Résultats hors champ d'accréditation.

Remarque valable pour tous les échantillons.

18-197880-02

Les conditions de transport (durée) n'ont pas été respectées.

Commentaires des résultats:

DBO2-3-5-10 (E/L), DBO5+ATH (homogénéisé): Stabilisation de l'échantillon par congélation avant analyse.

18-197880-03

Les conditions de transport (durée) n'ont pas été respectées.

Commentaires des résultats:

DBO2-3-5-10 (E/L), DBO5+ATH (homogénéisé): Stabilisation de l'échantillon par congélation avant analyse.

18-197880-01-1

Commentaires des résultats:

Métaux (E/L), Arsenic (As): Résultats hors champ d'accréditation.

Remarque valable pour tous les éléments

Remarque valable pour les échantillons 01-1, 02-1, 03-1.

Pour parfaire la lecture de vos résultats, les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice. Les métaux réalisés après minéralisation sont les éléments totaux. Sans minéralisation, Il s'agit des éléments dissous.

Signataire Rédacteur

Signataire Technique

Jonathan MONCORGE

Chargé de Clientèle

Audrey GOUTAGNIEUX

Directrice

ANNEXE 2 : FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES

Feuille de terrain et rendu

			Gén	éralités						ECHANTII	LON
Affaire :	F	203369		Nom :			SERPOL				
Opérateur :		NPR		Site :		ISDNI	D de Pen	ol (38)		Pz F3	3
Date :	0	5/12/18		Heure :			9h00	,			
<u> </u>											
				Conditio	ns de pre	élèver	nent				
Météo du jour		beau		couvert			sec		pluie f	faible 🔲 pluie f	orte 🔲
Météo des 3 dernie	ers jours	sec		peu de pluie	е 🔳		pluvieux	<		très pluvieux 🔲	
Météo des 20 dern	iers jours	sec		peu de pluie	е 💌		pluvieux	<		très pluvieux 🔲	
T° extérieure :		5 à 10°	, C								
				Descripti	on point	de me					
Type d'ouvrage ou	point de me	sure:						Géométr	ie (pro	f, diam, repère, cot	te/sol)
puits								_			
forage							_		HS=	+0,58 m/sol	
piézomètre							_			NS= 39,32 m/rep	
autre		:								FOND=	44,90 m/rep
Point particulier :							dia. ext.	: 125 mn	n (PVC	3)	
Danier water labela											
Purge préalable :	DD45			oui I	00		non L Débit :		3 //	National autority	l'ann a
Mode de purge : p	ompe PP45			Durée :		min.		200		Volume extrait :	litres
				Avant :	39,32	m/rep	Après :	mesu		Repère utilisé : -	+0,58 m/sol
				Mesures in	s-eitu et e	hear	atione	mest	ii C		
Débit naturel ou de	fonctionner	nent :		Mesures II	i-situ et c			ctionnem	ont :	oui 🖂	non
Niveau statique		m/sol					re utilisé	Cliorineni		m/sol	11011
Température eau	33,32	11,1	°C			Odeu			Néant		
pH		6,79				Save			Non to		
Conductivité		662	μS/cm			Coule			 	parent	
Redox		141	μο/citi mV			Limpi			Claire	•	
O ₂ dissous		8,76	mg/l	82,1	%		<u>ano</u>		Olano	<u> </u>	
02 a		0,70	1119/1	02,1	70				I		
				F	Prélèveme	ent					
Heure : 8h50-9	h30										
Type de préleveur		PP45									
Zone prélevée :	vers 42										
Nombre de flacons											
Analyses prévues											
' '	DCO, I									s, AOX, CAV dont E	
	HAP, C								-	gnésium, MES, Colif tinaux, Escherichia c	
		, Con	ioiiiles a tii	emololeram	s a 44 , S	aiiiioi	ielies, Eli	itercoque	S IIILESI	illiaux, Escriencilla c	JUII
Dispositions partic	ulières :										
Observations:											

Feuille de terrain et rendu

			Géné	ralités						ECHANTILLON
Affaire :	-	203369	GOTIO	Nom :			SERPOL			LONANTIELON
Opérateur :	<u>'</u>	NPR		Site :		ISDN	D de Pen			Pz F2
Date:	0	5/12/18		Heure :		10011	11h30	01 (00)		1 '2'2
Date .		0,12,10		ricare .			111100			
				Conditi	ions de p	rélève	ment			
Météo du jour		beau		couvert			sec		pluie 1	faible Duie forte
Météo des 3 derni	ers iours	sec		peu de plu	uie I		pluvieux		promo	très pluvieux 🔲
Météo des 20 derr	-	sec		peu de plu			pluvieux			très pluvieux 🖂
T° extérieure :		5 à 10°	° C				promote sur			
				Descrip	tion poin	t de m	esure			
Type d'ouvrage ou	point de me	sure :		•	•			Géomét	rie (pro	of, diam, repère, cote/sol)
puits	· 🖂									•
forage								П	HS=	+0,48 m/sol
piézomètre									∇	NS= 36,54 m/rep
autre		:								FOND= 43,50 m/rep
Point particulier :										·
'										
Purge préalable :				oui			non \square			
Mode de purge : p	compe PP45	,		Durée :	30	min.	Débit :		m ³ /h	Volume extrait : litres
				m/rep	Après :	non	m/rep	Repère utilisé : +0,48 m/sol		
•				•			•	mesi	uré	· ·
				Mesures	in-situ et	obser	vations			
Débit naturel ou de	e fonctionner	ment :				Pomp	e en fonc	tionnem	ent :	oui 🔲 non
Niveau statique	36,54	l m/sol				Repè	re utilisé		0,48	m/sol
Température eau		12,6	°C			Odeu	r		Néan	t
рН		7,10				Save	ur		Non to	esté
Conductivité		651	μS/cm			Coule	eur		Trans	parent
Redox		80	mV			Limpi	dité		Cla	aire, présence légère de petite
O ₂ dissous		9,19	mg/l	8	8 %				1	particules végétales
					Prélèven	ent				
Heure: 11h30	- 12h									
Type de préleveur	: pompe	PP45								
Zone prélevée :	vers 42	2 m								
Nombre de flacons	s: 17									
Analyses prévues	:									
										ssous, AOX, CAV dont BTEX,
										Calcium, Magnésium, MES, jues intestinaux, Escherichia coli
	Ooliioi	ilies a o	, Odillolli	iles a tiletti	lotolerant	5 a ++	, Gairion	elles, El	itercoq	des intestinaux, Eschendina con
Dispositions partic	ulières :									
Observations:										
· ·	Extension de	stockaç	ge (déchets	inertes à p	riori) à pro	oximité	immédia	te du pié	zo PzF	- 2

		Cár	oórolitóo						ECHANTII I ON
Affaire :				T		CEDDOL			ECHANTILLON
					ICDN				D- 5
Opérateur :				 	ISDIN		01 (38)		PZ 5
Date :	P03369 NPR 05/12/18 beau		Heure :			12h30			<u> </u>
			Conditio	no do ni	ويرذاذ	mont			
Mátán du inur		lboou III		ns de pr	elevel			pluio f	faible Duis forts
Météo du jour	oro iouro							plule i	<u> </u>
						•	<u> </u>		-
	ilers jours		peu de plui	e —		piuvieux			tres piuvieux L
T° extérieure :		3 4 10 0							
			Description	on point	de m	esure			
Type d'ouvrage ou	point de m	nesure :		J			éométri	e (pro	f. diam. repère, cote/sol)
puits		1000.0						(15	,,
forage							П	HS=	+0.43 m/sol
piézomètre									<u> </u>
autre		:					Ħ		
Point particulier :							_		
onit paraosiis.		500							
<u> </u>									
Purge préalable :			oui 🔲			non			
Mode de purge : k			Durée :		min.	Débit :		m ³ /h	Volume extrait : litres
			Avant :			Après :	n.m	m/rep	Repère utilisé : +0,43 m/sol
							mesu	ré	
	Conditions de prélèvement Conditions de prélèvement Description point de mesure								
Débit naturel ou de	e fonctionne	ement :			Pomp	e en fonc	tionneme	ent :	oui 🔲 non
Niveau statique					Repè	re utilisé		0,43	m/sol
Température eau		0	·C		Odeu	r		Aucur	ne
рН					Save	ur		Aucur	ne
Conductivité		μS/c	m					Limpid	de
Redox		m	ıV		Limpi	dité		Claire	
O ₂ dissous		mç	g/l	%					
			P	rélèvem	ent				
Heure :									
Type de préleveur	:								
Zone prélevée :									
Nombre de flacons	3:								
Analyses prévues	:								
Dispositions partic	ulières :								
Observations:									

			Géné	ralités							ECHANTILLON
Affaire :	P	03369	GCIIC	Nom :	Т			SERPO			LOHANTILLON
Opérateur :		NPR		Site:	+		ISDN	D de Per			Pz 6
Date:		5/12/18		Heure :	+		1001	10h30	101 (00)		1
Date .		<i>5/12/10</i>		ricare .				101100			
				Condit	ions	de pro	élèvei	nent			
Météo du jour		beau		couvert	[sec		pluie 1	faible Duie forte D
Météo des 3 derni	iers iours	sec [peu de p	luie			pluvieux			très pluvieux 🔲
Météo des 20 der		sec [peu de p				pluvieux			très pluvieux 🖂
T° extérieure :	· · · · · · · · · · · · · · · · · · ·	5 à 10° (С	'				•			•
<u> </u>											
				Descrip	otion	point	de m	esure			
Type d'ouvrage ou	u point de me	sure :		•		•			éométri	e (prof	, diam, repère, cote/sol)
puits	· 🖂										
forage									П	HS=	+0,7 ml/sol
piézomètre										∇	NS= 34,90 m/rep
autre		:									FOND= 39,90 m/rep
Point particulier :											
January Paradolior											
Purge préalable	•			oui E				non \square			
Mode de purge :				Durée :		30	min.	Débit :		m ³ /h	Volume extrait : litres
mode de parge :	ротротт			Avant :				Après :	non		Repère utilisé : +0,7 m/sol
l .				1		.,,,,	,	1.10.00	mesi		
				Mesures	in-si	tu et c	bserv	ations			
Débit naturel ou d	e fonctionnen	nent :						e en fond	ctionnem	ent :	oui 🔲 non 💌
Niveau statique	1	m/sol						re utilisé		_	m/sol
Température eau		11,5	°C				Odeu			Néan	
pH		7,02					Save	ur		Non to	
Conductivité		646	μS/cm				Coule	eur		+	parent
Redox		115	mV				Limpi			Claire	
O ₂ dissous		9,39	mg/l		88	%					
		,	<u> </u>								
					Prél	èveme	ent				
Heure: 10h30) - 11h										
Type de préleveur		PP45									
Zone prélevée :	vers 38										
Nombre de flacon											
Analyses prévues		DBO5 C	OT Amm	onium N	litritos	Mitra	tae N	IKT Máts	uv totau	v at die	sous, AOX, CAV dont BTEX,
i iii.ai.yeee pi e i aee	,										alcium, Magnésium, MES,
											ques intestinaux, Escherichia
			,					coli	,		4
Dispositions partic	rulières :										
Diopositiono partit	, and .										
Observations :											
2220. (4.10110 .											

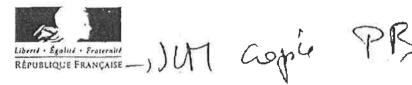
ANNEXE 3 : SYNTHESE DES RESULTATS D'ANALYSES EN LABORATOIRE ET MESURES IN SITU DEPUIS DECEMBRE 2005

																						RESUL	TATS D'AN	NALYSES																				Arrêté du 1	1 ianvier 2007 (1)
		Ī																																									Arrêté du 17 décembre		
EAUX SOUTERRAINES	Unité																																										2008 (2)	Annexe I*	Annexe II**
Nom Echantillon		Puits CUMA	Pz F2	Pz5 Pu	uits P	z F2 P	z5 Puit	ts Pz F	2 Pz5	Pz6	Puits CUMA	Pz F2	Pz5	Pz6 Pz F	3 Pz F	2 Pz5	Pz F3	Pz F2	Pz5	Pz F3 F	z F2 F	Pz5 Pz	F3 Pz F2	Pz5	Pz6	Pz F3 F	z F2	Pz5 Pz6	Pz F3	Pz F2	Pz5 Pz6	Pz F3	Pz F2	Pz5 I	26 Pz F3	Pz F2	Pz5 Pz6	Pz F3	Pz F2	Pz5 F	Pz6 P	z F3 Pz F2 Pz6			
Date de prélèvement		07/	12/2005		21/1	2/2006		2	0/02/2007			27/12/			07/09/2			13/09/2012			6/2013			/12/2013	1		20/06/20			18/06/2				6/2016		22/06/2				6/2018		05/12/2018			
Type d'eau		sout.	sout. s	sout. so	out. s	sout. so	ut. sou	rt. sou	t. sout.	sout.	sout.	sout.	sout.	out. sou	t. sout	. sout.	sout.	sout.	sout.	sout.	out. s	out. sou	ıt. sout.	sout.	sout.	sout.	sout. s	out. sout.	sout.	sout.	sout. sout	t. sout.	sout.	sout. s	out. sout.	sout.	sout. sou	. sout.	sout.	sout. s	out. s	sout. sout. sout.			
Mise à jour des normes : PARAMETRES CHIMIQUES ET PHYSIC	CHIMIOLIE	CLOBALIV																																										févr-07	févr-07
Température (en °C) (In Situ)	O'CHIIWIIQUE	12.1		10.1 11	1.6 1	10.9 10	0.3 13.2	2 12.2	2 13.2	11.8	9.7	9	7.1	9.9 14.	7 15.8	15.8	13.8	14.1	13.9	14.5	15.6 1	5.6 11	7 12.1	12,6	12.2	15	15.7	6.7 15.7	16.2	18.4	20.3 17.6	16.1	17.2	16.1 1	7.1 16.9	16.8	21.5 15.9	13.5	14.7	14.1 1	3.2	11.1 12.6 11.5		25	25
pH (In Situ)		6,84											7,97	,61 7,2	7,03	6,86	6,87	7,24	7,26	6,87	6,99	,99 7,1	5 7,31	7,37	7,48						7,46 7,44											6,79 7,1 7,02		6,5 - 9	
Conductivité (In Situ)	μS/cm	596 8,28							1 684 2 3.67			623		703 630		620				651				613 5.5		613 4.1	608						609 0.7				622 623 0.7 0.9		643 9.08			662 651 646 8.76 9.19 9.39		180μS≤Cond.≤1000μS	<30%
Oxygène dissous (In Situ) Potentiel d'oxydo-réduction (In Situ)	mg/l mV	203		9,24 6 171 14	45				2 3,67			3,47				208							4 161				143								54 127		131 148		9,08			8,76 9,19 9,39 141 80 115			<30%
Carbone organique total (COT)	mg/l	0,58				c0,5			. na			<0,5				<0,6		<0,5		<0,5		0,5 0,						:0,5 <0,5			<0,5 <0,5				0,5 0,7		1 <0,5		1,4			0,9 <0,5 0,6		2	10
Demande chim. en O2. (DCO)	mg/l	<20			15 -				na na			<15			<15							:15 n:						<15 <15			<15 <15				24 <15		<15 <15				3.0	<10 <10 <10 <10 7 <3.0 <3.0			
Demande biochim. en O2 (DBO5)	mg/l mg/l	<3 0.27			2				na na				<0,01 <		1 <0.0								a na	na na							<3 <3				c3 <3,0		<3,0 <3,0		<3,0 <0.01			7 <3,0 <3,0 1,015 <0,01 <0,01			
MES	mg/l																														na na									400		190 <2 43			
ANIONS ET NON METAUX																																													
Ammonium Nitrites	mg/l mg/l	<0,03							na na			0,05	<0.05 <	0,05 <0,						<0,1				na na		<0,1					<0,1 <0,1 <0,05 <0,05		<0.05				0,3 0,1 <0,05 <0,0		<0,1			<0,1 <0,1 <0,1 <0,1 0,05 <0,05 <0,05		0,1	4
Nitrates	mg/l	44,23					0,6 na					46	51	49 38						46		48 ni		na			48				43 42						41 40		42			38 44 40		50	100
Azote Kjeldahl , NTK	mg/l	na			na	na r	na na	a na	na	na		na	na		na		na					na n	a na	na	na			na na			na na						na na					<2,0 <2,0 <2,0			
Chlorures, Cl Sulfates, SO4	mg/l mg/l	22,2			4,7 2	20,8 20	0,9 na	na na	na n-	na	na no	21	22		21		26	21			21 :	22 ni	a na	na	na na			17 16	20	18	18 17 14 14	22	19		20 25		19 19	22	28			25 20 18 15 15 18		250 250	200 250
Orthophosphates, PO4	mg/l	0,05	:0,05	0,05 0,	.64	0,2 0,	42 na	na na	na na	na	na na	0,09	<0.03 <	0,03 <0,0	1 <0,0	1 <0,01	0,05	0,27	0,04	0,04	0,03 0	,05 ni	a na		na	<0.04	0,16	0.04 0.06	<0.04	<0.04	<0.04 <0.0	4 <0,04	0,09	0,06	,06 <0,04	<0,04						0,04 <0,04 <0,04		250	230
CATIONS ET METAUX DISSOUS																																													
Cadmium, Cd	μg/l			<2 <			1 na						<1,5										a na		na						<1,5 <1,5											<1,5 <1,5 <1,5		5	5
Calcium, Ca Chrome total, Cr	mg/l μg/l			46,7 <5 <10 <		<5 <5	:5 na	na na	na na	na na		130 <5	140 <5	160 130 c5 c1	130	130	120 <5		130	110 <5	120 1 <5	120 ni	a na a na	na na	na na	120 <5	120 <5	120 120 <5 <5	120 <5	120 <5	120 120 <5 <5		540 <5		50 110 c5 <5.0	90 <5.0	140 120 <5,0 <5,0	120	120 <5,0	130 1 c5.0 c	5.0	120 120 130 <5,0 <5,0 <5,0		50	50
Cuivre, Cu	μg/I	<10		_			_	na na					<5	<5 <1		<1	<5	<5				<5 n			na	<5		<5 <5	<5	<5	<5 <5	10		<5			<5,0 <5,0	<5,0	<5,0	<5,0 <		<5,0 <5,0 <5,0		2000	
Etain, Sn	μg/l	<50			10 -		10 na					<10			<5						<10 -						<10				<5 <5		<10	<10 -			<10 <10		<10			<10 <10 <10			
Magnésium, Mg Manganèse, Mn	mg/l ug/l	2,38 <10						na na	na na			2,7 <5		3,1 2,3 c5 0.7			2,5	2,5	2,5 <5			2,6 ni <5 ni					2,4	2,4 2,7 <5 <5			2,5 2,5		11	- 11	12 2,6		2,8 2,6		2,7 <5.0	2,0		3 2,8 2,9 <5.0 <5.0 14		50	
Mercure, Hg	μg/l	<0,5),2 na							:0,1 <0,	,-		<0,1	<0,1	<0,1			0,1 ni			na		<0,1						<0,1		0,1 <0,1		<0,1 <0,1		<0,1	<0,1 <	0,1	<0,1 <0,1 <0,1	1	1	1
Nickel, Ni	μg/l	<10		***		<5 <		a na				<10		:10 <2	<2	_	<10	<10	<10			:10 n:			na			<10 <10			<10 <10		<10		10 <10		21 <10		<10			<10 <10 <10	_	20	
Plomb, Pb Potassium, K	μg/l mg/l	<10 1.46		<10 <		<5 <				7.166		<10		14 1	<10			<10 1.7				:10 ni	- 1164	1166			<10				<10 <10		<10 4.7		10 <10	<10	<10 <10		<10			<10 <10 <10		10	50
Sodium, Na	mg/l	8,83		- 10	1,2		,1 na					-,,-	-10	9,5 12		.,.		-,,-	6,8	-,,-	-11	9,5 ni	- 1164					6,6 7	11		6,6 6,3	-,-	30	-1,0	30 11	-,-	6,4 6,4	_	12	-,-	.,.	13 8,7 8,2		200	200
Zinc, Zn	μg/l	10	10			<10 <		a na						:50 2		-	<50	<50				:50 ni		_	na			<50 <50			<50 <50		<50		50 <50		<50 <50		<50			<50 <50 <50			5000
Arsenic, As	μg/l mg/l	na na	na		_			na na				na na	na	na na	na na	_						na ni		_	na na	na na	na na	na na			na na	_	na na		na na	na na	na na		<3,0			<3,0 <3,0 <3,0 <3,0 :0,05 <0,05 0,23		10	100
CATIONS ET METAUX TOTAUX	mg/i	па	па	na n	la	na r	ia na	i na	na	па	na	na	Пd	na na	na	na	na	ria	па	па	na .	na n	a na	па	na	па	па	na na	na	na	na na	па	na	na.	na na	na	na na	<0,05	<0,05	<0,05 <	0,05	0,05 <0,05 0,23		0,2	
Cadmium, Cd	μg/l	na	na	na n	na	na r	na na	a na	na	na		na	na	na na	na	na	na	na	na	na	na	na n	a na	na		na	na	na na	na	na	na na	na	na	na	na na		na na				1,5	<1,5 <1,5 <1,5	5	5	5
Chrome total, Cr	μg/l	na			na				na na			na		na na				na		na				na	na	na	na	na na	na	na	na na	na			na na		na na		<5,0		010	<5,0 <5,0 <5,0 <5.0 <5.0 12		50 2000	50
Cuivre, Cu Etain, Sn	μg/l μg/l	na na			na na	na r		na na	na na			na na		na na	na na					na na		na ni				na na		na na			na na na na				na na		na na na na	10,0	10,0		_	<5,0 <5,0 12 <10 <10 <10		2000	
Manganèse, Mn	μg/I	na	na	na n	na	na r	na na	na na	na			na		na na	na	na	na	na	_	na	na	na na			na		na	na na	na	na	na na		na	na	na na		na na	12	18	37	39 .	<5,0 <5,0 37		50	
Mercure, Hg	μg/l	na				na r	na na					na	na	na na	na		na	na	na	na	na	na n			na		na	na na			na na		na	na	na na	na	na na	<0,5	<0,5	<0,5 <	0,5	<0,5 <0,5 <0,5	1	1	1
Nickel, Ni Plomb, Pb	μg/l	na na				na r	na na	na na				na na	na na	na na na na	na na		na na	na na	na na	na na	na na	na ni	a na a na		na na		na na	na na na na			na na na na		na na	na na	na na	na na	na na na na	<10	<10 <10	<10 <	10	<10 <10 <10 <10 <10 <10	10	20 10	50
Zinc, Zn	μg/l μg/l								na			na na				na								na na		na na					na na			na na			na na			140	91	<50 <50 <50		10	5000
Arsenic, As	μg/l	na	na	na n	na	na r	na na	a na	na	na	na	na	na	na na	na	na	na	na	na	na	na	na na	a na	na	na	na	na	na na	na	na	na na	na	na	na	na na	na	na na	<3,0	<3,0	<3,0 <	3,0	<3,0 <3,0 <3,0		10	100
Fer, Fe SUBSTANCES ORGANIQUES	mg/l	na	na	na n	na	na r	na na	a na	na	na	na	na	na	na na	na	na	na	na	na	na	na	na n	a na	na	na	na	na	na na	na	na	na na	na	na	na	na na	na	na na	0,1	<0,05	0,37 0	,39 (0,09 0,06 1,4		0,2	
Hydrocarbures aromatiques volatils, HAV	μg/l	voir	annexe 1		voir a	annexe 1	na	a na	na	na		voir ann	nexe 1	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/- na	a na	na	na	-/-	-/-	-//-	-/-	-/-	-//-	-/-	-/-	-/-	-/-	-/-	-//-	-/-	-/-	-/-	-/-	-//-		1 (Benzène)	1 (Benzène)
Polychlorobiphényls, PCB	μg/l		annexe 1			annexe 1		a na				voir ann		-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-		a na		na	-/-	-/-	-/-	-/-	-/-	-//-	-/-	-/-	-/-	-/-	-/-	-//-	-/-	-/-	-/-	-/-	-///-			
																													1			0,17 (Σ	0,08 (∑ des 16)	0,16 (∑ 0,1 des 16) de	8 (<u>S</u>				'					0,01 (Benzo[a]pyrène	1 (somme fluoranthèi
																													1			ues (6)	des 16)	ues 10) 08	5 10)				'					0,1 (somme	benzo[b]fluoranthèn
1																																-/- (Σ des 4	-/- (Σ des 4	-/- (Σ des 4 (Σ	-/- des 4				1 '					benzo[b]fluoranthène, benzo[k]fluoranthène,	 benzo[k]fluoranthène benzo[a]pyrène,
																													1			et ∑ des	et ∑ des	et ∑ des et ;	des	1, 1	, .		1 , '		,	. [.]		benzo(ghi)pérylène,	
Hydrocarbures aromatiques polycycliques, HAP ANALYSES BACTERIOLOGIQUES	μg/l	voir	annexe 1		voir a	annexe 1	na	a na	na	na	I	voir ann	nexe 1	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/- n:	a na	na	na	-/-	-/-	-/-	-/-	-/-	-//-	6)	6)	6)	b) -/-	-/-	-//-	-/-	-/-	-/-	-/-	-//-		indeno[1,2,3-cd]pyrène	ndeno[1,2,3-cd]pyrèr
Coliformes à 37°C	germe/100 ml	<30	<30	36 n	na	na r	na <30	0 <30	<30	<30	na	<1	<1	<1 <1	<1	<1	12	>100	<1	<1 :	100	<1 n	a <1	na	na	<30	<30	<30 <30	< 0.3	<0,3	<0,3 <0,3	3 <30	<30	<30	30 <30	<30	<30 <30	<1	<1	<1	<1	ব ব ব		0/100 ml	
Coliformes thermotolérants à 44°C	germe/100 ml		<30	<30 n	na	na r				<30	na	<1	<1	<1 <1			<1	8	<1			<1 n	a <1		na	<30	<30	<30 <30	<0,3	<0,3	<0,3 <0,3	1500	36	<30 -	30 <30		<30 <30	<1	<1		<1	ব ব ব			
Entérocoques intestinaux	germe/100 ml		_			na r		0	_			16		<1 <1								<1 n			na		<15				<0,3 <0,3			<30 -			<30 <30			~1		<1 <1 <1	-	0/100 ml	10000/100 ml
Escherichia coli B glucuronidase + 44°C	/ml	na			na .	na r			na	na	na	na absence/5	absence/5 abs	na na ence/5 absend	e/5 absenc	na e/5 absence	5 absence/5	absence/5	na absence/5 a	na osence/5	abse	ence/5	a na absence	na e/5	na	na bsence/5 abs	ence/5 abs	ence/5 absence	/5 absence	e/5 absence/5 al	na na bsence/5 absenc	ce/5 absence/5	absence/5	na absence/5 abs	na na ence/5 absence	e/5 absence/5 a	na na bsence/5 absence	e/5 absence/2	<1 2 absence/2	absence/2 abse	ence/2 abs	<1 <1 <1 <1 <1 ence/2 absence/2 absence	/2	0/100 ml	20000/100 ml
Salmonelles	1	absence al	sence ab	sence n	na	na r	na absen	nce abser	nce absence	e absence	na	L	L	L L	L	L	L	L	L	L pré	sence	L n	a L	na	na	L	L	L L	L	L	L L	L	L	L	L L	L	L L	5ml	5ml	5ml 5	iml :	5ml 5ml 5ml			

(1) Antité du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine mentionnées aux articles R.1321-3, R.1321-7 et R.1321-3 et de la santé publique

* Annexe I de l'arrêté du 11 janvier 2007 correspondant aux limites et références de qualité des eaux destinées à la consommation humaine, à l'exclusion des eaux conditionnées

** Annexe II de l'arrêté du 11 janvier 2007 correspondant aux limites de qualité des eaux brutes de toute origine utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées, fixées pour l'application des dispositions prévues aux articles R.1321-170 (R.1321-17 et R.1321-42


[2] Arrêtê du 17 décembre 2008 établissant les critères d'évaluation et les modalités de détermination de l'état des eaux souterraines et des tendances significatives et durables de dégradation de l'état chimique des eaux souterraines

-/- Non détecté na Non analysé en gras Dépassement de la valeur guide correspondante

ANNEXE 4: ARRETE PREFECTORAL

P03369 / Emission du 14/12/2018 23

PRÉFECTURE DE L'ISÈRE

S)

DIRECTION DES ACTIONS INTERMINISTERIELLES

PUREAU DE L'ENVIRONNEMENT

GRENOBLE, LE

TEL 04.76.60.48.54.5

rasier n 22 0 22

ARRETE Nº 2006-01064

LE PREFET DE L'ISERE, Chevalier de la Légion d'Honneur, Officier de l'Ordre National du Mérite,

VU le Code de l'Environnement (partie législative) annexé à l'Ordonnance n° 2000-914, du 18 septembre 2000, notamment son Livre V, Titre 1^{er} (I.C.P.E.) ;

VU la loi n° 92-3, du 3 janvier 1992, dite "loi sur l'eau", modifiée ;

VU le décret n° 53-578, du 20 mai 1953, modifié ;

VU le décret n° 77-1133, du 21 septembre 1977 relatif aux Installations Classées, modifié par le décret n° 2005-1170 du 13 septembre 2005, ;

VU l'arrêté N°79-10405 en date du 26 novembre 1979, ayant autorisé le SICTOM de LA BIEVRE à exploiter une décharge contrôlée d'ordures ménagères et autres résidus urbains située sur la commune de PENOL, au lieu-dit « Les Burettes » ;

VU l'arrêté n° 69-1316 en date du 5 avril 1989, ayant autorisé l'extension (sur les parcelles n°s 13, 61, 62 et 63 ,section ZD et la parcelle n°36, section ZK du plan cadastral) de la décharge contrôlée d'ordures ménagères exploité à PENOL par le SICTOM de LA BIEVRE ;

VU l'arrêté n°2000-3357en date du 17 mai 2000, imposant au SICTOM de LA BIEVRE des prescriptions complémentaires relatives à la mise en conformité des conditions d'exploitation de son centre de stockage de déchets ménagers ;

VU le dossier concernant de demande présentée le 2 mai 2005 par M. le Président du SICTOM de LA BIEVRE en vue de procéder à la réhabilitation des casiers n°s 1 et 2 de son centre de stockage de déchets ultimes sis à PENOL, au lieu-dit « Les Burettes » ;

VU le rapports du Directeur Régional de l'Industrie, de la Recherche et de l'Environnement Rhône-Alpes , Inspecteur des Installations Classées, en date des 23 août 2005 ;;

VU l'avis de Mme le Chef de la Mission Inter-services de l'Eau (MISE), en date du 14 novembre 2005 :

VU l'avis du Directeur Départemental des Affaires Sanitaires et Sociales, en date du 25 novembre 2005 :

12. PLACE DE VERDUN - B.P. 1046 - 38021 GRENOBLE CEDEX 1 - 管 04.76.60 34.00 - 图 04.76.51.03.86 - ©: WWW.isere pref.gouv.ft

VU le rapport du Directeur Régional de l'Industrie, de la Recherche et de l'Environnement Rhône-Alpes, Inspecteur des Installations Classées, en date du 14 novembre 2005 ;

VU la lettre, en date du 22novembre 2005, invitant le demandeur à se faire entendre par le Conseil Départemental d'Hygiène et lui communiquant les propositions de l'Inspecteur des Installations Classées;

VU la lettre adressée le 2 décembre 2005 à M. le Président du SICTOM de LA BIEVRE et l'invitant à transmettre les résultats d'analyses de la nappe souterraine à partir des piézomètres existants (« point zéro »),comme suite aux observations émises par les membres du Conseil Départemental d'Hygiène ;

VU la lettre en date du 26 décembre 2005, précisant à M le Président du SICTOM de LA BIEVRE que l'examen de son dossier a été ajourné lors de la séance du Conseil Départemental d'Hygiène du 1^{er} décembre 2005 pour compléments d'information (analyses piézométriques) et l'invitant à se faire entendre à la séance du jeudi 5 janvier 2005 ;

VU les résultats de la campagne d'analyse des eaux souterraines remis le 20décembre 2005 par le Syndicat précité ;

VU l'avis favorable du Conseil Général de l'Isère, en date du 3 janvier 2006 ;

VU l'avis du Conseil Départemental d'Hygiène, en date du 5 janvier 2006 ;

VU la lettre en date du 6 janvier 2006, transmettant au requérant le projet d'arrêté complémentaire concernant son établissement ;

VU la réponse du pétitionnaire en date du 10 janvier 2006, précisant que ce projet d'arrêté n'appelle aucune observation particulière de sa part ;

CONSIDERANT qu'il convient, conformément aux dispositions de l'article 18 du décret du 21 septembre 1977 susvisé, d'imposer à M. le Président du SICTOM de LA BIEVRE des prescriptions complémentaires fixant les conditions de réhabilitation des casiers n°s 1 et 2 de son centre de stockage des dèchets ménagers situé à PENOL, en vue de garantir les intérêts visés à l'article L511-1 du Code de l'Environnement;

SUR proposition du Secrétaire Général de la Préfecture de l'Isère ;

ARRETE

ARTICLE 1er -Monsieur le Président du SICTOM de LA BIEVRE est tenu de respecter strictement les prescriptions complémentaires annexées au présent arrêté et fixant les conditions de réhabilitation des casiers n°s 1 et 2 (vide de fouilles) de son centre de stockage de déchets ménagers et assimilés situé à PENOL, au lieu-dit « Les Burettes »..

ARTICLE 3 - L'exploitant devra déclarer sans délai les accidents ou incidents survenus du fait du fonctionnement de cette installation qui seraient de nature à porter atteinte aux intérêts mentionnés à l'article L 511-1 du Code de l'Environnement .En cas d'accident, il sera tenu de lui remettre un rapport répondant aux exigences de l'article 38 du décret n°77-1133 du 21 septembre 1977susvisé.

ARTICLE 4 - Conformément aux dispositions de l'article 20 du décret du 21 septembre 1977 susvisé, tout exercice d'une activité nouvelle classée, toute transformation, toute extension de l'exploitation devra, avant sa réalisation, être porté à la connaissance du Préfet avec tous ses éléments d'appréciation.

Tout transfert dans un autre emplacement, d'une installation soumise à autorisation, devra faire l'objet d'une demande préalable au Préfet.

ARTICLE-5 En cas d'arrêt définitif de l'installation, l'exploitant est tenu de notifier au Préfet la date de cet arrêt au moins six mois avant celui-ci, en joignant un dossier comprenant le plan mis à jour des terrains d'emprise de l'installation, ainsi qu'un mémoire sur l'état du site précisant les mesures prises ou prévues pour assurer la mise en sécurité de ce site, conformément aux dispositions de l'article 34-1 du décret n° 77-1133 du 21 septembre 1977, modifié par l'article 11 du décret n° 2005-1170 du 13 septembre 2005.

Ces mesures comportent notamment :

- --l'évacuation ou l'élimination des produits dangereux et, pour les installations autres que les installations de stockage de déchets, celle des déchets présents sur le site,
- --des interdictions ou limitations d'accès au site,
- --la suppression des risques d'incendie ou d'explosion,
- --la surveillance des effets de l'installation sur son environnement.

En outre, l'exploitant est tenu de placer le site de l'installation dans un état tel qu'il ne puisse porter atteinte aux intérêts mentionnés à l'article L 511-1 du Code de l'Environnement et qu'il permette un usage futur du site déterminé selon les dispositions prévues par les articles 34-2 et 34-3 du décret n° 2005-1170 du 13 septembre 2005.

ARTICLE 6 - Un extrait du présent arrêté complémentaire sera tenu à la disposition de tout intéressé et sera affiché à la porte de la mairie de PENOL, pendant une durée minimum d'un mois. Le même extrait sera affiché, en permanence, de façon visible, dans l'installation, par les soins de l'exploitant. Un avis sera inséré par les soins du Préfet de l'Isère et aux frais de l'exploitant, dans deux journaux locaux ou régionaux diffusés dans tout le département.

ARTICLE 7 — En application de l'article L 514-6 du Code de l'Environnement, cet arrêté peut être déféré au Tribunal Administratif de Grenoble, d'une part par l'exploitant ou le demandeur dans un délai de deux mois à compter de sa notification, d'autre part par les tiers dans un délai de quatre ans à compter de sa publication ou de son affichage.

ARTICLE 8 - Le présent arrêté doit être conservé et présenté à toute réquisition.

ARTICLE 9 - Le Secrétaire Général de la Préfecture de l'Isère, le Sous-Préfet de VIENNE, le Maire de PENOL et l'Inspecteur des Installations Classées, sont chargés, chacun en ce qui le concerne, de l'exécution du présent arrêté qui sera notifié au SICTOM de LA BIEVRE.

FAIT à GRENOBLE, le 27 JAN 2006

Dominique BLAIS

LE FREFET Pour le P**GE** le Secrétal e Géner

4. DISPOSITIONS RELATIVES AUX EAUX

4.1 - Principe

Sont interdits tous déversements, écoulements, rejets, dépôts directs ou indirects d'effluents susceptibles d'incommoder le voisinage, de porter atteinte à la santé publique ainsi qu'à la conservation de la faune et de la flore, de nuire à la conservation des constructions et réseaux d'assainissement, et au bon fonctionnement des installations d'épuration, de dégager en égout directement ou indirectement des gaz ou vapeurs toxiques ou inflammables.

En particulier, tout déversement sur le sol ou dans le sous-sol est interdit.

Toutes dispositions doivent être prises pour éviter tout déversement accidentel susceptible d'être à l'origine d'une pollution des eaux.

4.2 - Eaux de ruissellement extérieures

Du fait du relief, le débit des eaux de ruissellement extérieures au site est très limité. Cellesci seront collectées avec les eaux de ruissellement intérieures.

4.3 - Eaux de ruissellement intérieures

Casier 3 : création d'un fossé étanche sur les cotés Nord, Est et Sud avec une pente générale de 1% et déversement dans la carrière.

Casier 4 et 5 : création d'un fossé étanche sur les cotés Nord, Ouest et sud raccordé pour la partie est des casiers aux fossés du casier 3.

Pour les autres cotés, les fossés seront prolongés par des goulottes béton jusqu'en pied de talus et l'ensemble dirigé vers la carrière.

Casiers 1 et 2 : création d'un fossé étanche sur les cotés

Les eaux doivent transiter avant rejet au milieu naturel par un bassin de stockage étanche dimensionné pour capter au moins les ruissellements consécutifs à un événement pluvieux de fréquence décennale, permettant une décantation et un contrôle de leur qualité.

Compte-tenu de l'exploitation simultané de la décharge et de la carrière, un soin particulier est apporté aux eaux de ruissellement des parties communes afin qu'il ne puisse y avoir contact entre le massif de déchets et celles-ci ou infiltration vers le massif de déchets. (création systématique de fossés afin d'éloigner ces eaux du pied des digues et des zones remblayées).

4.4 - Lixiviats

Les lixiviats issus des casiers 1, 2, 5 et de la tranchée drainante entre les casiers 4 et 5 sont raccordés à une capacité de stockage de 3000 m3

Ces lixiviats sont traités par une installation bio-physico-chimique d'une capacité de 2m3/h . La quantité et la qualité des lixiviats et des lixiviats traités est suivie dans les conditions suivantes :

Une fois par trimestre une analyse sera effectuée sur les éléments suivants :

Volume, MEST, COT, DCO, DBOs, azote global, ammoniaque, phosphore total, phénol, métaux totaux (dont Cr^s, Cd, Pb, Hg), As, fluor et composés, CN libres, hydrocarbures totaux, composés halogériés (en AOX et EOX), substances toxiques bio-accumulables ou nocives pour l'environnement, conductivité, résistivité.

La fréquence pourra devenir annuelle si l'évaluation des données indique que l'on obtient les mêmes résultats avec des intervalles plus longs, et après accord de l'inspection des installations classées.

Une fois par an, les analyses seront effectuées par un laboratoire agréé.

Les lixiviats bruts ne peuvent être mélangés aux lixiviats traités avant rejet.

Les lixiviats traités peuvent être rejetés au milieu naturel si les valeurs limites suivantes sont respectées ;

```
DCO < 200 mg/f
DBO5 < 30 mg/l
MEST < 20 mg/l
COT < 70 mg/t
Azote global < 20 mg/l (moyenne mensuelle)
Phosphore total < 10 mg/l (moyenne mensuelle)
Phénois < 0,1 mg/i
Métaux totaux < 15 mg/l
Cr6+ < 0.1 \text{ mg/}
Cd
      < 0,2 mg/l
РЪ
      < 0,5 mg/l
Hg
      < 0.05 \text{ mg/l}
       < 0,1 mg/l
Fluor et composés < 15 mg/l
CN libres < 0.1 mg/l
Hydrocarbures totaux < 5 mg/l
Composés organiques halogénés < 1 mg/l
```

4.5 - Maîtrise des niveaux de lixiviats

Chaque puits est jaugé mensuellement. Une hauteur d'eau supérieure à 0,30 mêtre entraînera un pompage systématique et un nouveau contrôle 24 heures plus tard. Un registre de surveillance consignera toutes les mesures.

4.6 - Contrôle des eaux souterraines

Le contrôle des eaux souterraines est effectué sur les piezomètres suivants :

Référence amont : puit CUMA à Sardieu

Références avail : piézomètres F2, F5 et un troisième à créer au sud du casier 2

Le programme de surveillance est le suivant :

-Tous les trimestres ; pH, potentiel d'oxydo-réduction, résistivité, COT, relevé des niveaux piézométriques rattachés au NGF accompagné d'une carte interprétative des conditions piézomètriques du jour..

-Tous les ans :

- Analyse physico-chimique : pH, potentiel d'oxydoréduction, résistivité, NO_2 , NO_3 , NH^{4+} , CF SO_4 , PO_4 , K*, Na*, Ca^2 , Mg^2 , Pb, Cu, Cr, Ni, Zn, Mn, Sn, Cd, Hg, Dco, COT, AOX, PCB, HAP, BTEX.
- Analyse biologique : DBO5.
- Analyse bactériologique il coliformes fécaux, coliformes totaux, streptocoques fécaux, présence de salmonelles,

La première analyse annuelle est réalisée des notification de l'arrêté.

Tous les quatre ans elle est réalisée par un laboratoire agréé.

En cas de dégradation significative de la qualité des eaux souterraines, il sera fait application des dispositions de l'article 41 de l'arrêté ministériel du 9 septembre 1997.

4.7 - Contrôle des eaux superficielles

Tous les trimestres, une analyse du pH et une mesure de résistivité seront effectuées sur les eaux de ruissellement.

Le prélèvement sera réalisé à l'aval de tous les déversements en provenance du site du stockage. En cas d'anomalie, une analyse identique à celle des lixiviats sera effectuée.

4.8 - Registre du bilan hydrique

Un bilan hydrique annuel est établi conformément à l'article 43 de l'arrêté ministériel du 9 septembre 1997.

4.9 - Conditions d'aménagement

Les divers équipements de traitement et de valorisation des lixiviats et du biogaz seront placés sur une dalle en béton. La forme de cette dalle devra permettre de recueillir les eaux pluviales et les fuites éventuelles pour les diriger vers un regard afin qu'elles soient traitées avec les lixiviats.

ANNEXE 3 : REGISTRE DES PLAINTES

Registre des plaintes odeurs 2018

Date de la remontée d'information	Date du constat	Commune	Nom de la personne qui a fait le constat	Occasionné par travaux sur le réseau	Défaut réseaux	Défaut fonctionnement valorisation	Défaut fonctionnement Torchère	Aucune anomalie constatée	Mode de fonctionnement	Heure du constat
27/01/2018	26/01/2018	Marcilloles	Dominique Primat					Х	Transvapo	fin de journée
27/01/2018	27/01/2018	Marcilloles	Eric VIAL					Х	Transvapo	8h45 / 10h30
27/01/2018	27/01/2018	Marcilloles	Eric VIAL					Х	Transvapo	21h15
08/03/2018	04/03/2018	Marcilloles	Dominique Primat					Х	Transvapo	Matin
16/07/2018	17/07/2018	Marcilloles	Dominique Primat			Х	Х		Transvapo	Matin
21/09/2018	14/09/2018	Marcilloles	Eric VIAL					Х	Transvapo	Matin
21/09/2018	17/09/2018	Marcilloles	Eric VIAL					Х	Transvapo	Matin

ANNEXE 4 : ANNALYSES DES REJETS ATMOSPHERIQUES TRANSVAPO/TORCHERE

SERPOL 2 Chemin du Génie BP80 69633 VENISSIEUX

A l'attention de M. SEYVE

CONTRÔLE DES REJETS ATMOSPHÉRIQUES (Torchère BBC400)

Rapport N°: 10387392-001-1 Code Prestation: E5200

Lieu d'intervention : SICTOM DE LA BIEVRE 113 Chemin des carrières 38260 PENOL

Date d'intervention: 26/04/2018

APAVE Sud-Europe S.A.S Agence de Tassin 177 Route de Sain-Bel BP 3 69811 TASSIN Cédex

Tél: 04.72.32.52.52 - Fax: 04.72.32.52.00

APAVE Sud-Europe SAS Agence de Tassin 177 Route de Sain-Bel BP 3 69811 TASSIN Cédex

Tél: 04.78.19.09.50 - Fax: 04.78.19.81.70

Contrat n°32200008(1)

Lieu d'intervention : SICTOM DE LA BIEVRE 113 Chemin des carrières 38260 PENOL

Date d'intervention : 26/04/2018

CONTRÔLE DES REJETS ATMOSPHÉRIQUES (Torchère BBC400)

RAPPORT D'ESSAI N° 10387392-001-1

Adresse(s) d'expédition 1 Ex : adressé par mail à : nicolas.seyve@serpol.fr

A l'attention de M. SEYVE

Interlocuteur site: M. EFFANTIN

Rendu compte à : M. EFFANTIN

Intervenant(s) :H.ROYERE / C.ROUYER

Le Responsable d'Unité : P. BOUHANA

Document original immatériel

Pièces jointes: 0

Accréditation n° 1-1461

Liste des sites accrédités et portée disponibles sur www.cofrac.fr

Ref: M.LAEX.041.V8

Rapport n° 10387392-001-1 Date: 12/06/2018

Page : 2/27

Sommaire

1	SYNTHESE DES RESULTATS	3
1.1	Torchère BBC400	
2	SYNTHESE DES ECARTS ET INFLUENCE	3
3	GENERALITES	4
3.1	Objectif	
3.2	Description	
3.3	Exploitation du rapport	5
3.4	Documents de référence	5
4	PROTOCOLE D'INTERVENTION	
4.1	Méthodologie	
4.2	Déroulement des mesures	6
5	RESULTATS ET COMPARAISONS AUX VALEURS REGLEMENTAIRES	
5.1	Préambule	
5.2	Torchère BBC400	/
	1 ECARTS AUX NORMES DES INSTALLATIONS	
ANNEXE	: 1 ECARTS AUX NORMES DES INSTALLATIONS	٠ 8
	2 DESCRIPTION DES INSTALLATIONS	
ANNEXE	E 2 DESCRIPTION DES INSTALLATIONS	9
	3 METHODOLOGIE DE PRELEVEMENT ET D'ANALYSE	
ANNEXE	: 3 METHODOLOGIE DE PRELEVEMENT ET D'ANALYSE	10
	4 INCERTITUDES ET CONDITIONS DE VALIDATION DES MESURES	
ANNEXE	: 4 INCERTITUDES ET CONDITIONS DE VALIDATION DES MESURES	16
A BIBIE?	5 RESULTATS DETAILLES	
ANNEXE	: 5 KESULTATS DETAILLES	19
ANNFXF	F 6 AGREMENT	27

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 3/27

1 SYNTHESE DES RESULTATS

1.1 Torchère BBC400

Observations La concentration en COVnm est supérieure à la valeur réglementaire La concentration en Poussières est supérieure à la valeur réglementaire

2 SYNTHESE DES ECARTS ET INFLUENCE

Torchère BBC400

Lors de nos essais nous avons relevé les non-conformités suivantes, outre la majoration de l'incertitude, l'influence de ces écarts et décrites ci-dessous.

Compte tenu de l'écart des teneurs mesurées par rapport aux valeurs limites, les observations relevées lors de notre intervention n'ont pas d'incidence sur le jugement de conformité.

- Longueur droite amont insuffisante.
- Longueur droite aval insuffisante.
- Le nombre d'axes de prélèvement est insuffisant ou inutilisable. Les essais n'ont pu être réalisés que sur cet axe.
- Le recul au droit des orifices de prélèvements est insuffisant. Les prélèvements manuels n'ont pas pu être effectués à tous les points prévus par les normes.
- Absence de protection contre les intempéries.
- La température élevée des gaz dans le conduit n'a pas permis de mettre en œuvre l'ensemble des méthodes de prélèvement normalisées.
- La mesure de débit, poussières ont été réalisées au débouché
- Le rendement du four de conversion du NO2 est compris entre 80 et 95%

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 4/27

3 GENERALITES

3.1 Objectif

Dans le cadre :

- ✓ du contrôle réglementaire par un organisme agréé par le ministère en charge des installations classées et conformément :
 - o à l'arrêté préfectoral n°2011292-0022 du 19 octobre 2011 régissant vos installations,

L'APAVE a été chargé de procéder à des contrôles sur des rejets atmosphériques.

Le pilote d'affaire APAVE cité dans ce rapport est qualifié pour les missions de mesures à l'émission.

Pour chaque installation, le tableau suivant indique le nombre de mesures réalisées pour chacun des paramètres :

Paramètre	Torchère BBC800
Température	/
Vitesse, débit	/
Humidité (H2O)	1 essai d'environ 90 min
Dioxyde de carbone (CO2)	3 essais d'environ 30 min
Oxygène (O2)	3 essais d'environ 30 min
Poussières	1 essai d'environ 90 min
Acide fluorhydrique (HF)	1 essai d'environ 90 min
Oxyde de soufre (SO2)	3 essais d'environ 30 min
Acide chlorhydrique (HCI)	3 essais d'environ 30 min
Oxydes d'azote (NOx)	3 essais d'environ 30 min
Monoxyde de carbone (CO)	3 essais d'environ 30 min
Composés Organiques Volatils Totaux (COVT)	3 essais d'environ 30 min
Méthane (CH4)	3 essais d'environ 30 min
Composés Organiques Volatils Non Méthaniques (COVNM)	3 essais d'environ 30 min

Rapport n° 10387392-001-1 Date: 12/06/2018 Page: 5/27

3.1.1 Ecarts par rapport à la commande

Cette prestation est conforme à notre proposition référencée A532200008.1 et /ou à votre commande $n^{\circ}11804124$ du 6/04/2018.

√ à l'exception des mesures de vitesse et de débit qui n'ont pas pu être réalisées. En effet, la structure et la nature des installations ne permets la réalisation de mesures selon les normes.

3.2 Description de l'installation

La description de l'installation et de la section de mesure se trouve en annexe 2.

3.3 Exploitation du rapport

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale.

Les résultats du présent rapport d'essai ne se rapportent qu'à l'objet soumis à l'essai au moment des mesures.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont alors identifiées par le symbole "O" au § 4.

Conformément à la convention de preuve acceptée par le client, ce rapport est diffusé exclusivement sous forme dématérialisée.

3.4 Documents de référence

Textes réglementaires :

Arrêté du 11 mars 2010 « portant modalité d'agrément des laboratoires ou des organismes pour certains types de prélèvements et d'analyses à l'émission des substances dans l'atmosphère ».

Arrêté du 7 juillet 2009 « relatif aux modalités d'analyse dans l'air et dans l'eau dans les ICPE et aux normes de référence ».

Document LAB REF 22 du COFRAC « Exigences spécifiques Qualité de l'air – Emissions de sources fixes ».

GA X43-551 : Qualité de l'air – Emissions de sources fixes – Harmonisation des procédures normalisées en vue de leur mise en œuvre simultanée.

GA X43-552 : Qualité de l'air – Emissions de sources fixes – Elaboration des rapports d'essais pour les mesures à l'émission.

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 6/27

4 PROTOCOLE D'INTERVENTION

4.1 Méthodologie

Les méthodologies de prélèvement et analyse des composés cités au paragraphe 2.1 sont précisées en annexe 3.

Certains éléments de validation des méthodologies non spécifiques à la présente prestation ne sont pas fournis dans ce rapport. Ils sont disponibles sur demande auprès APAVE.

4.2 <u>Déroulement des mesures</u>

Installation	Conditions de fonctionnement lors des essais, fournies par l'exploitant:
Torchère BBC400	Consigne à 350 Nm3/h, 1080°C

5 RESULTATS ET COMPARAISONS AUX VALEURS REGLEMENTAIRES

5.1 Préambule

Les principaux résultats sont rassemblés dans le(s) tableau(x) ci-après. Les résultats détaillés sont en annexe 5.

Les incertitudes (incluant les prélèvements et les analyses) sont fournies en annexe 4.

Les concentrations et les débits sont exprimés dans les conditions normalisées (101,3 kPa, 273 K) symbolisées par « m_0^3 ».

Pour déclarer ou non la conformité à la spécification, il n'a pas été tenu compte de l'incertitude associée au résultat.

La déclaration de conformité est réalisée sous accréditation si la mesure correspondante est réalisée sous accréditation.

Pour les paramètres dont les valeurs limites n'ont pas été fournies, aucune déclaration de conformité n'a été réalisée.

Rapport n° 10387392-001-1 Date : 12/06/2018

Page : 7/27

5.2 Torchère BBC400

Désignation	Unité	COFRAC	Essai 1	Essai 2	Essai 3	Moyenne	Blanc de site		VLE ⁽¹⁾	
		Oui/Non					Valeur	C/NC (2)	Valeur	C/NC ⁽²⁾
Date des mesures	-	-		26-avr-18		-	-	-	-	-
Teneur en oxygène (sur gaz sec)	%	0	13,79	13,99	12,51	13,43	-	-	-	-
Teneur en CO ₂ (sur gaz sec)	%	N	6,43	6,28	7,64	6,8	-	-	-	-
Humidité volumique	%	0	6,7	6,7	6,7	6,7	-	-	-	-
Composés			Con	centration su	r gaz sec à 15	% de O2	Valeur	C/NC ⁽²⁾	Valeur	C/NC ⁽²⁾
Monoxyde de carbone (CO)	mg/m_0^{3}	0	211	225	11	149	-	-	150	С
	Kg/h	0	/	/	/	1	-	-	-	-
Oxydes d'azote (NOx en éq NO ₂)	mg/m_0^3	0	20,1	19,8	23,0	21,0	-	-	400	С
	Kg/h	0	/	/	/	/	-	-	-	-
COV totaux (COVt en eq C)	mg/m_0^3	0	92,0	105,7	75,1	90,9	-	-	-	-
	Kg/h	0	/	/	/	/	-	-	-	-
Méthane (CH ₄ en eq CH ₄)	mg/m_0^3	0	9,40	11,73	3,89	8,34	-	-	-	-
	Kg/h	0	/	/	/	/	-	-	-	-
COV non méthaniques (COVnm en eq C)	mg/m_0^3	0	83,9	95,6	71,7	83,7	-	-	50	NC
	Kg/h	0	/	/	/	/	-	-	-	-
Poussières totales	mg/m_0^3	0	22,7	-	-	22,7	0,10	С	10	NC
	Kg/h	0	/	/	/	/	-	-	-	-
Oxydes de Soufre (SO ₂)	mg/m_0^{3}	0	189	-	-	189	0,0	С	300	С
	Kg/h	0	/	/	/	/	-	-	-	-
Acide Chlorydrique (HCl)	mg/m_0^{-3}	0	0,70	-	-	0,70	0,000	С	10	С
	Kg/h	0	/	/	/	1	-	-	-	-
Acide Fluorhydrique (HF)	mg/m ₀ ³	0	0,30	-	-	0,30	0,020	С	4	С
Total	Kg/h	О	/	/	/	/	-	-	-	-

(1) VLE : Valeur Limite d'Emission

(2) C : Conforme, NC : Non Conforme

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 8/27

ANNEXE 1 ECARTS AUX NORMES DES INSTALLATIONS

A/ ECARTS DE L'INSTALLATION PAR RAPPORT AUX REFERENTIELS NORMATIFS

Torchère BBC400

La section de mesure n'est pas conforme à la norme ISO 10780 pour les raisons suivantes :

- Longueur droite amont insuffisante : la préconisation d'une longueur droite amont au moins égal à
 5 fois le diamètre hydraulique du conduit n'est pas respectée.
- Longueur droite aval insuffisante : la préconisation d'une longueur droite aval au moins égal à 2 fois (coude) ou 5 fois (débouché) le diamètre hydraulique du conduit n'est pas respectée.

La section de mesure n'est pas conforme à la norme NF EN 13284-1 pour les raisons suivantes :

- Le nombre d'axes de prélèvement insuffisant : existence d'un seul axe exploitable. Les essais n'ont pu être réalisés que sur cet axe.
- Le recul au droit des orifices de prélèvements est insuffisant. Les prélèvements manuels n'ont pas pu être effectués à tous les points prévus par les normes.
- L'absence de protection contre les intempéries : cela permettrait une meilleure maitrise des conditions de sécurité pour le personnel et le matériel.

Par ailleurs:

La température élevée des gaz dans le conduit n'a pas permis d'utiliser les méthodes de prélèvement normalisées et est susceptible d'augmenter l'incertitude sur les résultats rendus

La mesure de débit, poussières ayant été réalisée au débouché les incertitudes associées aux résultats de ces mesures et aux flux sont élevées. Les écarts par rapport aux exigences normatives sont importants et les résultats sont donnés sous toute réserve.

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 9/27

ANNEXE 2 DESCRIPTION DES INSTALLATIONS

A / DESCRIPTION DE(S) L'INSTALLATION(S)

Identification de l'installation	Torchère BBC400				
Description du process	Torchère de biogaz				
Capacité nominale	400 Nm3/h				
Mode de fonctionnement	Continu				
Système de traitement des gaz	Aucun				
Emplacement du point de mesure dans le circuit des gaz	Cheminée de rejet				
Paramètres d'autosurveillance en continu	Aucun				

B / DESCRIPTION DE LA SECTION ET DU POINT DE MESURAGE

Section de Forme du conduit		Dimensions		Nombre et nature des orifices		Long. droites en Ø- équivalent		Nombre d'axes utilisable pour		Nature de la zone de	Moyens de	Protection contre
mesure	conduit	Ø ou I*L en m	paroi en				Aval	Sonde poussières	Mesure de vitesse	travail	levage	intempéries
Torchère BBC400	Circulaire	1,00	0,5	0	0	2	0	0	0	Nacelle	Aucun	Non

C / Caractéristiques de(s) la section(s) de mesure en terme d'homogénéité

Sections de mesure	Eléments permettant de caractériser l'homogénéité du flux	Homogénéité de la section de mesure		
Torchère BBC400	Effluents issus d'un seul émetteur et absence d'entrée d'air entre cet émetteur et la section de mesure.	Section réputée homogène		

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 10/27

ANNEXE 3 METHODOLOGIE DE PRELEVEMENT ET D'ANALYSE

A/ Stratégie d'échantillonnage

En application de la norme NF EN 15259 et du LAB REF 22, la stratégie d'échantillonnage vis-à-vis de l'homogénéité des effluents gazeux est la suivante :

- pour les polluants particulaires et vésiculaires : mesure par quadrillage de la section de mesure.
- ✓ pour les polluants gazeux avec prélèvement isocinétique : mesure par quadrillage de la section de mesure.
- pour les polluants gazeux avec prélèvement non isocinétique :
 - mesure en un point quelconque de la section de mesure lorsque la section de mesure est réputée homogène.
 - mesure en un point représentatif lorsque la section de mesure est hétérogène et qu'elle comporte un point représentatif.
 - mesure par quadrillage de la section de mesure lorsque cette dernière est hétérogène et qu'elle ne comporte pas de point représentatif.

B/ Règles de calculs

Pour chaque paramètre mesuré, la valeur fournie dans les tableaux de résultats est égale à la moyenne arithmétique de tous les résultats obtenus lorsque plusieurs mesures ont été effectuées.

Conformément au document LAB REF 22 du COFRAC, les règles suivantes sont mises en place pour effectuer les calculs.

Pour chaque composé :

Lorsque la mesure est inférieure à la limite de détection, la valeur mesurée est prise égale à zéro dans les calculs.

Lorsque la mesure est inférieure à la limite de quantification, c'est la moitié de cette limite qui est prise en compte dans les calculs.

Lorsque la valeur de la mesure est inférieure à la valeur du blanc, c'est cette dernière qui est prise en compte dans les résultats.

Dans le cas ou il est nécessaire de sommer plusieurs éléments issus de différentes phases (ex métaux) : Les règles ci-dessus sont appliquées et la valeur du blanc est comparer à chaque phase.

Pour les mesures automatiques :

Les règles ci-dessus sont appliquées sur les valeurs moyennes de chaque essai.

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 11/27

C/ Méthodologie mise en œuvre

PRELEVEMENT ISOCINETIQUE DE POLLUANTS PARTICULAIRES ET GAZEUX

METHODE AVEC DIVISION DE DEBIT ET FILTRATION HORS CONDUIT

A / PRINCIPE DU PRELEVEMENT

Prélèvement isocinétique des fumées à l'aide d'une sonde chauffée selon norme poussières, en verre borosilicaté ou titane ou PTFE, équipée d'un dispositif de mesurage du volume prélevé sur gaz secs avec filtration hors du conduit. La température de filtration est maintenue entre la température de rosée des gaz + 20°C et 160°C. Les polluants gazeux sont piégés par barbotage à l'aide de flacons laveurs équipés de diffuseurs.

B / NORMES APPLICABLES, SUPPORTS DE PRELEVEMENT ET METHODES D'ANALYSES

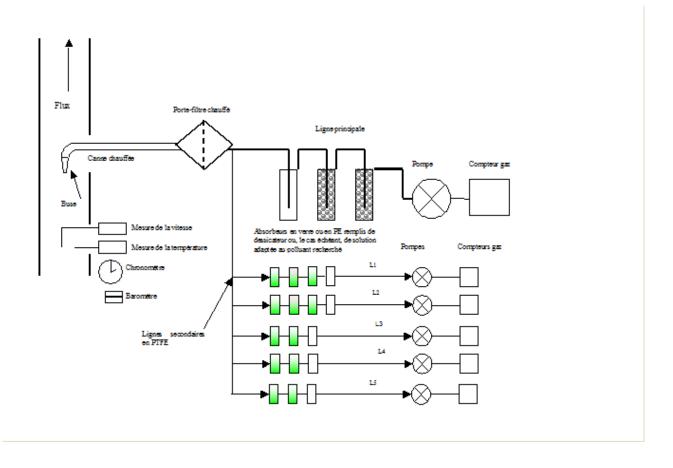
Composé recherché	Norme correspondante	Filtre	Solution d'absorption	Rdt ⁽¹⁾	Nb ⁽²⁾	Type de diffuseur	Rinçage	Analyse
Multipolluants	GA X 43-551	-	-	1	ı	-	-	-
Poussières	EN 13284-1	Quartz	-	-	ı	ı	F 211 -	Avant essai, étuvage à 180°C et pesée. Après essai, étuvage à 80°C et pesée.
HCI	NF EN 1911	1	Eau déminéralisée	> 95%	2	Fritté	Solution d'absorption	Chromatographie ionique
HF	NF X 43-304	Quartz	NaOH 0,1 N	> 90%	2	Fritté	Solution d'absorption	Extraction basique puis potentiométrie - Chromatographie ionique
SO ₂	NF EN 14791	-	H ₂ O ₂ 0,3% ou H2O2 3%	> 95%	2	Fritté	Solution d'absorption	Chromatographie ionique

⁽¹⁾ Rendement d'absorption

Nota : Si HCl et HF sont prélevés simultanément sur la même ligne secondaire, 3 barboteurs seront utilisés.

Les prélèvements pour la quantification de HF, SO₂, HCI, NH₃, Poussières ont été réalisés en parallèle au moyen d'une sonde dite multipolluants.

La sonde est rincée à l'eau puis à l'acétone


⁽²⁾ Nombre de flacons-laveurs

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 12/27

C / SCHEMA

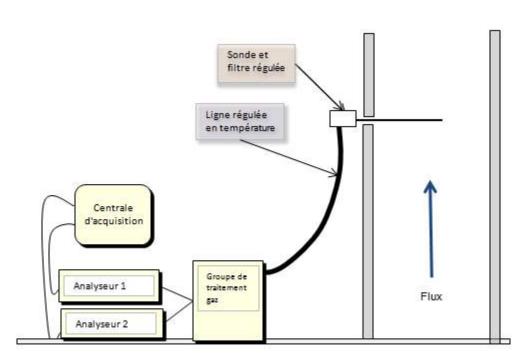
De 1 à 5 lignes secondaires peuvent être montées en dérivation de la ligne principale.

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 13/27

MESURES PAR ANALYSEUR

A / PRINCIPE DU PRELEVEMENT

L'analyse est effectuée en continu. L'analyseur est calibré avant et après chaque essai à partir d'un mélange de gaz étalon certifié. L'étanchéité de la ligne est vérifiée par injection du gaz étalon en tête de la ligne. Avant entrée dans l'analyseur, les gaz sont prélevés par sonde en inox. La sortie analogique de l'analyseur est reliée à un enregistreur.


B / NORMES APPLICABLES, SUPPORTS DE PRELEVEMENT ET METHODES D'ANALYSES

Composé recherché	Norme correspondante	Principe de mesure	Conditionnement	Type de ligne		
O ₂	NF EN 14789	Paramagnétisme	Condensation	Non chauffée		
CO ₂	Méthode interne	Absorption de rayonnement infra-rouge non dispersif	Condensation	Non chauffée		
со	NF EN 15058	Absorption de rayonnement infra-rouge non dispersif	Condensation	Non chauffée		
NOx	NF EN 14792	Chimiluminescence	Condensation	Non chauffée		
COVT	NF EN 12619 XPX 43-554	Détecteur à ionisation de flamme	-	Chauffée		
CH₄	XP X 43-554	Détecteur à ionisation de flamme	Oxydation catalytique des COVT hors méthane	Chauffée		
COVnm	XP X 43-554	Soustraction CH₄ aux COVT				

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 14/27

C / SCHEMA

Note : Le nombre d'analyseurs varie en fonction des composés recherchés.

Note : Le nombre d'analyseurs varie en fonction des composés recherchés.

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 15/27

PRINCIPE DE DETERMINATION DE PARAMETRES DIVERS

Paramètre	Référentiel	Principe				
Température	Méthode interne	Au moyen d'une sonde Pt100 ou d'un thermocouple relié à un afficheur ou enregistreur numérique				
Humidité	NE EN 14 790	Par condensation et/ou absorption par produit desséchant et pesée				

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 16/27

ANNEXE 4 INCERTITUDES ET CONDITIONS DE VALIDATION DES MESURES

A/ INCERTITUDES

Les incertitudes standards calculées avec un facteur d'élargissement de 2 soit un taux de confiance de 95% sont indiquées dans le tableau ci-dessous.

Paramètre	s d'environnement			
	Unité	Valeur mesurée	Gamme	Incertitudes relatives élargies
Pression atmosphérique	mbar	1013	-	1%
Humidité des gaz	%	>5	4 à 40	6%

Mesures par analyseurs en continu				
	Unité	Valeur mesurée	Gamme	Incertitudes relatives élargies
Teneur en O2	%	<6	0-25%	21%
refleur en O2	76	>6	0-25%	6%
Tanaur an CO	%	<3	0.200/	30%
Teneur en CO ₂	%	>3	0-20%	9%
T	3	<150	100 ppm	15%
Teneur en CO	mg/m_0^{3}	>150	200 ppm	9%
Tanauran NOv	, 3	<100	200 ppm	19%
Teneur en NOx	mg/m_0^{3}	>100	200 ppm	10%
Tanaura an NO (Infina nauga)		<100	200 ppm	22%
Teneur en NO (Infra-rouge)	mg/m_0^{3}	>100	200 ppm	11%
Tonour on COVT	ma Im 3	10	100 ppm eqC	25%
reneur en covi	Teneur en COVT mg/m ₀ ³		1000 ppm eqC	20%
		19	100	9%
Teneur en COVnm(*)	Teneur en COVnm(*) mg/m ₀ ³		1000	10%
		50(*)	10000	300%

^(*) Incertitude importante lorsque la proportion de méthane est importante par rapport aux COVt (cas des moteurs)

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 17/27

Prélève	ements manuels			
	Unité	Valeur mesurée	Gamme	Incertitudes relatives élargies
Tonour on noussiàres	mg/m ₀ ³	<5		19%
Teneur en poussières		>5	-	6%
Teneur en HF		≥1	-	30%
Teneur en HCl	${ m mg/m_0}^3$	≥10	-	20%
Teneur en SO ₂		≥5	-	15%

B/ VALIDATION DES MESURES

La validation des principaux critères de validation des mesures est indiquée dans les tableaux ci-dessous.

Torchère BBC400:

	Mesure Automatique						
Paramètre	§ Norme	Critère	Exigence respectée				
Oxygène (O ₂)	8.4.2.3	Dérive inférieure à 5%	Oui				
	8.4.3	Débit fuites inférieur à 2%	Oui				
Monoxyde de carbone (CO)	8.4.2.3	Dérive inférieure à 5%	Oui				
	8.4.3	Débit fuites inférieur à 2%	Oui				
Oxyde d'azote (NOx)	8.4.2.3	Dérive inférieure à 5%	Oui				
	8.4.3	Débit fuites inférieur à 2%	Oui				
	1 6 4 7	Rendement de conversion supérieur à 95%	Non (*)				
Composé Organique Totaux (COT)	6.5.2	Dérive inférieure à 5%	Oui				
	6.5.3	Débit fuites inférieur à 2%	Oui				
Méthane (CH4)	6.5.2	Dérive inférieure à 5%	Oui				
	6.5.3	Débit fuites inférieur à 2%	Oui				
	Poussiè	res : NF EN 13284-1					
Paramètre	§ Norme	Critère	Exigence respectée				
Contrôle d'étanchéité	10.3	Débit fuites inférieur à 2%	Oui				
Ecart sur le taux d'isocinétisme essai n°1	10.4	-5% < T < +15%	/				
Blanc de site	10.4	Inférieur à 10% VLE site	Oui				
	Н	CI : NF EN 1911					
Paramètre	§ Norme	e Critère	Exigence respectée				
Contrôle d'étanchéité	8.2	Débit fuites inférieur à 2%	Oui				
Rendement d'absorption	5.2.1.2.2	Supérieur à 95% ou teneur dans le dernier absorbeur <lq< td=""><td>-</td></lq<>	-				
Blanc de site	4.2 (3)	Inférieur à 10% VLE site	Oui				

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 18/27

	HF: NF X 43-304							
Paramètre		§ Norme	C	ritère	Exigence respectée			
Contrôle d'étanchéité		6.2.5	Débit fuite	s inférieur à 2%	Oui			
Rendement d'absorption	on	5.5.2		% ou teneur dans le bsorbeur <lq< td=""><td>-</td></lq<>	-			
pH de la solution		6.3.2	p	oH > 3	Oui			
Blanc de site		6.2.4	Inférieur	à 10% VLE site	Oui			
		SO2	: NF EN 14791					
Paramètre		§ Norme	C	ritère	Exigence respectée			
Contrôle d'étanchéité		7.2.5	Débit fuite	s inférieur à 2%	Oui			
Blanc de site		7.5	Inférieur	à 10% VLE site	Oui			
	Valid	dation de la	a LQ par rapport à	a la VLE				
			Valeur					
Désignation	Symbole	LQ dans les conditions de la VLE	VLE	Rapport LQ/VLE %	Exigences respectées			
Monoxyde de carbone	СО	3,0	150	2,0	Oui			
Oxydes d'azote	NOx	2,0	400	0,5	Oui			
COV non méthaniques	COVnm en eq C	0,6	50	1,1	Oui			
Poussières totales	1	0,6	10 5,9		Oui			
Oxydes de Soufre	SO2	0,2	300 0,1		Oui			
Acide Chlorydrique	HCl	0,1	10	0,8	Oui			
Acide Fluorhydrique	HF	0,1	4	1,6	Oui			

(*): Compte tenu de l'écart entre les teneurs mesurées par rapport aux valeurs limites, cela n'a pas d'incidence sur le jugement de conformité.

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 19/27

ANNEXE 5 RESULTATS DETAILLES

Rapport n° 10387392-001-1 Date: 12/06/2018

Page : 20/27

Torchère BBC400 :	Conditions d'émission :	Essais 1 à 3	

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne
Date des mesures	-				-
Heure de début de prélèvement	h:min	12:52	13:22	13:52	-
Heure de fin de prélèvement	h:min	13:22	13:52	14:22	-
Durée de prélèvement	h:min	0:30	0:30	0:30	-
Teneur en Oxygène					
- Gamme de l'analyseur	%		25		-
- Concentration en gaz étalon	%		10,96		-
- Incertitude relative sur la concentration du gaz	%		2,00		-
- Dérive au zéro	%		-0,37		-
- Dérive au point d'échelle	%		-0,18		-
- Teneur en oxygène (sur gaz sec)	%	13,79	13,99	12,51	13,43
Teneur en CO ₂ (sur gaz sec)	%	6,43	6,28	7,64	6,78
Masse volumique gaz sec	kg/m_0^3	1,33	1,33	1,33	1,33
Humidité volumique	%	6,72	6,72	6,72	6,72
Masse volumique des gaz humides	kg/m ₀ ³	1,28	1,28	1,28	1,28
- ramené aux conditions normales, sur sec avec correction de O2 à 15%	m ₀ ³ /h				

Torchère BBC400 :	Humidité	Eccaic 1 à 2	26/04/2018
TOTALETE DOCATO	nulliluite	ESSAIS I A S	20/04/2010

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne
Date des mesures			26-avr-18		-
Heure de début d'échantillonnage	h:min	12:52			-
Heure de fin d'échantillonnage	h:min	14:22			-
Interruptions d'échantillonnage	h:min	0:00			-
Durée de l'échantillonnage	h:min	1:30			-
Volume prélevé (gaz sec)	m_0^{3}	0,580			-
Masse d'eau récupérée	g	33,6			-
Humidité volumique sur gaz humide	%	6,7			6,72
Rendement	-	Conforme			-

Le rendement corespond à la validation de la décoloration du silicagel <50%

CO et NOx :

Torchère BBC400:

Rapport n° 10387392-001-1 Date: 12/06/2018

26/04/18

Page : 21/27

Essais 1 à 3

3,1

11,30

23,17

19,83

15,88

32,55

22,99

21,0

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne
Date des mesures	-	26-avr-18			-
Heure de début de prélèvement	h:min	12:52	13:22	13:52	-
Heure de fin de prélèvement	h:min	13:22	13:52	14:22	-
Durée de prélèvement	h:min	0:30	0:30	0:30	-
Monoxyde de carbone (CO)					
- gamme de mesure de l'analyseur	ppm		200		-
-concentration du gaz étalon	ppm		93,3		
-incertitude sur la concentration du gaz	%	2,0			-
-Dérive au zéro	%	0,0			-
-Dérive au point d'échelle	%	-1,7			-
- concentration vol. (sur sec)	ppm	203,2	209,9	13,0	-
- concentration pondérale (sur sec)	mg/m_0^3	254,0	262,4	16,2	-
- concentration ramenée aux C.R.	mg/m_0^3	211,4	224,6	11,4	149
Oxydes d'azote (NO + NO2)					
- gamme de mesure de l'analyseur	ppm		250	•	-
-concentration du gaz étalon	ppm	190,7			-
-incertitude sur la concentration du gaz	%		2,0		-
-Dérive au zéro	%		-0,5		-

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ; 273 K) ramenées à une teneur en O2 de 15%

%

ppm mg/m_0^3

 ${\rm mg/m_0}^3$

11,77

24,13

20,08

-Dérive au point d'échelle

- concentration vol. (sur sec)

- concentration pondérale (sur sec)

- concentration ramenée aux C.R.

cov:

Torchère BBC400:

Rapport n° 10387392-001-1 Date: 12/06/2018

26/04/2018

Page : 22/27

Essais 1 à 3

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne
Date des mesures	-		26-avr-18		-
Heure de début de prélèvement	h:min	12:52	13:22	13:52	-
Heure de fin de prélèvement	h:min	13:22	13:52	14:22	-
Durée de prélèvement	h:min	0:30	0:30	0:30	-
Hydrocarbures totaux / COVt					
- gamme de mesure de l'analyseur	ppm		100,0	<u>.</u>	-
- concentration du gaz étalon	ppm _{C3H8}		30,3		-
- incertitude sur la concentration du gaz	%		2,0		-
- dérive au zéro	%		2,1		-
- dérive au point d'échelle	%	-4,9			-
- concentration volume., sur humide	ppm _C	192,4	215,0	185,0	
- concentration pondérale, sur humide, éq. C	mg/m_0^3	103,1	115,2	99,1	-
- concentration éq C ramenée aux C.R.	mg/m_0^3	92,0	105,7	75,1	90,9
Méthane					
- gamme de mesure de l'analyseur	ppm		100,0	<u>.</u>	-
- concentration du gaz étalon	ppm _{CH4}		91,5		-
- incertitude sur la concentration du gaz	%		2,0		
- dérive au zéro	%		1,3		
- dérive au point d'échelle	%		-2,8		
- facteur de réponse du méthane	-	1,1			
- concentration volume., sur humide	ppm _{CH4}	14,76	17,89	7,19	-
- concentration pondérale, sur humide, éq. CH4	mg/m ₀ ³	10,54	12,78	5,13	-
- concentration ramenée en eq CH4 aux C.R.	mg/m ₀ ³	9,40	11,73	3,89	8,34
COV totaux non méthaniques					
		4	4045	4760	

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ; 273 K) ramenées à une teneur en O2 de 15%

ppm

 $\text{mg/m}_0^{\ 3}$

 ${\rm mg/m_0}^3$

175,5

100,8

83,9

194,5

111,7

95,6

176,8

101,5

71,7

83,7

- concentration vol, sur humide, éq C

- concentration en éq C ramenée aux C.R.

- concentration vol, sur sec, éq C

Rapport n° 10387392-001-1 Date: 12/06/2018

Page : 23/27

Torchère BBC400 :	Poussières totales	Essais 1 à 3

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne	Blanc de site
Date des mesures	-			_	-	-
Diamètre de la buse utilisé	mm				-	-
Repère du filtre	-	693967			-	685111
Repère du rinçage	-	695827			-	694885
Heure de début d'échantillonnage	h:min	12:52			-	-
Heure de fin d'échantillonnage	h:min	14:22			-	-
Volume total prélevé, gaz secs	m_0^3	1,24			-	-
Masse de poussières recueillies						-
- sur le filtre	mg	26,61			-	<0,3
- dans la solution de rinçage	mg	8,95			-	nd
- correspondante à l'essai	mg	35,56			-	0,15
Teneur en poussières :						
- sur gaz secs,	mg/m ₀ ³	28,70			28,7	0,1
- sur gaz humides,	mg/m ₀ ³	26,77			-	-
- dans les C.R.	mg/m ₀ ³	22,74			22,7	0,1
Rapport Blanc/VLE	%	-	-	-	-	0,99

CR: les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar; 273 K) ramenées à une teneur en O2 de 15%

275 K) ramences a une tenear en 02 de 1570						
Rapport Blanc/VLE	%	-	-	-	-	0,99

Rapport n° 10387392-001-1 Date : 12/06/2018

Page: 24/27

Torchère BBC400: SO2: Essais 1 à 3 26/04/2018	
---	--

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne	Blanc de site
Date des mesures	-		26-avr-18	_	-	-
Repère de l'échantillon n°1	-	693130			-	687280
Heure de début d'échantillonnage	h:min	12:52			-	-
Heure de fin d'échantillonnage	h:min	14:22			-	-
Interruptions d'échantillonnage	h:min	0:00			-	-
Durée de l'échantillonnage	h:min	1:30			-	-
Volume prélevé (gaz sec)	m_0^{3}	0,248			-	-
Débit moyen de prélèvement, gaz secs	I ₀ /h	165			-	-
Concentration de la solution en SO ₄ ²⁻ (éch n°1)	mg/l	350			-	nd
Volume ajusté de la solution (éch n°1)	ml	253			-	155
Teneur en SO ₂ :						
- sur gaz secs,	mg/m_0^3	238,48			-	-
- sur gaz humides,	mg/m_0^3	222,45			-	-
- dans les C.R.	mg/m_0^3	188,99			188,99	0,00
Vérification de l'efficacité des barboteurs		-	-	-	-	-
Rapport Blanc/VLE	%	-	-	-	-	0,00
Conformité du Blanc (<10%/VLE)	-	-	-	-	-	Conforme

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ;

273 K) ramenées à une teneur en O2 de 15%

=: - : : : : : : : : : : : : : : : : : :								
Vérification de l'efficacité des barboteurs		-	-	-	-	-	Ì	
Rapport Blanc/VLE						0		

HCI:

Torchère BBC400:

Teneur en HCl:

- sur gaz secs,

- dans les C.R.

- sur gaz humides,

Rapport Blanc/VLE

Vérification de l'efficacité des barboteurs

Rapport n° 10387392-001-1 Date : 12/06/2018 Page : 25/27

26/04/2018

0,70

0,00

0,00

Essais 1 à 3

Essai 2 Désignation Unité Essai 1 Essai 3 Moyenne Blanc de site 26-avr-18 Date des mesures 706651 689269 Repère de l'échantillon n°1 Heure de début d'échantillonnage h:min 12:52 Heure de fin d'échantillonnage 14:22 h:min Interruptions d'échantillonnage 0:00 h:min Durée de l'échantillonnage 1:30 h:min Volume prélevé (gaz sec) m_0^3 0,22 Débit moyen de prélèvement, gaz secs I_0/h 148 Concentration de la solution en Cl - (éch n°1) mg/l 0,72 nd Volume ajusté de la solution (ech n°1) ml 267 167

0,885

0,826 0,702

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ; 273 K) ramenées à une teneur en O2 de 15%

 mg/m_0^3

 mg/m_0^3

 mg/m_0^3

%

Rapport n° 10387392-001-1 Date : 12/06/2018

Page : 26/27

Torchère BBC400 :	HF:	Essais 1 à 3	26/04/2018

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne	Blanc de site
Date des mesures	-		26-avr-18		-	-
Heure de début d'échantillonnage	h:min	12:52			-	-
Heure de fin d'échantillonnage	h:min	14:22			-	-
Interruptions d'échantillonnage	h:min	0:00			-	-
Durée de l'échantillonnage	h:min	1:30			-	-
Fraction gazeuse					-	
Repère de l'échantillon n°1	-	694444			-	701509
Concentration de la solution en F (éch n°1)	mg/l	0,22			-	0,05
Volume ajusté de la solution (éch n°1)	ml	259,0			-	156
Quantité piégée en HF	mg	0,060			-	0,004
Volume prélevé (gaz sec)	m_0^3	0,189			-	-
Débit moyen de prélèvement, gaz secs	I ₀ /h	125,8			-	-
Teneur sur gaz secs	mg/m_0^3	0,32			0,32	0,02
Teneur dans les C.R	mg/m_0^3	0,25			0,25	0,02
Fraction particulaire						
Repère du filtre	-	693967			-	685111
Repère du rinçage	-	695827			-	694885
Quantité piégée en HF sur le filtre	mg	<0,03			-	0,00
Quantité piégée en HF sur le rinçage	mg	0,044			-	0
Quantité piégée en HF sur le filtre+rinçage	mg	0,07			-	-
Volume prélevé (gaz sec)	m_0^3	1,24			-	-
Teneur sur gaz secs	mg/m ₀ ³	0,06			0,06	
Teneur dans les C.R	mg/m_0^3	0,05			0,05	
Teneur en HF gaz + part sur gaz secs	mg/m_0^3	0,37			0,37	0,03
Teneur en HF gaz + part. ds les CR		0,30			0,30	0,02
Rapport Blanc/VLE	%	-	-	-	-	0,50
Ratio HF particulaire/ VLE		1,1			-	-
Ratio HF particulaire/ HF total	%	15,2			-	-

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ; 273 K) ramenées à une teneur en O2 de 15%

Rapport n° 10387392-001-1 Date: 12/06/2018 Page: 27/27

ANNEXE 6
AGREMENT

L'APAVE est agréée par le ministre chargé des installations classées par l'Arrêté du 21/06/2017 (J.O. du 05/07/2017).

Le détail des agréments de l'agence de Tassin en charge des prélèvements est fourni ci-après.

Détermination de la vitesse et du débit-volume.	Prélèvement et détermination de la teneur en vapeur d'eau.	Prélèvement des poussières dans une veine gazeuse.	Prélèvement et analyse des oxydes d'azote (NOx).	Prélèvement et analyse du monoxyde de carbone (CO).	Prélèvement et analyse de l'oxygène (O2).	Prélèvement et analyse des composés organiques volatils totaux
14	15	1 a	11	12	13	2

Prélèvement d'acide chlorhydrique (Hcl).	Prélèvement du dioxyde de soufre (SO2).	Prélèvement de l'ammoniac (NH3).	Prélèvement d'acide fluorhydrique (HF).	Prélèvement de métaux lourds autres que le mercure	Prélèvement de mercure (Hg).	Prélèvement de dioxines et furannes dans une veine gazeuse .	Prélèvement d'hydrocarbures aromatiques polycycliques (HAP).
4a	10	16a	5a	6a	3a	7	9a

Le détail des agréments du laboratoire APAVE de Chateauneuf Les Martigues en charge des analyses est fourni ci-après.

	Quantification des poussières dans une veine gazeuse.	Analyse de mercure (Hg).	Analyse d'acide chlorhydrique (Hcl).	Analyse d'acide fluorhydrique (HF).	Analyse de métaux lourds autres que le mercure	Analyse du dioxyde de soufre (SO2).	Analyse de l'ammoniac (NH3).
ſ	1b	3b	4b	5b	6b	10b	16b

SERPOL 2 Chemin du Génie BP80 69633 VENISSIEUX

A l'attention de M. SEYVE

CONTRÔLE DES REJETS ATMOSPHÉRIQUES (Torchère BBC800)

Rapport N°: 10308884-001-1 Code Prestation: E5200

Lieu d'intervention : SICTOM DE LA BIEVRE 113 Chemin des Carrières 38260 PENOL

Date d'intervention: 26/04/2018

APAVE Sud-Europe S.A.S Agence de Tassin 177 Route de Sain-Bel BP 3 69811 TASSIN Cédex

Tél: 04.72.32.52.52 - Fax: 04.72.32.52.00

APAVE Sud-Europe SAS Agence de Tassin 177 Route de Sain-Bel BP 3 69811 TASSIN Cédex

Tél: 04.78.19.09.50 - Fax: 04.78.19.81.70

Contrat n°32200008(1)

Lieu d'intervention : SICTOM DE LA BIEVRE 113 Chemin des Carrières 38260 PENOL

Date d'intervention: 26/04/2018

CONTRÔLE DES REJETS ATMOSPHÉRIQUES (Torchère BBC800)

RAPPORT D'ESSAI N° 10308884-001-1

Adresse(s) d'expédition 1 Ex : adressé par mail à : nicolas.seyve@serpol.fr

A l'attention de M. SEYVE

Interlocuteur site: M. EFFANTIN

Rendu compte à : M. EFFANTIN

Intervenant(s) :H.ROYERE / C.ROUYER

Le Responsable d'Unité : P. BOUHANA

Document original immatériel

Pièces jointes: 0

Accréditation n° 1-1461

Liste des sites accrédités et portée disponibles sur www.cofrac.fr

Ref: M.LAEX.041.V8

Rapport n° 10308884-001-1 Date: 12/06/2018

Page : 1/27

Sommaire

1	SYNTHESE DES RESULTATS	. 3
1.1	Torchère BBC800	3
2	SYNTHESE DES ECARTS ET INFLUENCE	. 3
_		_
3	GENERALITES	4
3 .1	Objectif	
3.2	Description	
3.3	Exploitation du rapport	_
3.4	Documents de référence	
4	PROTOCOLE D'INTERVENTION	. 6
4.1	Méthodologie	
4.2	Déroulement des mesures	
5	RESULTATS ET COMPARAISONS AUX VALEURS REGLEMENTAIRES	6
5.1	Préambule	
5.2	Torchère BBC800	7
ANNEXE	1 ECARTS AUX NORMES DES INSTALLATIONS	.8
ANNEXE	2 DESCRIPTION DES INSTALLATIONS	.9
ANNEXE	3 METHODOLOGIE DE PRELEVEMENT ET D'ANALYSE	0
ANNEXE	4 INCERTITUDES ET CONDITIONS DE VALIDATION DES MESURES	6
ANNEXE	5 RESULTATS DETAILLES	9
ANNEXE	6 AGREMENT	27

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 3/27

1 SYNTHESE DES RESULTATS

1.1 Torchère BBC800

Observations

La concentration en SO2 est supérieure à la valeur réglementaire

2 SYNTHESE DES ECARTS ET INFLUENCE

Torchère BBC800

Lors de nos essais nous avons relevé les non-conformités suivantes, outre la majoration de l'incertitude, l'influence de ces écarts et décrites ci-dessous.

Compte tenu de l'écart des teneurs mesurées par rapport aux valeurs limites, les observations relevées lors de notre intervention n'ont pas d'incidence sur le jugement de conformité.

- Longueur droite amont insuffisante.
- Longueur droite aval insuffisante.
- Le nombre d'axes de prélèvement est insuffisant ou inutilisable. Les essais n'ont pu être réalisés que sur cet axe.
- Le recul au droit des orifices de prélèvements est insuffisant. Les prélèvements manuels n'ont pas pu être effectués à tous les points prévus par les normes.
- Absence de protection contre les intempéries.
- La température élevée des gaz dans le conduit n'a pas permis de mettre en œuvre l'ensemble des méthodes de prélèvement normalisées.
- La mesure de débit, poussières ont été réalisées au débouché
- Le rendement du four de conversion du NO2 est compris entre 80 et 95%
- Le rendement d'absorption est inférieur aux prescriptions normatives pour le prélèvement d'HCl

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 4/27

3 GENERALITES

3.1 Objectif

Dans le cadre :

- ✓ du contrôle réglementaire par un organisme agréé par le ministère en charge des installations classées et conformément :
 - o à l'arrêté préfectoral n°2011292-0022 du 19 octobre 2011 régissant vos installations,

L'APAVE a été chargé de procéder à des contrôles sur des rejets atmosphériques.

Le pilote d'affaire APAVE cité dans ce rapport est qualifié pour les missions de mesures à l'émission.

Pour chaque installation, le tableau suivant indique le nombre de mesures réalisées pour chacun des paramètres :

Paramètre	Torchère BBC800			
Température	/			
Vitesse, débit	/			
Humidité (H2O)	1 essai d'environ 90 min			
Dioxyde de carbone (CO2)	3 essais d'environ 30 min			
Oxygène (O2)	3 essais d'environ 30 min			
Poussières	1 essai d'environ 90 min			
Acide fluorhydrique (HF)	1 essai d'environ 90 min			
Oxyde de soufre (SO2)	3 essais d'environ 30 min			
Acide chlorhydrique (HCI)	3 essais d'environ 30 min			
Oxydes d'azote (NOx)	3 essais d'environ 30 min			
Monoxyde de carbone (CO)	3 essais d'environ 30 min			
Composés Organiques Volatils Totaux (COVT)	3 essais d'environ 30 min			
Méthane (CH4)	3 essais d'environ 30 min			
Composés Organiques Volatils Non Méthaniques (COVNM)	3 essais d'environ 30 min			

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 5/27

3.1.1 Ecarts par rapport à la commande

Cette prestation est conforme à notre proposition référencée A532200008.1 et /ou à votre commande $n^{\circ}11804124$ du 6/04/2018.

√ à l'exception des mesures de vitesse et de débit qui n'ont pas pu être réalisées. En effet, la structure et la nature des installations ne permettent la réalisation de mesures selon les normes.

3.2 Description de l'installation

La description de l'installation et de la section de mesure se trouve en annexe 2.

3.3 Exploitation du rapport

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale.

Les résultats du présent rapport d'essai ne se rapportent qu'à l'objet soumis à l'essai au moment des mesures.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont alors identifiées par le symbole "O" au § 4.

Conformément à la convention de preuve acceptée par le client, ce rapport est diffusé exclusivement sous forme dématérialisée.

3.4 Documents de référence

Textes réglementaires :

Arrêté du 11 mars 2010 « portant modalité d'agrément des laboratoires ou des organismes pour certains types de prélèvements et d'analyses à l'émission des substances dans l'atmosphère ».

Arrêté du 7 juillet 2009 « relatif aux modalités d'analyse dans l'air et dans l'eau dans les ICPE et aux normes de référence ».

Document LAB REF 22 du COFRAC « Exigences spécifiques Qualité de l'air – Emissions de sources fixes ».

GA X43-551 : Qualité de l'air – Emissions de sources fixes – Harmonisation des procédures normalisées en vue de leur mise en œuvre simultanée.

GA X43-552 : Qualité de l'air – Emissions de sources fixes – Elaboration des rapports d'essais pour les mesures à l'émission.

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 6/27

4 PROTOCOLE D'INTERVENTION

4.1 Méthodologie

Les méthodologies de prélèvement et analyse des composés cités au paragraphe 2.1 sont précisées en annexe 3.

Certains éléments de validation des méthodologies non spécifiques à la présente prestation ne sont pas fournis dans ce rapport. Ils sont disponibles sur demande auprès APAVE.

4.2 <u>Déroulement des mesures</u>

Installation	Conditions de fonctionnement lors des essais, fournies par l'exploitant:				
Torchère BBC800	Consigne à 350 Nm3/h				

5 RESULTATS ET COMPARAISONS AUX VALEURS REGLEMENTAIRES

5.1 Préambule

Les principaux résultats sont rassemblés dans le(s) tableau(x) ci-après. Les résultats détaillés sont en annexe 5.

Les incertitudes (incluant les prélèvements et les analyses) sont fournies en annexe 4.

Les concentrations et les débits sont exprimés dans les conditions normalisées (101,3 kPa, 273 K) symbolisées par « m_0^3 ».

Pour déclarer ou non la conformité à la spécification, il n'a pas été tenu compte de l'incertitude associée au résultat.

La déclaration de conformité est réalisée sous accréditation si la mesure correspondante est réalisée sous accréditation.

Pour les paramètres dont les valeurs limites n'ont pas été fournies, aucune déclaration de conformité n'a été réalisée.

Rapport n° 10308884-001-1 Date : 12/06/2018

Page : 7/27

5.2 Torchère BBC800

Désignation	Unité	COFRAC	Essai 1	. Essai 2 Essai 3		Moyenne	Blanc d	e site	VLE	(1)
		Oui/Non					Valeur	C/NC (2)	Valeur	C/NC ⁽²⁾
Date des mesures	-	-		26-avr-18		-	-	-	-	-
Teneur en oxygène (sur gaz sec)	%	0	10,93	11,19	11,45	11,19	-	-	-	-
Teneur en CO ₂ (sur gaz sec)	%	N	8,78	8,58	8,39	8,6	-	-	-	-
Humidité volumique	%	0	16,0	16,0	16,0	16,0	-	-	-	-
Composés			Con	centration su	r gaz sec à 15	% de O2	Valeur	C/NC ⁽²⁾	Valeur	C/NC ⁽²⁾
Monoxyde de carbone (CO)	mg/m ₀ ³	0	17,6	15,8	8,9	14,1	-	-	150	С
	Kg/h	0	/	/	/	/	-	-	-	-
Oxydes d'azote (NOx en éq NO₂)	mg/m_0^3	0	20,4	21,0	20,9	20,8	-	-	400	С
	Kg/h	0	/	/	/	/	-	-	-	-
COV totaux (COVt en eq C)	mg/m ₀ ³	0	3,54	3,65	3,64	3,61	-	-	-	-
	Kg/h	0	/	/	/	/	-	-	-	-
Méthane (CH4 en eq CH4)	mg/m_0^{3}	0	3,95	4,08	4,17	4,07	-	-	-	-
	Kg/h	0	/	/	/	/	-	-	-	-
COV non méthaniques (COVnm en eq C)	mg/m_0^3	0	0,00	0,00	0,00	0,00	-	-	50	С
	Kg/h	0	/	/	/	/	-	-	-	-
Poussières totales	mg/m ₀ ³	0	2,57	-	-	2,57	0,556	С	10	С
	Kg/h	0	/	/	/	/	-	-	-	-
Oxydes de Soufre (SO ₂)	mg/m_0^{3}	0	447,02	1 541,21	736,16	908,13	0,000	С	300	NC
	Kg/h	0	/	/	/	/	-	-	-	-
Acide Chlorydrique (HCl)	mg/m ₀ ³	0	2,94	2,84	2,39	2,72	0,063	С	10	С
	Kg/h	0	/	/	/	1	-	-	-	-
Acide Fluorhydrique (HF)	mg/m_0^3	0	1,06	-	-	1,06	0,015	С	4	С
Total	Kg/h	0	/	/	/	1	-	-	-	-

(1) VLE : Valeur Limite d'Emission

(2) C : Conforme, NC : Non Conforme

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 8/27

ANNEXE 1 ECARTS AUX NORMES DES INSTALLATIONS

A/ ECARTS DE L'INSTALLATION PAR RAPPORT AUX REFERENTIELS NORMATIFS

Torchère BBC800

La section de mesure n'est pas conforme à la norme ISO 10780 pour les raisons suivantes :

- Longueur droite amont insuffisante : la préconisation d'une longueur droite amont au moins égal à
 5 fois le diamètre hydraulique du conduit n'est pas respectée.
- Longueur droite aval insuffisante : la préconisation d'une longueur droite aval au moins égal à 2 fois (coude) ou 5 fois (débouché) le diamètre hydraulique du conduit n'est pas respectée.

La section de mesure n'est pas conforme à la norme NF EN 13284-1 pour les raisons suivantes :

- Le nombre d'axes de prélèvement insuffisant : existence d'un seul axe exploitable. Les essais n'ont pu être réalisés que sur cet axe.
- Le recul au droit des orifices de prélèvements est insuffisant. Les prélèvements manuels n'ont pas pu être effectués à tous les points prévus par les normes.
- L'absence de protection contre les intempéries : cela permettrait une meilleure maitrise des conditions de sécurité pour le personnel et le matériel.

Par ailleurs:

La température élevée des gaz dans le conduit n'a pas permis d'utiliser les méthodes de prélèvement normalisées et est susceptible d'augmenter l'incertitude sur les résultats rendus

La mesure de débit, poussières ayant été réalisée au débouché les incertitudes associées aux résultats de ces mesures et aux flux sont élevées. Les écarts par rapport aux exigences normatives sont importants et les résultats sont donnés sous toute réserve.

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 9/27

ANNEXE 2 DESCRIPTION DES INSTALLATIONS

A / DESCRIPTION DE(S) L'INSTALLATION(S)

Identification de l'installation	Torchère BBC800					
Description du process	Torchère de biogaz					
Capacité nominale	800 Nm3/h					
Mode de fonctionnement	Continu					
Système de traitement des gaz	Aucun					
Emplacement du point de mesure dans le circuit des gaz	Cheminée de rejet					
Paramètres d'autosurveillance en continu	Aucun					

B / DESCRIPTION DE LA SECTION ET DU POINT DE MESURAGE

Section de	Forme du	Dimens	ions	natur	ore et e des ices	Long. droites en Ø- équivalent		droites en Ø- équivalent		Nombre d'axes utilisable pour		Nature de la zone de	Moyens de	Protection contre
mesure	conduit	Ø ou l*L en m	paroi en				Aval	Sonde	Mesure de vitesse	travail	levage	intempéries		
Torchère BBC800	Circulaire	1,30	0,5	0	0	2	0	0	0	Nacelle	Aucun	Non		

C / Caractéristiques de(s) la section(s) de mesure en terme d'homogénéité

Sections de mesure	Eléments permettant de caractériser l'homogénéité du flux	Homogénéité de la section de mesure
Torchère BBC800	Effluents issus d'un seul émetteur et absence d'entrée d'air entre cet émetteur et la section de mesure.	Section réputée homogène

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 10/27

ANNEXE 3 METHODOLOGIE DE PRELEVEMENT ET D'ANALYSE

A/ Stratégie d'échantillonnage

En application de la norme NF EN 15259 et du LAB REF 22, la stratégie d'échantillonnage vis-à-vis de l'homogénéité des effluents gazeux est la suivante :

- pour les polluants particulaires et vésiculaires : mesure par quadrillage de la section de mesure.
- ✓ pour les polluants gazeux avec prélèvement isocinétique : mesure par quadrillage de la section de mesure.
- ✓ pour les polluants gazeux avec prélèvement non isocinétique :
 - mesure en un point quelconque de la section de mesure lorsque la section de mesure est réputée homogène.
 - mesure en un point représentatif lorsque la section de mesure est hétérogène et qu'elle comporte un point représentatif.
 - mesure par quadrillage de la section de mesure lorsque cette dernière est hétérogène et qu'elle ne comporte pas de point représentatif.

B/ Règles de calculs

Pour chaque paramètre mesuré, la valeur fournie dans les tableaux de résultats est égale à la moyenne arithmétique de tous les résultats obtenus lorsque plusieurs mesures ont été effectuées.

Conformément au document LAB REF 22 du COFRAC, les règles suivantes sont mises en place pour effectuer les calculs.

Pour chaque composé :

Lorsque la mesure est inférieure à la limite de détection, la valeur mesurée est prise égale à zéro dans les calculs.

Lorsque la mesure est inférieure à la limite de quantification, c'est la moitié de cette limite qui est prise en compte dans les calculs.

Lorsque la valeur de la mesure est inférieure à la valeur du blanc, c'est cette dernière qui est prise en compte dans les résultats.

Dans le cas ou il est nécessaire de sommer plusieurs éléments issus de différentes phases (ex métaux) : Les règles ci-dessus sont appliquées et la valeur du blanc est comparer à chaque phase.

Pour les mesures automatiques :

Les règles ci-dessus sont appliquées sur les valeurs moyennes de chaque essai.

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 11/27

C/ Méthodologie mise en œuvre

PRELEVEMENT ISOCINETIQUE DE POLLUANTS PARTICULAIRES ET GAZEUX

METHODE AVEC DIVISION DE DEBIT ET FILTRATION HORS CONDUIT

A / PRINCIPE DU PRELEVEMENT

Prélèvement isocinétique des fumées à l'aide d'une sonde chauffée selon norme poussières, en verre borosilicaté ou titane ou PTFE, équipée d'un dispositif de mesurage du volume prélevé sur gaz secs avec filtration hors du conduit. La température de filtration est maintenue entre la température de rosée des gaz + 20°C et 160°C. Les polluants gazeux sont piégés par barbotage à l'aide de flacons laveurs équipés de diffuseurs.

B / NORMES APPLICABLES, SUPPORTS DE PRELEVEMENT ET METHODES D'ANALYSES

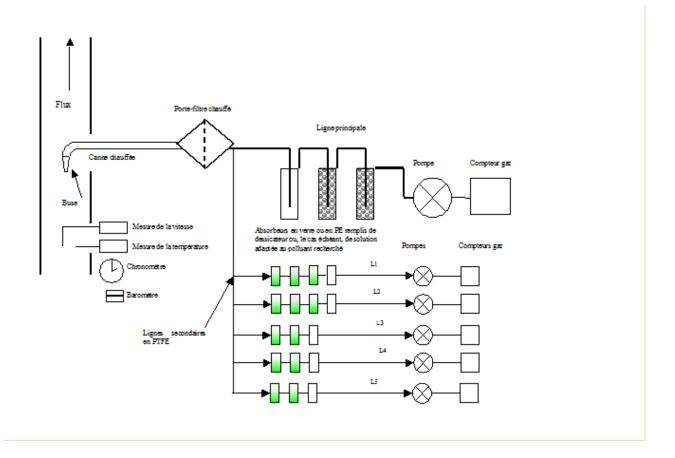
Composé recherché	Norme correspondante	Filtre	Solution d'absorption	Rdt ⁽¹⁾	Nb ⁽²⁾	Type de diffuseur	Rinçage	Analyse
Multipolluants	GA X 43-551	,	-	-	ı	-	-	-
Poussières	EN 13284-1	Quartz	-	-	ı	-	Fall-	Avant essai, étuvage à 180°C et pesée. Après essai, étuvage à 80°C et pesée.
HCI	NF EN 1911	-	Eau déminéralisée	> 95%	2	Fritté	Solution d'absorption	Chromatographie ionique
HF	NF X 43-304	Quartz	NaOH 0,1 N	> 90%	2	Fritté	Solution d'absorption	Extraction basique puis potentiométrie - Chromatographie ionique
SO ₂	NF EN 14791	1	H ₂ O ₂ 0,3% ou H2O2 3%	> 95%	2	Fritté	Solution d'absorption	Chromatographie ionique

⁽¹⁾ Rendement d'absorption

Nota : Si HCl et HF sont prélevés simultanément sur la même ligne secondaire, 3 barboteurs seront utilisés.

Les prélèvements pour la quantification de HF, SO₂, HCI, NH₃, Poussières ont été réalisés en parallèle au moyen d'une sonde dite multipolluants.

La sonde est rincée à l'eau puis à l'acétone


⁽²⁾ Nombre de flacons-laveurs

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 12/27

C / SCHEMA

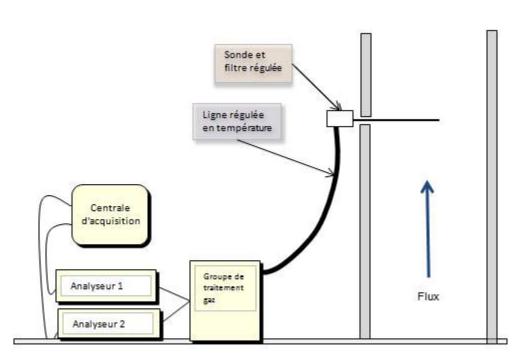
De 1 à 5 lignes secondaires peuvent être montées en dérivation de la ligne principale.

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 13/27

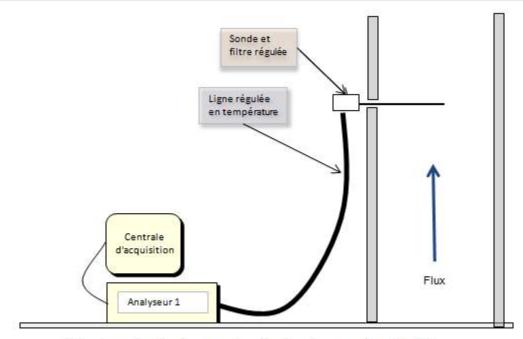
MESURES PAR ANALYSEUR

A / PRINCIPE DU PRELEVEMENT

L'analyse est effectuée en continu. L'analyseur est calibré avant et après chaque essai à partir d'un mélange de gaz étalon certifié. L'étanchéité de la ligne est vérifiée par injection du gaz étalon en tête de la ligne. Avant entrée dans l'analyseur, les gaz sont prélevés par sonde en inox. La sortie analogique de l'analyseur est reliée à un enregistreur.


B / NORMES APPLICABLES, SUPPORTS DE PRELEVEMENT ET METHODES D'ANALYSES

Composé recherché	Norme correspondante	Principe de mesure	Conditionnement	Type de ligne		
O ₂	NF EN 14789	Paramagnétisme	Condensation	Non chauffée		
CO ₂	Méthode interne	Absorption de rayonnement infra-rouge non dispersif	Condensation	Non chauffée		
со	NF EN 15058	Absorption de rayonnement infra-rouge non dispersif	Condensation	Non chauffée		
NOx	NF EN 14792	Chimiluminescence	Condensation	Non chauffée		
COVT	NF EN 12619 XPX 43-554	Détecteur à ionisation de flamme	-	Chauffée		
CH₄	XP X 43-554	Détecteur à ionisation de flamme	Oxydation catalytique des COVT hors méthane	Chauffée		
COVnm	XP X 43-554	Soustraction CH ₄ aux COVT				



Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 14/27

C / SCHEMA

Note : Le nombre d'analyseurs varie en fonction des composés recherchés.

Note : Le nombre d'analyseurs varie en fonction des composés recherchés.

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 15/27

PRINCIPE DE DETERMINATION DE PARAMETRES DIVERS

Paramètre	Référentiel	Principe
Température	Méthode interne	Au moyen d'une sonde Pt100 ou d'un thermocouple relié à un afficheur ou enregistreur numérique
Humidité	NE FN 14790	Par condensation et/ou absorption par produit desséchant et pesée

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 16/27

ANNEXE 4 INCERTITUDES ET CONDITIONS DE VALIDATION DES MESURES

A/ INCERTITUDES

Les incertitudes standards calculées avec un facteur d'élargissement de 2 soit un taux de confiance de 95% sont indiquées dans le tableau ci-dessous.

Paramètre	s d'environnement			
	Unité	Valeur mesurée	Gamme	Incertitudes relatives élargies
Pression atmosphérique	mbar	1013	-	1%
Humidité des gaz	%	>5	4 à 40	6%

Mesures par a	analyseurs en continu			
	Unité	Valeur mesurée	Gamme	Incertitudes relatives élargies
Teneur en O2	%	<6	0-25%	21%
refleur en O2	76	>6	0-25%	6%
Tanaur an CO	%	<3	0.200/	30%
Teneur en CO ₂	%	>3	0-20%	9%
T	3	<150	100 ppm	15%
Teneur en CO	mg/m_0^3	>150	200 ppm	9%
T NO		<100	200 ppm	19%
Teneur en NOx	mg/m_0^3	>100	200 ppm	10%
Tonous on NO (lafes source)		<100	200 ppm	22%
Teneur en NO (Infra-rouge)	mg/m_0^3	>100	200 ppm	11%
Tonour on COVT	mg/m ₀ ³	10	100 ppm eqC	25%
Teneur en COVT	mg/m ₀	110	1000 ppm eqC	20%
		19	100	9%
Teneur en COVnm(*)	mg/m_0^3	46	1000	10%
		50(*)	10000	300%

^(*) Incertitude importante lorsque la proportion de méthane est importante par rapport aux COVt (cas des moteurs)

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 17/27

Prélève	ements manuels			
	Unité	Valeur mesurée	Gamme	Incertitudes relatives élargies
Tangur an naussiàres	mg/m_0^3	<5		19%
Teneur en poussières	mg/m ₀	>5	-	6%
Teneur en HF		≥1	-	30%
Teneur en HCl	mg/m ₀ ³	≥10	-	20%
Teneur en SO ₂		≥5	-	15%

B/ VALIDATION DES MESURES

La validation des principaux critères de validation des mesures est indiquée dans les tableaux ci-dessous.

Torchère BBC800:

Mesure Automatique						
Paramètre	§ Norme	Critère	Exigence respectée			
Oxygène (O ₂)	8.4.2.3	Dérive inférieure à 5%	Oui			
	8.4.3	Débit fuites inférieur à 2%	Oui			
Monoxyde de carbone (CO)	8.4.2.3	Dérive inférieure à 5%	Oui			
	8.4.3	Débit fuites inférieur à 2%	Oui			
Oxyde d'azote (NOx)	8.4.2.3	Dérive inférieure à 5%	Oui			
	8.4.3	Débit fuites inférieur à 2%	Oui			
	6.3.2	Rendement de conversion supérieur à 95%	Non (*)			
Composé Organique Totaux (COT)	6.5.2	Dérive inférieure à 5%	Oui			
	6.5.3	Débit fuites inférieur à 2%	Oui			
Méthane (CH4)	6.5.2	Dérive inférieure à 5%	Oui			
	6.5.3	Débit fuites inférieur à 2%	Oui			
	Poussiè	res : NF EN 13284-1				
Paramètre	§ Norme	Critère	Exigence respectée			
Contrôle d'étanchéité	10.3	Débit fuites inférieur à 2%	Oui			
Ecart sur le taux d'isocinétisme essai n°1	10.4	-5% < T < +15%	/			
Blanc de site	10.4	Inférieur à 10% VLE site	Oui			
	НС	I : NF EN 1911				
Paramètre	§ Norme	Critère	Exigence respectée			
Contrôle d'étanchéité	8.2	Débit fuites inférieur à 2%	Oui			
Rendement d'absorption	5.2.1.2.2	Supérieur à 95% ou teneur dans le dernier absorbeur <lq< td=""><td>Non (*)</td></lq<>	Non (*)			
Blanc de site	4.2 (3)	Inférieur à 10% VLE site	Oui			

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 18/27

HF : NF X 43-304							
Paramètre		§ Norme	Critère		Exigence respectée		
Contrôle d'étanchéité		6.2.5	Débit fuite	Oui			
Rendement d'absorption	5.5.2	•	% ou teneur dans le bsorbeur <lq< td=""><td>Oui</td></lq<>	Oui			
pH de la solution		6.3.2	p)H > 3	Oui		
Blanc de site		6.2.4	Inférieur	à 10% VLE site	Oui		
		SO2	: NF EN 14791				
Paramètre		§ Norme	C	ritère	Exigence respectée		
Contrôle d'étanchéité		7.2.5	Débit fuite	s inférieur à 2%	Oui		
Rendement d'absorption	6.6.2	Supérieur à 959 dernier a	Oui				
Blanc de site	7.5	Inférieur	Oui				
Validation de la LQ par rapport à la VLE							
			Valeur				
Désignation	Symbole	LQ dans les conditions de la VLE	VLE	Rapport LQ/VLE	Exigences respectées		
				%			
Monoxyde de carbone	СО	2,3	150	1,5	Oui		
Oxydes d'azote	NOx	1,5	400	0,4	Oui		
COV non méthaniques	COVnm en eq C	0,4	50	0,9	Oui		
Poussières totales	-	0,4	10 4,0		Oui		
Oxydes de Soufre	SO2	0,5	300 0,2		Oui		
Acide Chlorhydrique	HCl	0,2	10	1,5	Oui		
Acide Fluorhydrique	HF	0,0	4	0,9	Oui		

^{(*):} Compte tenu de l'écart entre les teneurs mesurées et les valeurs limites, cela n'a pas d'incidence sur le jugement de conformité.

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 19/27

ANNEXE 5 RESULTATS DETAILLES

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 20/27

Conditions d'émission :	Essais 1 à 3	
	Conditions d'émission :	Conditions d'émission : Essais 1 à 3

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne
Date des mesures	-				-
Heure de début de prélèvement	h:min	10:05	10:35	11:05	-
Heure de fin de prélèvement	h:min	10:35	11:05	11:35	-
Durée de prélèvement	h:min	0:30	0:30	0:30	-
Teneur en Oxygène					
- Gamme de l'analys eur	%		25		-
- Concentration en gaz étalon	%		10,96		-
- Incertitude relative sur la concentration du gaz	%		2,00		-
- Dérive au zéro	%		-0,37		-
- Dérive au point d'échelle	%		-0,18		-
- Teneur en oxygène (sur gaz sec)	%	10,93	11,19	11,45	11,19
Teneur en CO ₂ (sur gaz sec)	%	8,78	8,58	8,39	8,58
Masse volumique gaz sec	kg/m ₀ ³	1,34	1,34	1,34	1,34
Humidité volumique	%	16,05	16,05	16,05	16,05
Masse volumique des gaz humides	kg/m ₀ ³	1,24	1,24	1,24	1,24
- ramené aux conditions normales, sur sec avec correction de O2 à 15%	m ₀ ³ /h				

Torchère BBC800 : Humidité Essais 1 à 3 26/04/20	018
--	-----

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne
Date des mesures		26-avr-18			-
Heure de début d'échantillonnage	h:min	10:05			-
Heure de fin d'échantillonnage	h:min	11:35			-
Interruptions d'échantillonnage	h:min	0:00			-
Durée de l'échantillonnage	h:min	1:30			-
Volume prélevé (gaz sec)	m_0^3	0,637			-
Masse d'eau récupérée	g	97,8			-
Humidité volumique sur gaz humide	%	16,0			16,05
Rendement	-	Conforme			-

Le rendement corespond à la validation de la décoloration du silicagel <50%

CO et NOx:

Torchère BBC800:

- gamme de mesure de l'analyseur -concentration du gaz étalon

-Dérive au zéro

-Dérive au point d'échelle

- concentration vol. (sur sec)

- concentration pondérale (sur sec)

- concentration ramenée aux C.R.

-incertitude sur la concentration du gaz

Rapport n° 10308884-001-1 Date: 12/06/2018

26/04/18

Page: 21/27

Essais 1 à 3

250

190,7

2,0

-0,5

3,1

16,78

34,40

21,04

16,20

33,22

20,88

20,8

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne
Date des mesures	-		26-avr-18		-
Heure de début de prélèvement	h:min	10:05	10:35	11:05	-
Heure de fin de prélèvement	h:min	10:35	11:05	11:35	-
Durée de prélèvement	h:min	0:30	0:30	0:30	-
Monoxyde de carbone (CO)					
- gamme de mesure de l'analyseur	ppm	200			-
-concentration du gaz étalon	ppm	93,3			-
-incertitude sur la concentration du gaz	%		2,0		-
-Dérive au zéro	%		0,0		-
-Dérive au point d'échelle	%		-1,7		-
- concentration vol. (sur sec)	ppm	23,58	20,64	11,33	-
- concentration pondérale (sur sec)	mg/m_0^3	29,48	25,80	14,17	-
- concentration ramenée aux C.R.	mg/m ₀ ³	17,57	15,78	8,91	14,1
Oxydes d'azote (NO + NO2)					

ppm

ppm

%

%

%

ppm

 mg/m_0^{3}

 ${\rm mg/m_0}^3$

16,68

34,19

20,38

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar; 273 K) ramenées à une teneur en O2 de 15%

Rapport n° 10308884-001-1 Date : 12/06/2018 Page : 22/27

Torchère BBC800 : COV : Essais 1 à 3 26/04/2018

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne
Date des mesures	-		26-avr-18	•	-
Heure de début de prélèvement	h:min	10:05	10:35	11:05	-
Heure de fin de prélèvement	h:min	10:35	11:05	11:35	-
Durée de prélèvement	h:min	0:30	0:30	0:30	-
Hydrocarbures totaux / COVt					
- gamme de mesure de l'analyseur	ppm		100,0	•	-
- concentration du gaz étalon	ppm _{C3H8}		30,3		-
- incertitude sur la concentration du gaz	%		2,0		-
- dérive au zéro	%		2,1		-
- dérive au point d'échelle	%		-4,9		-
- concentration volume., sur humide	ppm _C	9,31	9,34	9,08	-
- concentration pondérale, sur humide, éq. C	mg/m ₀ ³	4,99	5,00	4,86	-
- concentration éq C ramenée aux C.R.	mg/m ₀ ³	3,54	3,65	3,64	3,61
Méthane					
- gamme de mesure de l'analyseur	ppm		100,0		-
- concentration du gaz étalon	ppm _{CH4}		91,5		-
- incertitude sur la concentration du gaz	%		2,0		-
- dérive au zéro	%		1,3		-
- dérive au point d'échelle	%		-2,8		-
- facteur de réponse du méthane	-		1,1		-
- concentration volume., sur humide	ppm _{CH4}	7,78	7,85	7,80	-
- concentration pondérale, sur humide, éq. CH4	mg/m ₀ ³	5,56	5,61	5,57	-
- concentration ramenée en eq CH4 aux C.R.	mg/m ₀ ³	3,95	4,08	4,17	4,07
COV totaux non méthaniques					
- concentration vol, sur humide, éq C	ppm	0,00	0,00	0,00	-
- concentration vol, sur sec, éq C	mg/m ₀ ³	0,00	0,00	0,00	-
- concentration en éq C ramenée aux C.R.	mg/m ₀ ³	0,00	0,00	0,00	0,00

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ; 273 K) ramenées à une teneur en O2 de 15%

Rapport n° 10308884-001-1 Date : 12/06/2018

Page : 23/27

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne	Blanc de site
Date des mesures	-				-	-
Diamètre de la buse utilisé	mm				-	-
Repère du filtre	-	699770			-	700388
Repère du rinçage	-	710726			-	688400
Heure de début d'échantillonnage	h:min	10:05			-	-
Heure de fin d'échantillonnage	h:min	11:35			-	-
Volume total prélevé, gaz secs	m_0^3	1,35			-	-
Masse de poussières recueillies						-
- sur le filtre	mg	5,69			-	<0,3
- dans la solution de rinçage	mg	0,00			-	1,1
- correspondante à l'essai	mg	5,69			-	1,25
Teneur en poussières :						
- sur gaz secs,	mg/m_0^3	4,21			4,21	0,92
- sur gaz humides,	mg/m_0^3	3,53			-	-
- dans les C.R.	mg/m ₀ ³	2,57			2,57	0,56
Rapport Blanc/VLE	%	-	-	-	-	5,56

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ; 273 K) ramenées à une teneur en O2 de 15%

273 K) ramenees a une tenedr en 02 de 15%						
Rapport Blanc/VLE	%	-	-	-	-	5,56

Rapport n° 10308884-001-1 Date: 12/06/2018

Page : 24/27

Torchère BBC800 : SO2 :	Essais 1 à 3 26/04/2018
-------------------------	-------------------------

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne	Blanc de site
Date des mesures	-		26-avr-18		-	-
Repère de l'échantillon n°1	-	697605	708081	696318	-	704973
Repère de l'échantillon n°2	-	694749			-	704973
Heure de début d'échantillonnage	h:min	10:05	10:39	11:12	-	-
Heure de fin d'échantillonnage	h:min	10:35	11:09	11:42	-	-
Interruptions d'échantillonnage	h:min	0:00	0:00	0:00	-	-
Durée de l'échantillonnage	h:min	0:30	0:30	0:30	-	-
Volume prélevé (gaz sec)	m_0^3	0,075	0,075	0,083	-	-
Débit moyen de prélèvement, gaz secs	l₀/h	151	151	166	-	-
Concentration de la solution en SO ₄ 2- (éch n°1)	mg/l	530	1200	570	-	nd
Concentration de la solution en SO ₄ 2- (éch n°2)	mg/l	0,53			-	-
Volume ajusté de la solution (éch n°1)	ml	160	236	258	-	150
Volume ajusté de la solution (éch n°2)	ml	162			-	-
Teneur en SO ₂ :						
- sur gaz secs,	mg/m_0^3	750,12	2506,26	1181,37	-	-
- sur gaz humides,	mg/m_0^3	629,76	2104,12	991,81	-	-
- dans les C.R.	mg/m_0^3	447,02	1541,21	736,16	908,13	0,00
Vérification de l'efficacité des barboteurs		-	-	-	-	-
Valeur du rendement de barbotage	%	99,9			-	-
Conformité de l'efficacité des barboteurs	-	Conforme			-	-
Rapport Blanc/VLE	%	-	-	-	-	0,00
Conformité du Blanc (<10%/VLE)	-	-	-	-	-	Conforme

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ;

Vérification de l'efficacité des barboteurs	-	-	-	-	-	
Rapport Blanc/VLE					0	

Rapport n° 10308884-001-1 Date : 12/06/2018

Page : 25/27

Torchère BBC800 :	HCl :			Essais 1 à 3	26/04/2018	
Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne	Blanc de site
Date des mesures	-		26-avr-18	!	-	-
Repère de l'échantillon n°1	-	696048	698109	705519	-	706815
Repère de l'échantillon n°2	-	701268			-	
Heure de début d'échantillonnage	h:min	10:05	10:39	11:12	-	-
Heure de fin d'échantillonnage	h:min	10:35	11:09	11:42	-	-
Interruptions d'échantillonnage	h:min	0:00	0:00	0:00	-	-
Durée de l'échantillonnage	h:min	0:30	0:30	0:30	-	-
Volume prélevé (gaz sec)	m_0^3	0,08	0,08	0,09	-	-
Débit moyen de prélèvement, gaz secs	I ₀ /h	151	163	175	-	-
Concentration de la solution en Cl - (éch n°1)	mg/l	1,63	1,40	1,25	-	<0,1
Concentration de la solution en Cl - (éch n°2)	mg/l	0,76			-	
Volume ajusté de la solution (ech n°1)	ml	160	262	261	-	163
Volume ajusté de la solution (éch n°2)	ml	133			-	
Teneur en HCl :						
- sur gaz secs,	mg/m ₀ ³	4,926	4,621	3,836	-	-
- sur gaz humides,	mg/m ₀ ³	4,136	3,880	3,221	-	-
- dans les C.R.	mg/m ₀ ³	2,936	2,842	2,390	2,72	0,06
Vérification de l'efficacité des barboteurs						
Valeur du rendement de barbotage	%	72,1	-	-	-	-
Rapport Blanc/VLE	%	-	-	-	-	0,63

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ; 273 K) ramenées à une teneur en O2 de 15%

Rapport n° 10308884-001-1 Date : 12/06/2018

Page : 26/27

Torchère BBC800 : HF : Essais 1 à 3 26/04/2018
--

Désignation	Unité	Essai 1	Essai 2	Essai 3	Moyenne	Blanc de site
Date des mesures	-		26-avr-18		-	-
Heure de début d'échantillonnage	h:min	10:05			-	-
Heure de fin d'échantillonnage	h:min	11:42			-	-
Interruptions d'échantillonnage	h:min	0:07			-	-
Durée de l'échantillonnage	h:min	1:30			-	-
Fraction gazeuse					-	
Repère de l'échantillon n°1	-	708786			-	692310
Repère de l'échantillon n°2	-	688323			-	-
Concentration de la solution en F ⁻ (éch n°1)	mg/l	2,30			-	0,05
Concentration de la solution en F ⁻ (éch n°2)	mg/l	0,05			-	
Volume ajusté de la solution (éch n°1)	ml	163,0			-	194
Volume ajusté de la solution (éch n°2)	ml	150,0			-	
Quantité piégée en HF	mg	0,403			-	0,005
Volume prélevé (gaz sec)	m_0^3	0,237			-	-
Débit moyen de prélèvement, gaz secs	I ₀ /h	158,1			-	-
Teneur sur gaz secs	mg/m_0^3	1,70			1,70	0,02
Teneur dans les C.R	mg/m_0^3	1,04			1,04	0,01
Fraction particulaire						
Repère du filtre	-	699770			-	700388
Repère du rinçage	-	710726			-	688400
Quantité piégée en HF sur le filtre	mg	<0,03			-	0,00
Quantité piégée en HF sur le rinçage	mg	0,011			-	0
Quantité piégée en HF sur le filtre+rinçage	mg	0,04			-	-
Volume prélevé (gaz sec)	m_0^3	1,35			-	-
Teneur sur gaz secs	mg/m_0^3	0,03			0,03	
Teneur dans les C.R	mg/m_0^3	0,02			0,02	
Teneur en HF gaz + part sur gaz secs	mg/m_0^3	1,73			1,73	0,02
Teneur en HF gaz + part. ds les CR	mg/m_0^3	1,06			1,06	0,02
Vérification de l'efficacité des barboteurs		-	-	-	-	-
Valeur du rendement de barbotage	%	98,04			-	-
Conformité de l'efficacité des barboteurs	-	Conforme			-	-
Rapport Blanc/VLE	%	-	-	-	-	0,38
Ratio HF particulaire/ VLE	%	0,4			-	-
Ratio HF particulaire/ HF total	%	1,6			-	-
Ratio HF particulaire/ VLE	%		-	-	- - -	0,38 - -

CR : les résultats sont exprimés dans les Conditions Réglementaires, c'est à dire sur gaz secs dans les conditions normales (1013 mbar ; 273 K) ramenées à une teneur en O2 de 15%

Rapport n° 10308884-001-1 Date: 12/06/2018

Page : 27/27

ANNEXE 6 AGREMENT

L'APAVE est agréée par le ministre chargé des installations classées par l'Arrêté du 21/06/2017 (J.O. du 05/07/2017).

Le détail des agréments de l'agence de Tassin en charge des prélèvements est fourni ci-après.

Détermination de la vitesse et du débit-volume.	Prélèvement et détermination de la teneur en vapeur d'eau.	Prélèvement des poussières dans une veine gazeuse.	Prélèvement et analyse des oxydes d'azote (NOx).	Prélèvement et analyse du monoxyde de carbone (CO).	Prélèvement et analyse de l'oxygène (O2).	Prélèvement et analyse des composés organiques volatils totaux
14	15	1 a	11	12	13	2

Prélèvement d'acide chlorhydrique (Hcl).	Prélèvement du dioxyde de soufre (SO2).	Prélèvement de l'ammoniac (NH3).	Prélèvement d'acide fluorhydrique (HF).	Prélèvement de métaux lourds autres que le mercure	Prélèvement de mercure (Hg).	Prélèvement de dioxines et furannes dans une veine gazeuse .	Prélèvement d'hydrocarbures aromatiques polycycliques (HAP).
4a	10	16a	5a	6a	3a	7	9a

Le détail des agréments du laboratoire APAVE de Chateauneuf Les Martigues en charge des analyses est fourni ci-après.

Quantification des poussières dans une veine gazeuse.	Analyse de mercure (Hg).	Analyse d'acide chlorhydrique (Hcl).	Analyse d'acide fluorhydrique (HF).	Analyse de métaux lourds autres que le mercure	Analyse du dioxyde de soufre (SO2).	Analyse de l'ammoniac (NH3).
1b	3b	4b	5b	6b	10b	16b

ANNEXE 5 : RAPPORT DES EMISSIONS DIFFUSES AU TRAVERS DES COUVERTURES FINALES

SERPOL

ISDND DE PENOL

Mesures des émissions diffuses au travers des couvertures finales

Rapport

AGENCE NORD EST

VALDECH Rue François Arago 39 800 POLIGNY ☎: 03.84.73.69.13 圖: 03.84.73.69.10 valdech@wanadoo.fr

AGENCE SUD EST

80, Le Grand Champ 38 500 LA BUISSE ☎/圖: 04.76.67.31.37 jberthet@valdech.fr

VALDECH

Sommaire

1	Princi	pe de mesure	3
		ptif du mode opératoire mis en œuvre	
		ats de la campagne de mesure sur les casiers	
3	3.1 Co	ouverture définitive	4
	3.1.1	Casier 1 (alvéoles A à F)	4
	3.1.2	Casier 3	6
	3.1.3	Casier 4.	7
	3.1.4	Casier 5	9
3	3.2 Co	ouverture provisoire	11
		Casier 1 (alvéole G à K)	

OBJET DE LA CONSULTATION:

Le présent rapport rend compte de la campagne de mesures des émissions diffuses de biogaz au travers des couvertures (casiers 3, 4, 5 et casier 1 sauf alvéole en exploitation) de l'Installation de Stockage des Déchets Non Dangereux (ISDND) de Penol réalisé par VALDECH les 28 et 29 avril 2018 à la demande de la société SERPOL. Ce contrôle est réalisé dans le cadre du contrôle demandé par l'article 21 de l'arrêté ministériel de février 2016. Ce diagnostic comprend:

- La description de la méthode de mesure
- La réalisation d'une campagne de mesure des émissions diffuses

1 Principe de mesure

Appareillage utilisé

Pour la détermination de la concentration en CH₄ contenue dans les gaz émis sur la surface de l'installation de stockage ou dues à des fuites du réseau de collecte, nous avons utilisé un détecteur d'ionisation de flamme (FID) portable PORTAFID M3K. Cet appareil est particulièrement adapté pour la détection des hydrocarbures dans de petites concentrations.

La recherche de présence de méthane s'effectue à pied avec le détecteur FID porté par un opérateur et muni d'une sonde cloche permettant la vérification de surfaces irrégulières.

Principe de fonctionnement

Le FID est composé d'un détecteur pour mesurer des traces des hydrocarbures dans un échantillon d'air/gaz et un système d'aspiration qui rassemble l'échantillon et l'alimente au détecteur.

L'échantillon aspiré (sans interruption) depuis la surface de l'installation de stockage par une cloche d'aspiration est ensuite brûlé dans une chambre de combustion d'une forme cylindrique à l'aide d'une « flamme d'hydrogène » (flamme alimenté par du gaz carburant H₂).

« Le principe d'ionisation de la flamme » est basé sur la détermination de la conductivité électrique de la flamme d'hydrogène. En présence d'hydrocarbure dans l'échantillon d'air prélevé, la conductivité électrique de la flamme est alors augmentée.

La mesure est réalisée à l'aide d'un commutateur électronique d'amplification, de sorte que la détection des plus petites traces d'hydrocarbures soit possible. Les composés d'hydrocarbure dans le gaz sont détectables à partir d'une concentration de 1 ppm.

Cette technique peut mesurer toutes les concentrations de composés de carbone dans l'échantillon d'air à condition que les composés soient inflammables et existent dans la phase gazeuse.

Adaptation de la technique à la détection et à la quantification de fuites de biogaz

Dans le cadre d'une détection de biogaz en installation de stockage, le calibrage de l'appareil est effectué à l'aide d'un gaz étalon méthane.

Le méthane (CH₄) étant l'hydrocarbure principal entrant dans la composition du biogaz de

décharge (les autres hydrocarbures éventuellement présents ne le sont qu'à l'état de trace), la valeur mesurée au niveau du FID est donc la concentration en méthane contenu dans l'échantillon d'air prélevé.

Précision de mesure

- Plage de mesure de 0 à 10.000ppm
- Limite de détection : 1 ppm
- 4 échelles de mesure, qui commutent automatiquement en fonction de la concentration entre :
 - **-** 0-10 ppm,
 - 0-100 ppm,
 - **–** 0-1000 ppm,
 - 0-10 000 ppm.
- La stabilité du point zéro exceptionnelle du FID garantit un fonctionnement sûr et élimine le risque de fausse mesure. Le point zéro est géré par microprocesseur.

2 Descriptif du mode opératoire mis en œuvre

A partir du plan topographique du site, un quadrillage de 20mx20m de côté a été implanté au niveau des surfaces étudiées.

Un minimum de 2 mesures a été réalisé par surfaces élémentaires à des endroits aléatoires. Dès l'obtention d'une mesure présentant une concentration en méthane de plus de 100ppm, des mesures supplémentaires sont alors réalisées à une distance d'environ 2,5 m dans toutes les directions.

Compte tenu du contexte, une attention particulière a été apportée pour des zones de fuites possibles classiquement rencontrés sur des installations de stockage, comme par exemple pied ou crêtes de talus, fissures, végétation brûlée ...

Chaque point de mesure est reporté sur une image satellite du site.

3 Résultats de la campagne de mesure sur les casiers

3.1 Couverture définitive

3.1.1 Casier 1 (alvéoles A à F)

L'ensemble des points de mesure réalisés sur cette zone est présenté sur l'image satellite suivante :

Il n'a pas était possible de réaliser l'ensemble des mesures dans le talus ouest du casier compte tenu de la végétation abondante et des pentes importantes.

L'image satellite suivante indique les points de mesures présentant des valeurs >100 ppm :

On distingue 3 zones principales d'émissions diffuses :

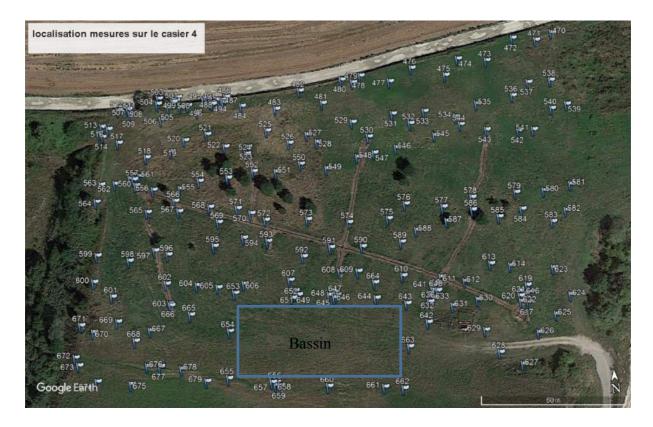
- Le talus nord (à proximité du bassin lixiviat) présentant
 - \circ 3 mesures > 10 000 ppm (n°171, 174, 175)
 - o 3 mesures entre 1 000 et 10 000 ppm (n°173, 181, 184)
 - o 2 mesures entre 500 et 1 000 ppm (n°177, 179)
- Le talus sud à l'est de la rampe d'accès au dôme
 - \circ 2 mesures > 10 000 ppm (n°130, 132)
 - o 8 mesures entre 1 000 et 10 000 ppm (n°118, 120, 121, 122, 125, 126, 127, 128)
 - o 3 mesures entre 100 et 500 ppm (n°116, 124, 131)
- Le talus sud à l'ouest ou à proximité immédiate de la rampe d'accès au dôme
 - o 7 mesures > 10 000 ppm (n°86, 88, 92, 106, 109, 111, 139)
 - o 3 mesures entre 1 000 et 10 000 ppm (n°100, 101, 138)
 - o 2 mesures entre 500 et 1 000 ppm (n°94, 103)
 - o 5 mesures entre 100 et 500 ppm (n°89, 93, 95, 97, 107)

1 autre mesure (n°312) présentant une concentration entre 100 et 500 ppm se situe en pied de talus nord-ouest

3.1.2 Casier 3

L'ensemble des points de mesure réalisés sur le casier 3 est présenté sur l'image satellite suivante :

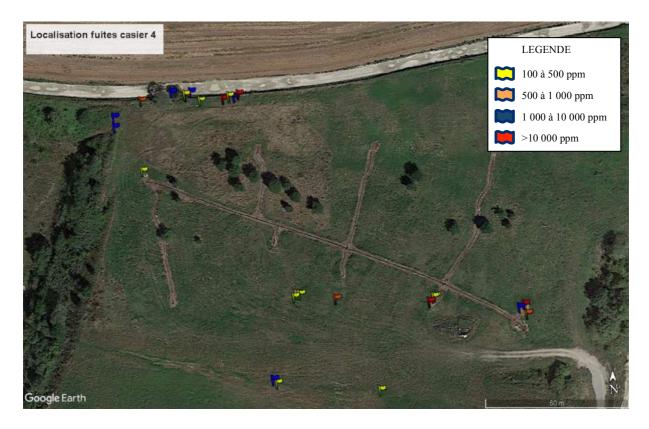
L'image satellite suivante indique les points de mesures présentant des valeurs >100 ppm :


1 zone d'émissions diffuses d'environ 5m sur 10m a été mise en évidence présentant :

- 1 mesure $> 10\ 000\ ppm\ (n^{\circ}375)$
- 2 mesures entre 1 000 et 10 000 ppm (n°368, 373)
- 3 mesures entre 500 et 1000 ppm (n°369, 372, 376)
- 2 mesures entre 100 et 500 ppm (n°366, 370)

3.1.3 Casier 4

L'ensemble des points de mesure réalisés sur le casier 4 est présenté sur l'image satellite suivante :



Il n'a pas était possible de réaliser l'ensemble des mesures dans le talus ouest du casier compte tenu de la végétation abondante et des pentes importantes. De plus, un bassin de rétention (non présent sur l'image satellite) a depuis été implanté sur le casier 4, empêchant de réaliser des mesures dans son emprise.

L'image satellite suivante indique les points de mesures présentant des valeurs >100 ppm :

On distingue 3 zones principales d'émissions diffuses :

- A proximité de la limite nord du casier et du talus ouest présentant
 - \circ 4 mesures $> 10\,000$ ppm (n°486, 488, 491, 501)
 - o 5 mesures entre 1 000 et 10 000 ppm (n°485, 498, 503, 513, 514)
 - o 1 mesure entre 500 et 1 000 ppm (n°508)
 - o 3 mesures entre 100 et 500 ppm (n°490, 497, 502)
- A proximité de certains puits de dégazage
 - \circ 2 mesures $> 10\,000$ ppm (n°616, 632)
 - o 1 mesure entre 1 000 et 10 000 ppm (n°621)
 - o 1 mesure entre 500 et 1 000 ppm (n°617)
 - o 3 mesures entre 100 et 500 ppm (n°557, 634, 637)
- A proximité du bassin de rétention
 - o 1 mesure entre 1 000 et 10 000 ppm (n°656)
 - o 1 mesure entre 500 et 1 000 ppm (n°645)
 - o 5 mesures entre 100 et 500 ppm (n°649, 651, 652, 659, 661)

3.1.4 Casier 5

L'ensemble des points de mesure réalisés sur le casier 5 est présenté sur l'image satellite suivante :

Il n'a pas était possible de réaliser l'ensemble des mesures dans les talus du casier compte tenu de la végétation abondante et des pentes importantes.

L'image satellite suivante indique les points de mesures présentant des valeurs >100 ppm :

On distingue 3 zones principales d'émissions diffuses :

- Dans le talus Est du casier présentant
 - o 1 mesure > 10 000 ppm (n°683)
 - o 4 mesures entre 1 000 et 10 000 ppm (n°682, 684, 685, 957)
 - o 2 mesures entre 100 et 500 ppm (n°655, 658)
- A proximité de certains puits de dégazage
 - $0 1 \text{ mesure} > 10 000 \text{ ppm (n}^{\circ}819)$
 - o 1 mesure entre 1 000 et 10 000 ppm (n°716)
 - o 1 mesure entre 500 et 1 000 ppm (n°766)
 - o 3 mesures entre 100 et 500 ppm (n°720, 721, 816)
- Dans le talus Sud du casier
 - o 2 mesures entre 1 000 et 10 000 ppm (n°907, 918)
 - o 1 mesure entre 100 et 500 ppm (n°919)

3.2 Couverture provisoire

3.2.1 Casier 1 (alvéole G à K)

Les alvéoles G, H, I, J ont une couverture provisoire. Une partie de l'alvéole K est en cours d'exploitation et une autre partie en couverture provisoire (afin de maintenir une surface ouverte pas trop importante). Les mesures ont donc été réalisées sur l'ensemble des alvéoles G, H, I et J et sur la couverture provisoire mise en place sur l'alvéole K.

L'ensemble des points de mesure réalisés sur les alvéoles G à K du casier 1 est présenté sur l'image satellite suivante :

Aucune mesure n'a relevé de concentration > 100 ppm de CH₄.

4 Conclusion

Les émissions que l'on peut considérer comme des anomalies sont celles présentant des concentrations supérieures à 10000 ppm. En effet, une concentration inférieure à 10000 ppm (soit < 1%) de CH₄ est un taux très limité et qui, par exemple, n'est pas compatible avec un traitement par incinération.

Compte tenu du nombre important de mesures réalisées (plus de 1200), on remarque que très peu présentent des concentrations supérieures à 10000 ppm de CH₄ (moins de 2% des mesures). De plus, ces anomalies se regroupent essentiellement au niveau de points faibles des couvertures comme les talus et les dispositifs de captage du biogaz.

Nous pouvons donc considérer que le réseau de dégazage et les couvertures présents sur l'ISDND de Penol sont efficaces.

ANNEXE 6 : RAPPORTS DE MAINTENANCE BIOME TRANSVAPO/TORCHERE

Site de Pénol

Torchère BBC800 et Bruleur BBC400+Transvapo

2 Intervenant FBI BIOME
3 Opérateur S.Dautreppe
Rapport JMM
3 Date 14/11/2018
4 Météo Nuageux

5 Contrôles

Relevés biogaz entrée plateforme	valeurs
CH4 (%)	
CO2 (%)	
O2 (%)	
H2S (ppm)	

Relevés supervision	BBC400 + Transvapo	BBC800
compteur horaire année en cours (h)	6 757	223
compteur horaire année précédente (h)	8 311	488
compteur horaire cumulé depuis mise en service (h)	19 813	909
volume biogaz capté année en cours (m3)	2 382 268	82 067
volume biogaz capté année précédente (m3)	2 580 447	152 009
volume biogaz cumulé (m3)	6 339 199	299 068
volume perméats évaporés année en cours (m3)	2 032	
volume perméats évaporés année précédente (m3)	1 682	
volume perméats évaporés total (m3)	4 845	
Temperature de brulage (°C)	930	A I arret
Depression biogaz (mBar)	-36	A I arret
Debit biogaz (Nm3/h)	379	A I arret
Debit perméats (litres/h)	0,15	
Pression de pompe HP (bars)	24,00	
Nombre de buses actives	2	

Points contrôlés (oui/non)	BBC400 + Transvapo	BBC800
Graissage du surpresseur	oui	oui
Réglage des électrode d'allumage	oui	oui
Tests des sécurités	oui	oui
Thermocouple de température	oui	oui
Vérification garde hydraulique	oui	oui
Contrôle courroies	oui	oui
Nettoyage cellule UV	oui	oui
Nettoyage dévisiculeur	oui	oui
Nettoyage électrovanne de sécurité	oui	oui
Vérification pompe de gavage	oui	
Vérification pompe haute pression	oui	
Nettoyage du filtre pompe HP	oui	
Contrôle des buses d'injection	oui	
Contrôle du radiateur abri pompe HP	oui	
Contrôle des organes électriques	oui	

Vérification lot maintenance (présent/absent)	BBC400	BBC800
1 thermocouple	0	ui
1 doigt de gant pour thermocouple	n	on
1 cellule UV (modèles UVS10 et UV6)	oui	oui
1 jeu de 2 électrodes d'allumage	oui	
1 jeu de 2 courroies pour chaque surpresseur	non	oui
1 jeu de roulements surpresseur + joints	oui	oui

Remarques, p	Remarques, pièces fournies ou remplacées		
BBC 400	RAS, nettoyage du ventilateur d'air (Cf photo)		
Transvapo			
BBC 800	RAS		

1 Objet

Dépannage de la torchère

Site de Pénol

SERPOL Contacts:

Jérôme EFFANTIN 06 71 01 35 19 06 75 92 08 99

Pierre Emmanuel PERRIER

2 Intervenant

FBI BIOME Opérateur : Sébastien CARLIN

3 Date

Ensolleilé Météo:

4 Nature de l'intervention

Contrôle transvapo et torchère

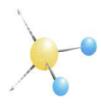
5 Controles

Relevés biogaz	valeurs
CH4 (%)	
CO2 (%)	
O2 (%)	
H2S (ppm)	

Vérification lot maintenance	BBC400	BBC800
1 thermocouple	non	non
1 cellule UV	non	non
2 électrodes d'allumage	non	oui
1 jeu de courroies de surpresseur	non	non
1 jeu de roulements surpresseur	non	non

BBC 400 transvap'o			
Points controlés	oui / non	Informations de fonctionnement	valeurs
Graissage du surpresseur	non	compteur horaire brulage	17 843
Réglage des électrode d'allumage	non	volume biogaz capté année en cours (m3)	1 610 537
Tests des securités	non	volume biogaz capté année précédente (m3)	2 580 447
Thermocouple de temperature	oui	volume total biogaz capté (m3)	5 567 471
Verification garde hydraulique	non	volume perméats évaporés année en cours (m3)	1 332
Contrôle courroies	non	volume perméats évaporés année précédente (m3)	1 682
Nettoyage cellule UV	oui	volume perméats évaporés total (m3)	4 145
Nettoyage dévisiculeur	non		
Nettoyage électrovanne de sécurité	non	Contrôle fonctionnement	valeurs
Vérification pompe de gavage	oui	Temperature de brulage (°C)	998
Vérification pompe haute pression	oui	Depression biogaz (mBar)	-41,0
Nettoyage du filtre pompe HP	non	Debit biogaz(m3/h)	398,0
Contrôle des buses d'injection	non	Debit perméats (m3/h)	0,43
Contrôle du radiateur abri pompe HP	non	Pression de pompe HP (bars)	22,8
Controle des organes electriques	non	Nombre de buses actives	
		BBC800	
Points controlés	oui / non	Informations de fonctionnement	valeurs
Graissage du compresseur	non	Volume année en cours (m3)	47 073
Réglage des électrodes d'allumage	non	Volume année Précédente (m3)	152 009
test des sécurité	non	Volume total biogaz capté (m3)	264 074
Thermocouple de température	oui	Compteur horaire total	820
Nettoyage du débimetre	non	Compteur horaire 2018	134
Vérification garde hydraulique	non	Compteur horaire 2017	488
Contrôle de courroie	non	Contrôle fonctionnement	valeurs
Nettoyage cellule UV	oui	Température de brûlage °C	0
Nettoyage des filtres	non	Dépression mBar	0
Contrôle des organes électriques	non	Débit m3/h	0

Remarques


Dépannage BBC 800 :

Cellule UV et électovanne gaz de sécurité défectueuses. Nous avons fait livrer le matériel et il a été convenu avec le client que la vanne gaz serai remplacée par ses soins.

Dans un souci de standardisation du parc machine, la cellule UV et la carte de gestion de flamme ont été rempacés par des modèles similaires au transvap'o (temps de l'opération = 3h00).

Transvap'o: Le thermocouple a cessé de fonctionner pendant notre présence sur site, nous l'avons donc remplacé (pris dans le stock de pièces du client). -> le réapprovisionnement sera fait à la prochaine maintenance (pour éviter une casse pendant le transport type messagerie)

PIECES REMPLACEES		
BBC 400 Transvap'O BBC 800		
Thermocouple.	Cellule UV défectueuse. (+vanne gaz envoyée après intervention)	

PHOTOS

Cheminée torchère

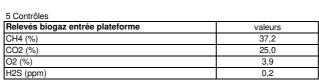
IFS

Bornier

Cellule UV

Thermocouple Transvap'o

Site de Pénol


Torchère BBC800 et Bruleur BBC400+Transvapo

2 Intervenant FBI BIOME

S.Dautreppe + G.Payelle 3 Opérateur

3 Date 05/06/2018 4 Météo 22°

Relevés supervision	BBC400 + Transvapo	BBC800
compteur horaire année en cours (h)	3 693	97
compteur horaire année précédente (h)	8 311	488
compteur horaire cumulé depuis mise en service (h)	16 749	783
volume biogaz capté année en cours (m3)	1 196 162	32 894
volume biogaz capté année précédente (m3)	2 580 447	152 009
volume biogaz cumulé (m3)	5 153 093	249 895
volume perméats évaporés année en cours (m3)	967	
volume perméats évaporés année précédente (m3)	1 682	
volume perméats évaporés total (m3)	3 781	
Temperature de brulage (°C)	A I arrêt	991
Depression biogaz (mBar)	A I arrêt	-35
Debit biogaz (Nm3/h)	A I arrêt	379
Debit perméats (litres/h)	A l arrêt	
Pression de pompe HP (bars)	A l arrêt	
Nombre de buses actives	A l arrêt	

Points contrôlés (oui/non)	BBC400 + Transvapo	BBC800
Graissage du surpresseur	oui	oui
Réglage des électrode d'allumage	oui	oui
Tests des sécurités	oui	oui
Thermocouple de température	oui	oui
Vérification garde hydraulique	oui	oui
Contrôle courroies	oui	oui
Nettoyage cellule UV	oui	oui
Nettoyage dévisiculeur	oui	oui
Nettoyage électrovanne de sécurité	oui	oui
Vérification pompe de gavage	oui	
Vérification pompe haute pression	oui	
Nettoyage du filtre pompe HP	oui	
Contrôle des buses d'injection	oui	
Contrôle du radiateur abri pompe HP	oui	
Contrôle des organes électriques	oui	

Vérification lot maintenance (présent/absent)	BBC400	BBC800
1 thermocouple	oui	
1 doigt de gant pour thermocouple	non	
1 cellule UV (modèles UVS10 et UV6)	oui	oui
1 jeu de 2 électrodes d'allumage	oui	
1 jeu de 2 courroies pour chaque surpresseur	Pris et montées	oui
1 jeu de roulements surpresseur + joints	oui	oui

Remarques, piè	ces fournies ou remplacées
BBC 400 Transvapo	Changement des deux courroies de surpresseur XPA 1400 pris sur le stock machine (à remettre en stock au prochain passage).
	Déplacement du thermocouple au plus haut, paramètre du variateur modifié de 50 Hz passé a 60 Hz.
BBC 800	Ventilateur, registre de ventelles, variateur et disjoncteur changés. Musitel déplacé à l'intérieur de l'armoire. Vérifier les butés de fin de course du servomoteur des ventelles (info automate 30 et 31) au prochain passage (accroches flammes et fut détérioré dû à la protection qui se désagrége) Autre photos disponibles.

Site de Pénol

Torchère BBC800 et Bruleur BBC400+Transvapo

2 Intervenant FBI BIOME

3 Opérateur Y.Marchal + W.Durand

3 Date 21/03/2018 4 Météo 16° nuage

5 Controles

Relevés biogaz entrée plateforme	valeurs
CH4 (%)	25,8
CO2 (%)	27,0
O2 (%)	9,4
H2S (ppm)	0,3

Relevés supervision	BBC400 + Transvapo	BBC800
compteur horaire année en cours (h)	1 906	29
compteur horaire année précédente (h)	8 311	488
compteur horaire cumulé depuis mise en service (h)	14 962	715
volume biogaz capté année en cours (m3)	591 451	8 802
volume biogaz capté année précédente (m3)	2 580 447	152 009
volume biogaz cumulé (m3)	4 548 382	225 803
volume perméats évaporés année en cours (m3)	390	
volume perméats évaporés année précédente (m3)	1 682	
volume perméats évaporés total (m3)	3 207	
Temperature de brulage (°C)	1 004	1 013
Depression biogaz (mBar)	-23	-60
Debit biogaz (Nm3/h)	305	298
Debit perméats (litres/h)	0,35	
Pression de pompe HP (bars)	23,8	
Nombre de buses actives	3	

Points controlés (oui/non)	BBC400 + Transvapo	BBC800
Graissage du surpresseur	OUI	OUI
Réglage des électrode d'allumage	OUI	OUI
Tests des securités	OUI	OUI
Thermocouple de temperature	OUI	OUI
Verification garde hydraulique	OUI	OUI
Contrôle courroies	OUI	OUI
Nettoyage cellule UV	OUI	OUI
Nettoyage dévisiculeur	OUI	OUI
Nettoyage électrovanne de sécurité	OUI	OUI
Vérification pompe de gavage	OUI	
Vérification pompe haute pression	OUI	
Nettoyage du filtre pompe HP	OUI	
Contrôle des buses d'injection	OUI	
Contrôle du radiateur abri pompe HP	OUI	
Controle des organes electriques	OUI	

Vérification lot maintenance (présent/abscent)	BBC400	BBC800
1 thermocouple	0	UI
1 doigt de gant pour thermocouple	NO	NC
1 cellule UV (modèles UVS10 et UV6)	OUI	OUI
1 jeu de 2 électrodes d'allumage	0	UI
1 jeu de 2 courroies pour chaque surpresseur	OUI	OUI
1 jeu de roulements surpresseur + joints	OUI	OUI

Remarques,	Remarques, pièces fournies ou remplacées		
BBC 400 Transvapo	Verification et sauvegarde des parametres de la machine le 21/03/2018		
BBC 800	Test des regulations registre et ventilateur le 21/03/2018. Constatation d'une évolution de la coloration du fut indiquant une dégradation de l'isolant FCR -> point à surveiller		

Site de Pénol

Torchère BBC800 et Bruleur BBC400+Transvapo

2 Intervenant FBI BIOME

3 Opérateur G.Lepretre + W.Durand

3 Date 27/02/2018

4 Météo

5 Controles


o controles		
Relevés biogaz entrée plateforme	valeurs	
CH4 (%)		
CO2 (%)		
O2 (%)		
H2S (ppm)		

Relevés supervision	BBC400 + Transvapo	BBC800
compteur horaire année en cours (h)	1 400	
compteur horaire année précédente (h)	8 311	
compteur horaire cumulé depuis mise en service (h)	14 456	
volume biogaz capté année en cours (m3)	441 525	
volume biogaz capté année précédente (m3)	2 580 447	
volume biogaz cumulé (m3)	4 398 456	
volume perméats évaporés année en cours (m3)	242	
volume perméats évaporés année précédente (m3)	1 682	
volume perméats évaporés total (m3)	3 063	
Temperature de brulage (°C)	1 004	à l'arret
Depression biogaz (mBar)	-24	à l'arret
Debit biogaz (Nm3/h)	315	à l'arret
Debit perméats (litres/h)	0,13	
Pression de pompe HP (bars)	24,0	
Nombre de buses actives	3	

Points controlés (oui/non)	BBC400 + Transvapo	BBC800
Graissage du surpresseur	OUI	OUI
Réglage des électrode d'allumage	OUI	OUI
Tests des securités	OUI	OUI
Thermocouple de temperature	OUI	OUI
Verification garde hydraulique	OUI	OUI
Contrôle courroies	OUI	OUI
Nettoyage cellule UV	OUI	OUI
Nettoyage dévisiculeur	OUI	OUI
Nettoyage électrovanne de sécurité	OUI	OUI
Vérification pompe de gavage	OUI	
Vérification pompe haute pression	OUI	
Nettoyage du filtre pompe HP	OUI	
Contrôle des buses d'injection	OUI	
Contrôle du radiateur abri pompe HP	OUI	
Controle des organes electriques	OUI	

Vérification lot maintenance (présent/abscent)	BBC400	BBC800
1 thermocouple	OUI	
1 doigt de gant pour thermocouple	NO	ON
1 cellule UV (modèles UVS10 et UV6)	OUI	OUI
1 jeu de 2 électrodes d'allumage	0	UI
1 jeu de 2 courroies pour chaque surpresseur	OUI	OUI
1 jeu de roulements surpresseur + joints	OUI	OUI

Remarques, p	ièces fournies ou remplacées
BBC 400 Transvapo	Remplacement du fut et de la réhausse Transvapo
BBC 800	Changement servomoteur registre (vrx75.70a.g00.e) le 28/02/2018. Vérification et sauvegarde des parametres de la machine, mise en route de la machine durant 1h20 sans aucun soucis

Site de Pénol

Torchère BBC800 et Bruleur BBC400+Transvapo

2 Intervenant FBI BIOME 3 Opérateur Y.Marchal

3 Date 3

31/01/2018

4 Météo

5 Controles

Relevés biogaz entrée plateforme	valeurs
CH4 (%)	
CO2 (%)	
O2 (%)	
H2S (ppm)	

Relevés supervision	BBC400 + Transvapo	BBC800
compteur horaire année en cours (h)	741	0
compteur horaire année précédente (h)	8 311	488
compteur horaire cumulé depuis mise en service (h)	13 797	686
volume biogaz capté année en cours (m3)	233 785	0
volume biogaz capté année précédente (m3)	2 580 447	152 009
volume biogaz cumulé (m3)	4 190 716	217 001
volume perméats évaporés année en cours (m3)	105	
volume perméats évaporés année précédente (m3)	1 682	
volume perméats évaporés total (m3)	2 931	
Temperature de brulage (°C)	1 002	à l'arret
Depression biogaz (mBar)	-25	à l'arret
Debit biogaz (Nm3/h)	320	à l'arret
Debit perméats (litres/h)	0,14	
Pression de pompe HP (bars)	24,2	
Nombre de buses actives	3	

Points controlés (oui/non)	BBC400 + Transvapo	BBC800
Graissage du surpresseur	OUI	OUI
Réglage des électrode d'allumage	OUI	OUI
Tests des securités	OUI	OUI
Thermocouple de temperature	OUI	OUI
Verification garde hydraulique	OUI	OUI
Contrôle courroies	OUI	OUI
Nettoyage cellule UV	OUI	OUI
Nettoyage dévisiculeur	OUI	OUI
Nettoyage électrovanne de sécurité	OUI	OUI
Vérification pompe de gavage	OUI	
Vérification pompe haute pression	OUI	
Nettoyage du filtre pompe HP	OUI	
Contrôle des buses d'injection	OUI	
Contrôle du radiateur abri pompe HP	OUI	
Controle des organes electriques	OUI	

Vérification lot maintenance (présent/abscent)	BBC400	BBC800
1 thermocouple	OUI	
1 doigt de gant pour thermocouple	NON	
1 cellule UV (modèles UVS10 et UV6)	OUI	OUI
1 jeu de 2 électrodes d'allumage	OUI	
1 jeu de 2 courroies pour chaque surpresseur	OUI	OUI
1 jeu de roulements surpresseur + joints	OUI	OUI

BBC 400	pièces fournies ou remplacées
Transvapo	
BBC 800	Teste des variateurs (ventilateur et surpresseur) qui ne présentent pas de défauts. Correction d'un bug graphique sur l'écran tactile (la police d'écriture blanche sur fond blanc)

SICTOM des Pays de la Bièvre ISDND de Penol

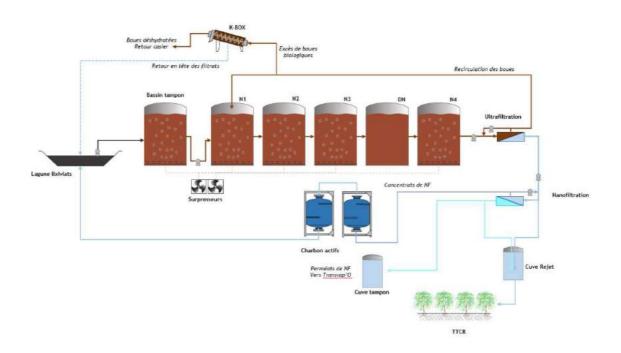
SICTOM de la Bièvre

M.Béjuy Thomas Thomas.béjuy@sictom-bièvre.fr

Traitement des lixiviats

RAPPORT ANNUEL D'ACTIVITE 2018

OVIVE Claude GAUDILLAT 06 32 63 23 02 cgaudillat@ovive.fr


SOMMAIRE

1.	PRC	DCESS BIOMEMBRAT	. 4
		UMES TRAITES ET FAITS MARQUANTS	
	2.1. 2.2.	Tableaux des volumes traites en 2018	
	2.3.	Faits manquants 2018	
3.	BIL/	AN ANALYTIQUE (LABORATOIRE INTERNE)	8
	3.1.	tableau DCO	
	3.2.	Graphiques DCO	9
	Remar	gues sur les courbes :	9
	3.3.	TABLEAU NGL inorganique	. 10
	3.4.	Graphiques NGL inorganique	. 11
	Remar	ques sur les courbes : 1	111
	Remar	ques sur les courbes :	. 11
	3.5.	tableau ph	. 12
	3.6.	GRAPHIQUE pH	. 13
	Remar	ques sur les courbes :	. 13
	3.7.	tableau conductivite	
	3.8.	GRaphique conductivité	
		ques sur les courbes :	
	3.9.	COMMENTAIREs sur les données laboratoire	. 16
4.	ANA	ALYSES OFFICIELLES REJET (LABORATOIRE EXTERNE)	17
5.	CON	NCLUSION	18

1. PROCESS BIOMEMBRAT

Synoptique simplifié de la station Ovive de Penol

Phase 1: Pompage des lixiviats.

Les lixiviats produits sont stockés dans une lagune avant d'être pompés vers notre station de traitement.

Phase 2: Dégradation biologique (DCO; NH3).

Deux réactions distinctes :

Nitrification : phase aérée, transformation de l'ammoniaque (NH3) en nitrate.

 $NH3 \rightarrow NO2 (nitrite) \rightarrow NO3 (nitrate)$

Dénitrification: phase agitée, transformation des nitrates en azote gazeux : principal constituant de l'air respiré.

NO3→ N2 (azote gazeux)

Phase 3: Ultrafiltration

Séparation de la boue et de l'eau interstitielle, rétention de la biologie et des MES recirculées directement en phase de dégradation biologique (phase 2).

Phase 4: Nanofiltration.

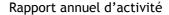
Elimination de la DCO non biodégradable avec traitement des concentrâts en externalisation.

Phase 5: Rejet

Rejet vers stockage cuve perméat NF ou lagune de stockage TTCR.

2. VOLUMES TRAITES ET FAITS MARQUANTS

2.1. TABLEAUX DES VOLUMES TRAITES EN 2018


	Mensuel rejet vers	Mensuel perméat NF	
Historique	extérieur	vers cuve stockage	Mensuel Total
Janvier	769 m3	105 m3	874 m3
Février	1 050 m3	151 m3	1 201 m3
Mars	1 134 m3	192 m3	1 326 m3
Avril	1 591 m3	254 m3	1 845 m3
Mai	1 508 m3	251 m3	1 759 m3
Juin	1 791 m3	229 m3	2 020 m3
Juillet	872 m3	223 m3	1 095 m3
Août	639 m3	270 m3	909 m3
Septembre	1 008 m3	195 m3	1 203 m3
Octobre	1 871 m3	265 m3	2 136 m3
Novembre	1 306 m3	28 m3	1 334 m3
Décembre	1 465 m3	115 m3	1 580 m3
TOTAL ANNUEL	15 004 m3	2 278 m3	17 282 m3

Rappel volume:

2017: 11 441 m3 2016: 16 200 m3 2015: 17 900 m3 2014: 15 600 m3 2013: 20 200 m3

2.2. GRAPHIQUES DES VOLUMES TRAITES EN 2018

2.3. FAITS MANQUANTS 2018

Janvier 2018:

Colmatage fréquent du filtre eaux brutes en entrée de station (lixiviat calcaire, besoin de lavage manuel à l'acide).

Février 2018:

Intervention d'Astradec pour déshydratation de la lagune de stockage de boue.

Colmatage fréquent du filtre eaux brutes en entrée de station (lixiviat calcaire, besoin de lavage manuel à l'acide).

Chantier mise en place de la KBOX pour la déshydratation des boues du BRM.

Mars 2018:

Réparation des rampes d'aération sur la cuve ayant servie au stockage des boues.

Première mise en route de la Kbox pour la déshydrations des boues du BRM.

Maintenance préventive effectuée.

Prise en masse des silos de charbon acif.

Avril 2018:

Les deux silos de charbon ont été vidés et un silo de traitement mobile a été mis en place.

Plusieurs problèmes de pompage de l'Ovive DN, remplacement pompe doseuse par une neuve.

Mai 2018:

Remplacement compresseur d'air et distributeur d'air.

Juin 2018:

Lagune estimée à 90 % de remplissage. Réduction du débit de filtration afin de garantir un rejet dans les normes.

Maintenance préventive effectuée.

Juillet 2018:

Fort bouchage des membranes UF, nécessitant plusieurs lavages.

Remplacement du moteur du surpresseur 1.

Remplacement de la pompe eau industrielle située dans la cuve.

Faible volume traité dû aux problèmes de bouchage.

Remplacement câble alimentation container process UF et NF.

Remplacement pompe reprise lixiviat cuve tampon.

Août 2018:

Remplacement du disjoncteur de la pompe rejet.

Bouchage de la pompe Ovive DN dû à des éléments indésirables.

Surconcentration de la biologie due à un problème d'automatisme, des prestataires sont intervenus afin de diluer la biologie et de permettre un traitement optimal.

Faible volume traité dû à la concentration dans la biologie.

Septembre 2018:

Reprise du traitement de manière optimal, le niveau de la lagune lixiviat baisse significativement.

Remplacement des plateaux de la cuve N1.

Maintenance préventive effectuée.

Octobre 2018:

Niveau de la lagune lixiviat estimé à 25%, le niveau de la lagune lixiviat et TTCR sont au plus bas.

Nettoyage et remplissage de la cuve Ovive DN.

Mise en place du deuxième charbon actif pour la surqualité en DCO rejet pour palier au perçage du premier charbon actif.

Mise en place d'un système de dé-colmatage de plateaux d'aération.

Novembre 2018:

Niveau de la lagune lixiviat estimé à 45%, le traitement de la station en baisse suite à l'arrêt hivernal du TTCR; maintenance préventive du TTCR et vidange des canalisations.

Remplacement pompe gavage UF.

Décembre 2018:

Baisse du débit de traitement pour ne pas remplir trop rapidement la lagune TTCR.

Arrêt de la surqualité suite à un résultat de 160 mg/L d'O₂ dans la lagune TTCR.

Maintenance préventive de l'unité d'ultrafiltration.

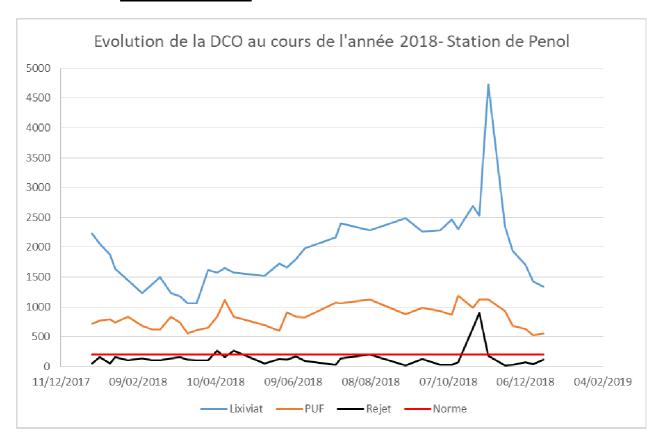
Remplacement du câble d'alimentation de la pompe d'eau industrielle.

Maintenance préventive effectuée.

Remarques sur globale sur l'année 2018:

Le volume traité cette année est de 17 282 m3 au lieu des 25000 m3 prévus.

Cette année nous n'avons pas eu une quantité de lixiviat suffisante pour atteindre d'avantage de volume.


3. BILAN ANALYTIQUE (LABORATOIRE INTERNE)

3.1. TABLEAU DCO

Paramètre	DCO			
Somme de Résultat	Prélèvement	Unité		
	Lixiviat brut	Perméat UF	Rejet	Rendement DCO total
Date	mg O2/I	mg O2/I	mg O2/I	%
04/01/2018	2225	716	54	98%
10/01/2018	2055	766	161	92%
18/01/2018	1880	791	56	97%
22/01/2018	1635	739	155	91%
01/02/2018	1452	840	111	92%
12/02/2018	1230	680	139	89%
20/02/2018	1384	620	108	92%
26/02/2018	1497	625	106	93%
06/03/2018	1228	835	134	89%
13/03/2018	1180	735	161	86%
19/03/2018	1065	555	122	89%
26/03/2018	1058	610	111	90%
04/04/2018	1614	650	104	94%
11/04/2018	1580	835	272	83%
17/04/2018	1650	1118	157	90%
24/04/2018	1580	835	272	83%
29/05/2018	1730	597	128	93%
04/06/2018	1660	912	118	93%
11/06/2018	1805	834	170	91%
18/06/2018	1980	829	100	95%
12/07/2018	2165	1070	36	98%
16/07/2018	2400	1060	141	94%
07/08/2018	2282	1130	202	91%
04/09/2018	2490	874	21	99%
17/09/2018	2265	991	128	94%
01/10/2018	2280	931	31	99%
10/10/2018	2465	865	30	99%
15/10/2018	2305	1190	69	97%
26/10/2018	2695	990	645	76%
31/10/2018	2528	1120	901	64%
07/11/2018	4734	1120	176	96%
20/11/2018	2346	935	20	99%
26/11/2018	1944	683	28	99%
06/12/2018	1707	630	73	96%
12/12/2018	1425	520	39	97%
20/12/2018	1344	560	122	91%
Mini	1058	520	20	64%
Maxi	4734	1190	901	99%
Moyenne	1902	824	147	92%

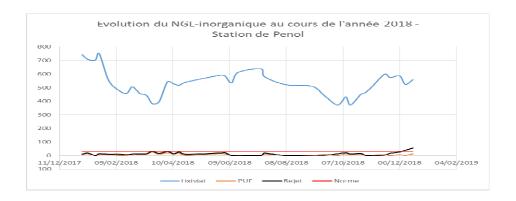
3.2. GRAPHIQUES DCO

REMARQUES SUR LES COURBES:

La DCO du lixiviat (courbe bleu) subi de forte variation au cours de l'année en se situant entre 1 000 mg/L $d'O_2$ et 2 500 mg/L $d'O_2$. Il est cependant observé un pic de DCO de 4 734 mg/L en novembre.

La DCO du perméat UF, sortie de l'ultrafiltration (courbe marron) suit la même tendance que le lixiviat, elle nous démontre aussi un bon abattement de la biologie.

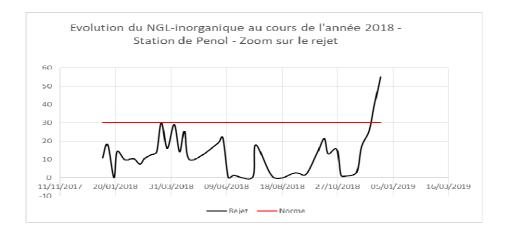
La DCO au rejet (courbe noire) respecte les normes de rejet (hormis 6 valeurs, cf. commentaire en 3.9).


3.3. TABLEAU NGL INORGANIQUE

Paramètre N-NGL inorganique

Somme de Résultat	Prélèvement	Unité		
	Lixiviat brut	Perméat UF	Rejet	Rendement NGL
Date	mg/l	mg/l	mg/l	%
04/01/2018	742	8,5	10,8	99%
10/01/2018	708	14,5	18,05	97%
18/01/2018	704	0	0,11	100%
22/01/2018	750	7,2	14,195	98%
01/02/2018	552	7,4	9,84	98%
12/02/2018	478	0,2	10,375	98%
20/02/2018	458	0	7,4	98%
26/02/2018	506	10,7	10,61	98%
06/03/2018	456	7,8	12,56	97%
13/03/2018	442	10,8	14,065	97%
19/03/2018	382	25,8	30,2	92%
26/03/2018	394	11,1	15,995	96%
04/04/2018	542	20,6	29,095	95%
11/04/2018	528	11,9	14,08	97%
17/04/2018	518	18,1	25,31	95%
24/04/2018	540	0,4	9,62	98%
29/05/2018	590	15,1	18,715	97%
04/06/2018	588	12,9	21,89	96%
11/06/2018	534	0,2	0,27	100%
18/06/2018	612	1	1,33	100%
12/07/2018	638	1,7	0,37	100%
16/07/2018	580	11,3	17,98	97%
07/08/2018	522	0,8	0,33	100%
04/09/2018	510	0,7	2,7	99%
17/09/2018	442	8,6	1,835	100%
01/10/2018	372	0,2	13,22	96%
10/10/2018	433	14	21,375	95%
15/10/2018	372	7,5	13,055	96%
26/10/2018	450	10,2	15,505	97%
31/10/2018	464	0,3	1,4	100%
07/11/2018	508	2,3	1	100%
20/11/2018	598	7,7	3	99%
26/11/2018	574	0,3	16,9	97%
06/12/2018	586	5,9	25,87	96%
12/12/2018	524	0,9	38,89	93%
20/12/2018	558	13,9	54,99	90%
Mini	372	0	0,11	90%
Maxi	750	25,8	54,99	100%
Moyenne	532	8	14	97%

3.4. GRAPHIQUES NGL INORGANIQUE



REMARQUES SUR LES COURBES:

Le N-NGL du lixiviat (=ammoniaque) est instable toute l'année, nous expliquons ces instabilités par :

Des hausses régulières suivant les apports de lixiviat 1G.

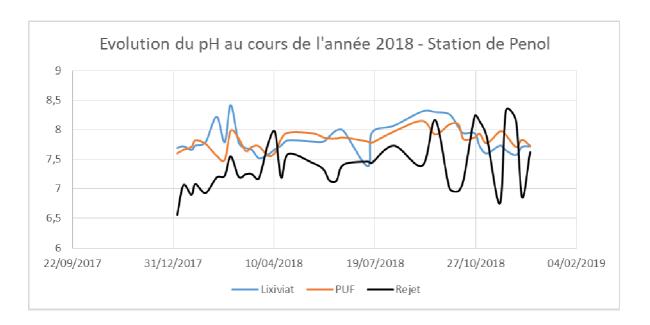
Le N-NGL du perméat UF est bon et démontre un bon abattement de l'ammoniaque du lixiviat.

REMARQUES SUR LES COURBES:

Le N-NGL au rejet est très irrégulier. Le N-NGL au rejet est sous forme de nitrate (N-NO3), c'est la réaction de dénitrification qui abat ou non ces nitrates.

La réaction est complexe et nécessitent une attention particulière et aussi la cinétique n'est pas toujours immédiate, les fortes variations en entrée nous amène parfois à des difficultés à contrer instantanément ces nitrates.

Suivant la charge du lixiviat, nous faisons des apports de substrat carboné plus ou moins important pour optimiser la dénitrification.


3.5. TABLEAU PH

	T
Paramètre	∣pH

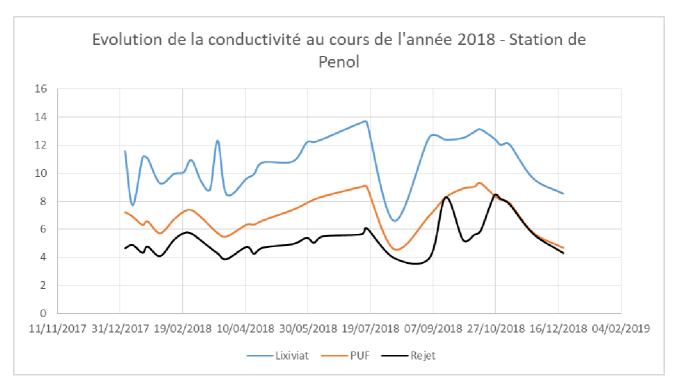
Somme de Résultat	Prélèvement	Unité	
	Lixiviat brut	Perméat UF	Rejet
Date	(vide)	(vide)	(vide)
04/01/2018	7,69	7,6	6,56
10/01/2018	7,72	7,66	7,06
18/01/2018	7,66	7,71	6,9
22/01/2018	7,73	7,82	7,08
01/02/2018	7,79	7,76	6,93
12/02/2018	8,22	7,56	7,19
20/02/2018	7,79	7,49	7,22
26/02/2018	8,42	7,98	7,55
06/03/2018	7,78	7,85	7,2
13/03/2018	7,69	7,64	7,25
19/03/2018	7,66	7,71	7,25
26/03/2018	7,52	7,72	7,18
04/04/2018	7,58	7,56	7,76
11/04/2018	7,67	7,61	7,96
17/04/2018	7,73	7,84	7,19
24/04/2018	7,82	7,95	7,59
29/05/2018	7,8	7,87	7,33
04/06/2018	7,89	7,85	7.14
11/06/2018	7,99	7,85	7,14
18/06/2018	7,98	7,87	7,41
12/07/2018	7388	7,8	7,46
16/07/2018	7,95	7,78	7,44
07/08/2018	8,07	7,97	7,73
04/09/2018	8,31	8,15	7,39
17/09/2018	8,3	7,92	8,16
01/10/2018	8,26	8,09	7,01
10/10/2018	8,04	8,09	6,96
15/10/2018	7,94	7,84	7,15
26/10/2018	7,94	7,87	8,23
31/10/2018	7,72	7,93	8,14
07/11/2018	7,6	7,77	7,88
20/11/2018	7,73	7,97	6,75
26/11/2018	7,65	7,91	8,32
06/12/2018	7,57	7,71	8,15
12/12/2018	7,71	7,83	6,86
20/12/2018	7,72	7,73	7,62
Mini	7,38	7,49	6.56
Maxi	8,42	8,15	8,32
Moyenne	7,83	7,81	7,39

3.6. GRAPHIQUE PH

REMARQUES SUR LES COURBES:

Le pH du lixiviat (courbe en bleu) est relativement stable toute d'année, il ne bouge que très peu en fonction des amenées des lixiviats 1G, 1A et 5.

Le pH au rejet (courbe noir) oscille autour de 7 et 8.5 (car c'est la consigne de régulation pH sur les membranes de nanofiltration.


3.7. TABLEAU CONDUCTIVITE

Paramètre	Conductivité
-----------	--------------

Somme de Résultat	Prélèvement	Unité	
	Lixiviat brut	Perméat UF	Rejet
Date	mS/cm	mS/cm	mS/cm
04/01/2018	11,58	7,23	4,64
10/01/2018	7,72	6,91	4,88
18/01/2018	11,12	6,31	4,32
22/01/2018	11,07	6,57	4,77
01/02/2018	9,28	5,72	4,09
12/02/2018	9,95	6,7	5,24
20/02/2018	10,08	7,26	5,73
26/02/2018	10,94	7,37	5,7
06/03/2018	9,38	6,84	5,18
13/03/2018	8,87	6,23	4,68
19/03/2018	12,32	5,73	4,28
26/03/2018	8,49	5,48	3,87
11/04/2018	9,61	6,33	4,74
17/04/2018	9,93	6,33	4,26
24/04/2018	10,77	6,63	4,69
29/05/2018	12,19	7,87	5,39
04/06/2018	12,22	8,12	5,04
11/06/2018	12,44	8,34	5,5
12/07/2018	13,62	9,04	5,65
16/07/2018	13,64	9,04	6,08
07/08/2018	6,6	4,58	3,95
04/09/2018	12,56	6,97	3,94
17/09/2018	12,39	8,27	8,28
01/10/2018	12,52	8,91	5,24
10/10/2018	12,95	9,04	5,61
15/10/2018	13,12	9,29	5,89
26/10/2018	12,46	8,39	8,42
31/10/2018	12,02	8,11	8,17
07/11/2018	12,06	7,89	7,8
26/11/2018	9,63	5,76	5,68
20/12/2018	8,54	4,68	4,31
Mini	6,6	4,58	3,87
Maxi	13,64	9,29	8,42
Moyenne	10,9659375	7,1665625	5,3428125

3.8. GRAPHIQUE CONDUCTIVITE

REMARQUES SUR LES COURBES:

La conductivité du lixiviat varie entre 7 et 14 toute d'année, elle varie en fonction des amenées des lixiviats 1G, 1A et 5.

La conductivité du perméat UF, sortie de l'ultrafiltration suit la même tendance avec un léger abattement dans la biologie.

La conductivité au rejet suit également la même tendance avec un léger abattement sur les membranes de nanofiltration.

3.9. COMMENTAIRES SUR LES DONNEES LABORATOIRE

DCO:

Avec une moyenne à 1 902 mg/l O2, la DCO du lixiviat est en légère augmentation comparer à 2017 (1 751 mg/l) soit +8.6%.

Avec un rejet moyen à 147 mg/l, nous constatons que la norme de rejet de 200 mg/l est bien respectée en moyenne. Nous notons malgré tout 6 analyses hors normes ; ces 2 prélèvements restent ponctuels et ont été rapidement maitrisés.

Nous avons donc compensé cette hors norme en effectuant de la surqualité DCO sur le rejet entre fin octobre et mi-décembre.

Le rendement de la station sur la DCO est de 92 %.

AZOTE (NGL):

Avec une moyenne de 532 mg/l, l'ammoniaque du lixiviat est en légère baisse par rapport à 2017 (589 mg/l) soit -9.7%.

Nous constatons un seul très léger dépassement (3 analyses) de la norme principalement causés par des variations de charges importantes en nitrates. Le rejet moyen est de 14 mg/l soit 54 % en deçà de la norme.

Le rendement de la station sur NGL est de 97%.

PH:

Le pH moyen sur l'année est de 7.31. 1 dépassements de la norme 5.5<pH<8.5

CONDUCTIVITE:

La conductivité du lixiviat est de 10.97 mS/cm contre 11.79 mS/cm en 2017. Il n'y a pas de norme de rejet sur la conductivité.

4. ANALYSES OFFICIELLES REJET (LABORATOIRE EXTERNE)

		Analyse 15/02/2018	Analyse 04/10/2018	Analyse 30/11/2018	Analyse 31/12/2018
Paramètres	Normes	(Trimestre 1)	(Trimestre 2)	(Trimestre 3)	(Trimestre 4)
Matières en suspension totale (MEST)	20mg/l	< 2,0 mg/l	< 2,0 mg/l	< 2,0 mg/l	< 2,0 mg/l
Carbone organique total (COT)	< 70 mg/l	32,0 mg/l	9 mg/l	8.6 mg/l	7.1 mg/l
Demande chimique en oxygène (DCO)	< 200 mg/l	110 mg/l	32 mg/l	50 mg/l	18 mg/l
Demande biochimique en oxygène (DBO5)	< 30 mg/l	< 3 mg/l	< 3 mg/l	< 3 mg/l	< 3 mg/l
Azote global.	< 30 mg/l (moyenne mensuelle)	14.74 mg/l	< 1.74 mg/l	< 20.91 mg/l	< 8.11 mg/l
Phosphore total.	< 10 mg/l (moyenne mensuelle)	0,14 mg/l	0.11 mg/l	0,69 mg/l	0,05 mg/l
Métaux totaux dont :	< 15 mg/l	<0,436 mg/l	< 0.415 mg/l	< 0.415 mg/l	< 0.42mg/l
Cr6+	< 0,1 mg/l	0.026 mg/l	< 0,005 mg/l	< 0,005 mg/l	< 0,005 mg/l
Cd	< 0,2 mg/l.	< 0,002 mg/l	< 0,002 mg/l	< 0,002 mg/l	< 0,002 mg/l
Pb	<0,5 mg/l	< 0,01 mg/l	< 0,01 mg/l	< 0,01 mg/l	< 0,01 mg/l
Hg	< 0,05 mg/l	<0,005 mg/l	<0,0005 mg/l	<0,0005 mg/l	<0,0005 mg/l
AS	< 0,1 mg/l	0,01 mg/l	0,01 mg/l	0,01 mg/l	< 0,01mg/l
Fluor et composés	< 15 mg/l	0,36 mg/l	0,37 mg/l	0,29 mg/l	0,23 mg/l
CN Libre	< 0,1 mg/l	< 0,01 mg/l	< 0,01 mg/l	< 0,01 mg/l	< 0,01 mg/l
Hydrocarbure totaux	< 5 mg/l	< 0,5 mg/l	< 0,1 mg/l	< 0,5 mg/l	< 0,1 mg/l
Composés organiques hallogénés (AOX)	< 1 mg/l	0,014 mg/l	0,55 mg/l	< 0.1 mg/l	0,330mg/l
Indice Phénol	< 0,1 mg/l	0,018 mg/l	<0,01 mg/l	<0,01 mg/l	<0,01 mg/l
Conductivité		5 420 mS/cm	4,330mS/cm	3.460mS/cm	3.490 mS/cm
Résistivité		185 Ohm.cm	231 Ohm.cm	289 Ohm.cm	286 Ohm.cm

Tous les résultats sont bons, l'ensemble des normes de rejet sont respectées.

5. CONCLUSION

Cette année a été pauvre en lixiviat (stock épuisé, problème de pompage lixiviat, faible pluviométrie...).

Notons des difficultés d'exploitation du BRM:

- Lié à la nécessité de redémarrer fréquemment l'installation pour pouvoir alimenter l'outil de valorisation biogaz.
- Lié à la disparité des lixiviats pompés (charges DCO/NH3).

Bonne adaptation de l'outil biomembrat à ces difficultés moyennement un renfort de suivi, les rejets sont bons.

Mise en place un système de déshydrations des boues en continue sur le BRM.