Département de l’Isère

Commune de La Ferrière (38580)

Ruisseau de la Grande Valloire

Projet d’installation d’une centrale hydroélectrique à partir des eaux du ruisseau de la Grande Valloire

Etude de faisabilité
avril 2017

Rédacteur : T. Burlat
Date : 12/04/2017
Vérificateurs : N. Ranc, C. Roux
Version 1 – Type : document externe
Table des matières

1 INTRODUCTION .. 5
2 EXAMEN DE LA FAISABILITÉ ADMINISTRATIVE .. 6
3 EXAMEN DE LA SITUATION GÉOGRAPHIQUE ... 7
4 EMPLACEMENTS ENVISAGES DE LA PRISE D’EAU .. 9
 4.1 PRISE D’EAU A 1815 M D’ALTITUDE .. 9
 4.2 PRISE D’EAU A 1850 M D’ALTITUDE ... 9
 4.3 TRANSPORT SOLIDE DU TORRENT DE LA GRANDE VALLOIRE .. 10
 4.3.1 ÉVOLUTION MORPHOLOGIQUE ... 10
 4.3.2 DESCRIPTION DU PROFIL EN LONG DU TORRENT DE LA GRANDE VALLOIRE 12
 4.3.3 SYNTHÈSE ... 14
5 EMPLACEMENT ENVISAGE DE LA CENTRALE ET DE LA CONDUITE FORCÉE 15
 5.1 LA CENTRALE ... 15
 5.2 LE TRACÉ DE LA CONDUITE FORCÉE .. 15
6 ÉTUDE HYDROLOGIQUE DU RUSSIEU DE LA GRANDE VALLOIRE .. 17
 6.1 LES STATIONS DE MESURES DE DÉBIT ... 17
 6.2 MODÈLE HYDROLOGIQUE BASE SUR LE PLEYNET .. 17
 6.2.1 COEFFICIENTS MENSuels .. 18
 6.2.2 RAPPORT DES BASINS VERSANTS .. 18
 6.2.3 BAISSE HYDROLOGIQUE ... 19
 6.2.4 RECAPITULATIF DE LA DEMARCHE DE CONSTRUCTION DU MODÈLE 20
 6.3 LES DEBITS DE LAVAL .. 20
 6.3.1 COMPARAISON DES DEBITS SPÉCIFIQUES DE LAVAL AVEC CEUX DU MODÈLE HYDROLOGIQUE .. 21
 6.3.2 RECAPITULATIF DE LA DEMARCHE DE VALIDATION DU MODÈLE 22
 6.4 RÉSULTATS DE L’ÉTUDE HYDROLOGIQUE ... 22
 6.4.1 DEBITS À LA PRISE D’EAU À 1815 M D’ALTITUDE .. 23
 6.4.2 MESURES DE DEBITS ... 23
7 DEFINITION DES DIFFÉRENTS DEBITS .. 25
 7.1 DEBIT RESERVE .. 25
 7.2 DIAMÈTRE DE LA CONDUITE FORCÉE ET DEBIT D’ÉQUIPEMENT ... 25
 7.3 DEBITS TURBINABLES ... 26
8 PUISSANCE INSTALLÉE DES DEUX SOLUTIONS ... 28
9 ÉSTIMATION DU PRODUCTIBLE .. 29
10 RECETTES ... 28
11 INVESTISSEMENTS ET RATIO ÉCONOMIQUE .. 30
12 DEFINITION DES OUVRAGERS .. 30
 12.1 LA PRISE D’EAU .. 30
 12.1.1 GÉNÉRALITÉS .. 30
 12.1.2 FONCTIONNEMENT GÉNÉRAL .. 31
 12.1.3 ACCÈS ET ASPECTS PRATIQUES .. 34
 12.1.4 DISPOSITIF DE DEVALAISON ... 35
 12.2 LA CONDUITE FORCÉE ... 36
 12.2.1 GÉNÉRALITÉS .. 36
 12.2.2 TRACÉ DE LA CONDUITE .. 36
 12.3 L’USINE ... 37
 12.3.1 IMPLANTATION ... 37
 12.3.2 ACCÈS .. 37

Sommaire
13 ASPECTS ENVIRONNEMENTAUX — IMPACT PREVISIONNEL DU PROJET …………………… 42
13.1 GENERALITES .. 42
13.2 REGLEMENTATION .. 42
13.3 MILIEU PHYSIQUE .. 43
13.3.1 IMPACTS SUR L’ECOLEMENT DES EAUX DE SURFACE 43
13.3.2 IMPACTS SUR L’ECOLEMENT DES EAUX SOUTERRAINES 43
13.3.3 IMPACTS SUR LA QUALITE PHYSICO-CHIMIQUE DE L’EAU DU TORRENT 43
13.4 MILIEU BIOLOGIQUE .. 44
13.4.1 IMPACTS SUR L’HYDROBIOLOGIE ... 44
13.4.2 IMPACTS SUR LA FAUNE PISCICOLE .. 44
13.4.3 IMPACTS SUR LA FLORE ET LA FAUNE RIVERAINE 45
13.5 MILIEU HUMAIN .. 46
13.5.1 IMPACTS SUR LES USAGES DE L’EAU ... 46
13.5.2 IMPACTS SUR LE PAYSAGE ... 46
13.5.3 IMPACT SONORE ... 47
13.5.4 IMPACTS SOCIO-ECONOMIQUES .. 47
13.5.5 IMPACT ENERGETIQUE ET ENVIRONNEMENTAL GLOBAL 48
13.6 MESURES COMPENSATOIRES ET PREVENTIVES — ANALYSES ULTERIEURES A PREVOIR …………………… 48
14 CONCLUSIONS ... 50
15 ANNEXES .. 52
15.1 LA PRISE D’EAU .. 52
Table des illustrations

Figure 1 : Localisation du projet ... 7
Figure 2 : Profil en long du torrent, des lacs à la confluence avec le Bréda 8
Figure 3 : Torrent vers 1815 m .. 9
Figure 4 : Torrent vers 1870 m ... 9
Figure 5 : Vue aérienne du torrent et de la ravine, avec implantation des prises d'eau 10
Figure 6 : Vues aériennes chronologiques de la zone d'implantation de la prise d'eau 11
Figure 7 : Profil en long du torrent au niveau de la vue aérienne 12
Figure 8 : Morphologie pavée du torrent dans la zone amont 12
Figure 9 : Zone de dépôt des éléments de taille modeste vers 1815 m 13
Figure 10 : Cascade et morphologie pavée du torrent après la zone de replat 13
Figure 11 : Implantation de l'usine au-dessus du Curtillard 15
Figure 12 : Tracé de la conduite forcée et parcelles cadastrales concernées 16
Figure 13 : Récapitulatif de la station du Bréda - source : Banque Hydro 17
Figure 14 : Schéma récapitulatif de la démarche de construction du modèle hydrologique 20
Figure 15 : Courbes de comparaison des débits spécifiques du Pleynet (naturels et corrigés) et de Laval ... 21
Figure 16 : Schéma récapitulatif de la démarche de validation du modèle hydrologique 22
Figure 17 : Synthèse des débits mensuels modélisés du ruisseau de la Grande Valloire à 1815 m ... 23
Figure 18 : Courbe des débits classés annuels du ruisseau de la Grande Valloire à 1815 m 26
Figure 19 : Synthèse des débits turbinables, naturels et du tronçon court-circuité du ruisseau de la Grande Valloire à 1815 m ... 27
Figure 20 : Estimation du productible moyen mensuel et annuel 29
Figure 21 : Schéma du fonctionnement du rachat de l'électricité Erreur ! Signet non défini.
Figure 22 : Vue 3D depuis la rive gauche de la prise d'eau ... 31
Figure 23 : Vue 3D supérieure de la prise d'eau .. 32
Figure 24 : Coupe en long du dégraveur/dessableur .. 32
Figure 25 : Schéma d'un entonnement équipé d'un système de reniflard 34
Figure 26 : photo d'une vanne de survitesse ... Erreur ! Signet non défini.
Figure 27 : Vue 3D depuis la passerelle de la prise d'eau .. 35
Figure 28 : Schéma explicatif de la pose de la conduite forcée 36
Figure 29 : Turbine Pelton à 2 injecteurs et à axe horizontal (bleu) et son alternateur (rouge) ... 40

Table des tableaux

Tableau 1 : Calcul des coefficients mensuels ... 18
Tableau 2 : Détail des prix, investissement et ratio économique Erreur ! Signet non défini.
Tableau 3 : Récapitulatif des impacts et des mesures compensatoires et préventives 49
1 INTRODUCTION

Le ruisseau de la Grande Valloire est situé sur la commune de La Ferrière dans le département de l’Isère. Ce ruisseau présente un potentiel hydrologique qu’il semble intéressant d’exploiter grâce à l’implantation d’une microcentrale.

Cette étude a pour objet l’examen de la faisabilité d’un tel projet.

Dans un premier temps, nous avons, à l’aide des données environnantes, généré un modèle hydrologique essentiel à la détermination des valeurs caractéristiques du projet (débits journaliers, débit réservé, etc).

En introduisant ces débits dans notre progiciel SERHY, nous simulons de manière journalière le productible, puis, en se basant sur les tarifs de rachat en vigueur, les recettes pour une année moyenne sont estimées.
Suite à de récentes consultations, nous avons estimé l’investissement global.

Le ratio brut investissement/recette annuelle nous permet de décider si le projet est viable et quelle solution présente le plus d’intérêt économique.

Une partie est également consacrée aux impacts environnementaux sur les différents milieux.

Cette étude définira également les ouvrages que sont la prise d’eau, la conduite forcée, le bâtiment usine et les équipements électromécaniques.
2 EXAMEN DE LA FAISABILITE ADMINISTRATIVE

« Nul ne peut turbiner l’eau des lacs et des torrents » sans solliciter une autorisation préalable à l’administration. Il convient donc de vérifier si le prélèvement de l’eau est « autorisable » c'est-à-dire s’il n’est pas opposable au titre des décrets et lois qui protègent les prélèvements de certains cours d’eau.

Les cours d’eau sont classés au titre de leur enjeu pour la migration des poissons « art L 214 - 17 du code de l’environnement ». Le ruisseau de la Grande Valloire ne rencontre aucune restriction particulière.

Egalement, ce projet se situe en amont d’une installation existante. L’arrêté préfectoral N°2007-05544, concédant à la société des Papeteries de Lancey l’exploitation de la chute de Premoinet dans le département de l’Isère, stipule dans l’article 50 :

« A l’amont de la chute concédée,

Outre les prises ou dérivations existantes et régulièrement autorisées à la date du dépôt de la demande de concession, l’Etat se réserve le droit de d’établir, d’autoriser ou de concéder, sur le cours d’eau du BREDA et de son affluent, la GRANDE VALLOIRE, ou sur leurs nappes d’accompagnement, toutes entreprises hydrauliques qu’il jugera utiles, pourvu qu’il n’en résulte aucun dommage pour le concessionnaire. Aucun dommage n’existera si l’eau est rendue à l’amont de l’ouvrage de prise concédée au même rythme qu’auparavant, c’est-à-dire sans une nouvelle modulation artificielle du débit. »

Notre projet est donc entièrement compatible avec cette concession.
3 EXAMEN DE LA SITUATION GEOGRAPHIQUE

Le ruisseau de la Grande Valloire est un torrent de montagne situé dans la vallée du Haut Bréda. Il prend sa source vraisemblablement depuis le Lac Blanc sous le pic de la Grande Valloire et depuis le Lac Noir sous le col de la Valloire. Long de 4 kilomètres environ, il coule dans un axe Est-Ouest et regagne le torrent du Bréda au niveau du hameau du Curtillard.

Il est alimenté par les eaux de la Grande Roche (2345 m), du Rocher d’Arguille (2885 m), du Pic de la Grande Valloire (2887 m), du Rocher Gris (2767 m) ainsi que des eaux de la Pointe de Comberousse (2866 m).

Figure 1 : Localisation du projet
Le profil en long du ruisseau de la Grande Valloire présente une rupture nette par la présence d’une cascade, ou succession de petites chutes, qui engendre un intérêt direct d’implantation de prise d’eau pour le projet de turbinage où il est recherché une forte chute sur un faible linéaire de conduite à poser.

Figure 2 : Profil en long du torrent, des lacs à la confluence avec le Bréda
4 EMBLEMENTS ENVISAGES DE LA PRISE D’EAU

Au cours de notre visite sur le site, nous avions imaginé quatre solutions ayant chacune des avantages et des inconvénients. Finalement, l’étude de préfaisabilité a fait ressortir le plus grand intérêt de placer la prise d’eau vers 1800 m sur le replat du Premier chalet de la Grande Valloire. D’un point de vue technique, environnemental et hydraulique, il ne reste à ce stade que deux solutions possibles d’emplacement de la prise d’eau.

4.1 PRISE D’EAU A 1815 M D’ALTITUDE

L’installation de cette prise d’eau se fait légèrement en contrebas du pont qu’emprunte le GR du Tour du pays d’Allevard. Elle se trouve à proximité du Premier Chalet de la Grande Valloire. Le bassin versant est de 4.26 km².

Figure 3 : Torrent vers 1815 m

4.2 PRISE D’EAU A 1850 M D’ALTITUDE

Cette prise d’eau se situe un peu au-dessus du Premier Chalet de la Grande Valloire en partant en direction du Lac Blanc. Le bassin versant est de 3.61 km².

Figure 4 : Torrent vers 1870 m
Dans chaque cas, les parcelles cadastrales 200 & 201 de la section B1 sont impliquées.

4.3 TRANSPORT SOLIDE DU TORRENT DE LA GRANDE VALLOIRE

Techniquement, ces deux solutions d’implantation des prises d’eau ne présentent pas de problème particulier. Les observations relevées sur le terrain ainsi que l’analyse des photographies aériennes sur Géoportail poussent à se questionner sur le choix de l’une ou de l’autre solution d’emplacement de la prise d’eau par rapport à la problématique du transport solide. En effet, un affluent qui rejoint le torrent en rive droite vers la cote 1845 m semble être une potentielle source d’apport solide non négligeable d’après les prises de vue aériennes.

Figure 5 : Vue aérienne du torrent et de la ravine, avec implantation des prises d’eau

Le choix réside donc aujourd’hui en un équilibre entre la gestion du transport solide et la taille de bassin versant qui sont directement impactées par l’emplacement de la prise d’eau.

Positionner la prise d’eau à la cote 1815 m permet de récupérer un bassin versant plus grand (4.26 km²) et les résurgences observées en rive gauche mais en prenant le risque d’un atterrissement régulier dans la retenue de la prise d’eau et une gestion du transport solide délicate.

Positionner la prise d’eau à la cote 1850 m réduit le bassin versant et entraîne l’abandon des résurgences comme eaux potentiellement turbinables mais est favorable à une gestion du transport solide moins compliquée.

4.3.1 EVOLUTION MORPHOLOGIQUE

En premier lieu, nous effectuons une comparaison de l’évolution morphologique de la zone d’étude à partir de photographies aériennes réalisées entre 2000 et 2015.
Un élément important à connaître sur la vallée du Haut Bréda est la forte crue, estimée comme centennale, survenue à l’été 2005. Celle-ci a entraîné de forts dégâts dans le fond de la vallée. Le ruisseau de la Grande Valloire a présenté un fort transport solide avec des dépôts très volumineux déposés en amont du pont à la confluence avec le torrent du Bréda.

Cette photo a été prise avant la crue torrentielle survenue dans la vallée du Haut Bréda à l’été 2005. On se doute d’une activité de l’affluent, mais la végétalisation semble établie au niveau de son cône de déjection.

Cette photo a été prise après la crue torrentielle survenue dans la vallée du Haut Bréda à l’été 2005. L’affluent ne semble pas avoir participé aux apports solides dans le torrent, la végétation est encore plus en place que sur l’image précédente. Le lit du torrent parait plus large, possible témoignage d’un transport solide important.

La ravine a traversé la zone végétalisée et déposé des matériaux sur toute cette longueur qui semble correspondre à son cône de déjection. Les apports solides ont atteint le lit du torrent qui semble avoir déjà repris une partie des matériaux par charriage. Un banc de graviers reste présent dans son lit.

Figure 6 : Vues aériennes chronologiques de la zone d’implantation de la prise d’eau
La problématique est donc d’identifier les régimes de transport solide du torrent et de la ravine mais aussi d’estimer les volumes solides susceptibles d’être observés lors des crues.

4.3.2 DESCRIPTION DU PROFIL EN LONG DU TORRENT DE LA GRANDE VALLOIRE

En ce qui concerne le torrent, son profil altimétrique issu de Géoportail permet d’obtenir les pentes moyennes du cours d’eau dans la zone d’étude.

![Profil en long du torrent](image)

Figure 7 : Profil en long du torrent au niveau de la vue aérienne

On peut distinguer trois zones sur ce profil qui coïncident avec les observations terrain. La première partie (1920 m – 1840 m) est de pente plutôt élevée de 27 %, avec une morphologie de type pavée et la présence de gros blocs.

![Morphologie pavée du torrent](image)

Figure 8 : Morphologie pavée du torrent dans la zone amont

La deuxième partie (1840 m – 1810 m) à partir de l’aval de la confluence avec la ravine présente une pente nettement moins forte d’environ 9 %. On peut y observer une granulométrie plus...
fine, avec un banc de graviers semblant provenir de la ravine. Sous cette couche, le pavage semble toujours effectif.

Figure 9 : Zone de dépôt des éléments de taille modeste vers 1815 m

Enfin la dernière partie correspond au début des gorges avec une reprise de pente similaire voir plus abrupte que celle de la première partie.

Figure 10 : Cascade et morphologie pavée du torrent après la zone de replat

Ces observations nous permettent à ce stade d’imaginer que le transport solide par charriage est moins important au niveau de la partie 2 dont la pente est plus faible. En effet, l’observation
d’une granulométrie plus faible pourrait indiquer un arrêt, provisoire, des matériaux à ce niveau.

4.3.3 SYNTHÈSE

Avant de conclure, nous tenons à souligner que le facteur déterminant dans l’évaluation de la dynamique géomorphologique du torrent au droit de la prise d’eau est la connexion sédimentaire de la ravine avec le torrent. A priori, comme le cône de déjection de la ravine n’est que peu formé, cette dernière semble présenter une activité plutôt rare.

Si la connexion n’est pas effective, il y aurait lieu de penser que les volumes charriés ne seraient pas spécialement importants au droit de la prise d’eau, faute de matériaux disponibles en grande quantité. Cependant, en cas de connexion exceptionnelle de la ravine et du torrent, la capacité de transport du torrent étant très importante, les volumes charriés seraient très largement suffisants pour engraver considérablement la retenue de la prise d’eau.

En conclusion, il est à ce stade difficile d’apporter un réel éclaircissement au questionnement posé par la présence de la ravine sur le futur emplacement de la prise d’eau. Notre expérience et une première discussion avec un expert du transport solide nous permettent tout de même de valider le choix de la prise d’eau à l’altitude 1815 m, en ayant à l’esprit que des dispositions techniques particulières seront à prendre en compte dans la conception de l’ouvrage par rapport au transport solide.

Cette première évaluation du transport solide sur le torrent de la Grande Valloire aurait un grand mérite à être complétée par des mesures sur le terrain (profil en long, section, granulométrie, pente d’équilibre) afin d’évaluer de manière beaucoup plus rigoureuse la dynamique du torrent. Il serait ainsi intéressant de pouvoir calculer le seuil d’entraînement des matériaux afin d’évaluer les volumes annuels charriés pouvant engraver la retenue et définir des scénarios permettant un dimensionnement optimal de la prise d’eau, notamment, pour décider de l’utilité d’un clapet mobile par rapport à un barrage plus simple. Cette étude de transport solide sera lancée dès que l’étude de faisabilité sera validée par l’ensemble des parties.
5 EMPLACEMENT ENVISAGE DE LA CENTRALE ET DE LA CONDUITE FORCEE

5.1 LA CENTRALE

L’usine serait positionnée aux abords de la prise d’eau existante. Elle serait située en rive droite du ruisseau à 1040 m d’altitude et serait accessible à partir d’un réaménagement de la piste en terre qui longe le ruisseau. Les eaux turbinées seraient ensuite rejetées dans le ruisseau en amont de la prise d’eau. Ce projet n’impacterait donc pas le fonctionnement de l’usine située plus bas.

La parcelle cadastrale 62 de la section B01 est impliquée pour la construction de l’usine. L’accès se fera avec l’accord des riverains par une ancienne piste qui sera réaménagée à cet effet et servira également pour le raccordement électrique au réseau 20 kV.

5.2 LE TRACE DE LA CONDUITE FORCEE

Le tracé de la conduite forcée se ferait en rive droite du ruisseau. Il est à noter que la totalité de la conduite forcée sera enterré. Le tracé pourra évoluer en fonction des conseils de la commune, de la maîtrise foncière, etc.
Figure 12 : Tracé de la conduite forcée et parcelles cadastrales concernées

Le tracé défini ci-dessus fait apparaître la hauteur de chute (ou hauteur utile) et la longueur de conduite suivante :

| Hauteur utile prise d'eau 1815 m = 775 m | et | Longueur conduite prise d'eau 1815 m = 3 400 m |

NB : la longueur de la conduite forcée sera effective une fois que son tracé exact sera fixé.
6 ÉTUDE HYDROLOGIQUE DU RUISSEAU DE LA GRANDE VALLOIRE

L'étude hydrologique a pour objectif d’estimer le plus précisément possible les débits transitant à la prise d’eau projetée.

6.1 LES STATIONS DE MESURES DE DÉBIT

Dans cette étude, nous avons besoin de déterminer les débits du ruisseau de la Grande Valloire au niveau de la prise d’eau. Ce ruisseau ne dispose d’aucune donnée d’enregistrement de débit et il serait assez difficile d’installer une station de mesure pérenne sur ce torrent.

Les débits de ce ruisseau sont donc reconstitués à partir de la base de données de la station hydrométrique de la commune de Pontcharra installée sur le torrent du Bréda, rivière récupérant les eaux du ruisseau de la Grande Valloire (bassin versant de 223 km²). Pour calculer les débits, nous disposons des données journalières moyennes de débits du Bréda sur le site internet de la banque hydro. Cette station est récente et a enregistrée les débits de ce torrent de 2009 jusqu’à aujourd’hui. De plus, les données sont complètes.

![Figure 13 : Récapitulatif de la station du Bréda - source : Banque Hydro](image)

Enfin, nous avons recueilli sur la micro-centrale de Laval, dont le bassin versant de 10 km² est proche de notre zone d’étude, les mesures de débits de 2013 à 2016.

6.2 MODÈLE HYDROLOGIQUE BASE SUR LE PLEYNET

Nous utilisons les débits journaliers de la Bréda comme débits de référence auxquels nous appliquons des coefficients mensuels calculés à partir des relevés d’EDF du Pleynet. Ces coefficients permettent de retranscrire plus fidèlement le comportement hydrologique du ruisseau. Ensuite, nous appliquons un coefficient K (rapport des surfaces des bassins versants) à l’ensemble des données pour obtenir les débits au niveau de la prise d’eau. Pour finir, un
coefficient minorateur est appliqué à ces données pour prendre en compte la baisse hydrologique que nous connaissons actuellement dans les Alpes, celle-ci étant causée par la diminution des précipitations et la réduction de taille des glaciers au fil des décennies.

Le modèle hydrologique est donc établi suivant la méthode suivante :
- Récupération des données journalières de débit à la station de référence (station sur la Bréda)
- Application de coefficients mensuels basés sur les relevés d’EDF du torrent du Pleynet
- Application à chaque valeur de débit du coefficient K, rapport des bassins versants (K varie en fonction du positionnement de la prise d’eau)
- Application d’un coefficient minorateur (baisse hydrologique actuelle de 20 % causée par la diminution des précipitations et la réduction de taille des glaciers)

Après avoir réalisé ces étapes, nous pouvons reconstituer les débits à la prise d’eau projetée.

6.2.1 **COEFFICIENTS MENSUELS**

Les coefficients mensuels sont calculés de la manière suivante :

\[
\text{Débit spécifique du Pleynet} \quad \text{Débit spécifique du Bréda} \\
\text{Débit spécifique du Pleynet} \quad \text{Débit spécifique du Bréda}
\]

<table>
<thead>
<tr>
<th></th>
<th>Débit spécifique du Bréda (l/s/km²)</th>
<th>Débit spécifique du Pleynet (l/s/km²)</th>
<th>Coefficients mensuels K_{mensuel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janvier</td>
<td>16.4</td>
<td>20.5</td>
<td>1.25</td>
</tr>
<tr>
<td>Février</td>
<td>16.9</td>
<td>21.9</td>
<td>1.30</td>
</tr>
<tr>
<td>Mars</td>
<td>16.0</td>
<td>24.4</td>
<td>1.53</td>
</tr>
<tr>
<td>Avril</td>
<td>29.1</td>
<td>46.3</td>
<td>1.59</td>
</tr>
<tr>
<td>Mai</td>
<td>52.9</td>
<td>100.0</td>
<td>1.89</td>
</tr>
<tr>
<td>Juin</td>
<td>60.1</td>
<td>151.6</td>
<td>2.52</td>
</tr>
<tr>
<td>Juillet</td>
<td>39.7</td>
<td>119.4</td>
<td>3.01</td>
</tr>
<tr>
<td>Août</td>
<td>19.5</td>
<td>74.2</td>
<td>3.80</td>
</tr>
<tr>
<td>Septembre</td>
<td>14.3</td>
<td>55.3</td>
<td>3.87</td>
</tr>
<tr>
<td>Octobre</td>
<td>16.1</td>
<td>43.6</td>
<td>2.71</td>
</tr>
<tr>
<td>Novembre</td>
<td>21.2</td>
<td>38.1</td>
<td>1.80</td>
</tr>
<tr>
<td>Décembre</td>
<td>15.5</td>
<td>28.9</td>
<td>1.86</td>
</tr>
</tbody>
</table>

26.47 | 60.35 | |

Tableau 1 : Calcul des coefficients mensuels

Chaque valeur de débit du Bréda est corrigée grâce au $K_{mensuel}$ correspondant.

6.2.2 **RAPPORT DES BASSINS VERSANTS**

Le bassin versant du Bréda à la station hydrométrique de Pontcharra mesure 223 km². Pour la position de la prise d’eau à 1815 m, le bassin versant mesuré est de 4.26 km².
On projette ensuite les débits corrigés aux deux emplacements envisagés pour la prise d’eau grâce aux rapports de bassin versant : on multiplie chaque valeur par un coefficient K_{prise}.

$$K_{prise d’eau 1815 \text{ m}} = \frac{4.26}{223} = 0.019$$

6.2.3 **BAISSE HYDROLOGIQUE**

La pondération mensuelle effectuée à partir des débits spécifiques du Pleynet utilise des données datant de 1962 à 1982. Or ces dernières années l’expérience a montré que l’hydrologie a subi une baisse non négligeable. Cela s’explique par plusieurs facteurs dont un principal : les petits glaciers d’antan qui existaient encore à des altitudes comprises entre 2000 m et 3000 m ont aujourd’hui disparu. Ainsi, les torrents ont vu leurs débits diminuer en période estivale ne bénéficiant plus de l’eau provenant de la fonte glaciaire.

Nous choisissons donc arbitrairement d’appliquer un coefficient minorateur à chaque valeur de débit du Bréda, $K_{baisse \text{ hydro}}$.

$$K_{baisse \text{ hydro}} = 0.8$$
6.2.4 Recapitulatif de la démarche de construction du modèle

Etape 1: Calcul et application des coefficients mensuels à partir des débits spécifiques

Etape 2: Application du rapport des bassins versants et du coefficient minorateur

Synthèse: \[Q_{\text{prise d'eau}} = Q_{\text{Bréda}} \cdot K_{\text{mensuel}} \cdot K_{\text{prise d'eau (rapport des bassins versants)}} \cdot K_{\text{baisse hydro}}\]

Figure 14 : Schéma récapitulatif de la démarche de construction du modèle hydrologique

6.3 Les débits de Laval

Nous disposons de mesures de débit journalières sur la micro-centrale de Laval en Belledonne. Nous allons utiliser ces données afin de conclure sur la validité de notre modèle. En effet, la station de Laval, par sa plage réduite (2013-2016) de mesures de débits ne peut pas être utilisée comme référence dans notre modèle. Cependant, elle a l’avantage de permettre de conclure sur la cohérence du modèle.

Le bassin versant de Laval est sensiblement de même taille que celui du Pleynet (10 km² pour 12.46 km²) et son point bas est à une altitude d’environ 1400 m pour 1084 m pour le Pleynet.
L’orientation des deux bassins est opposée : ouest pour Laval contre nord-est pour le Pleynet. L’ensemble de ces facteurs nous permet d’effectuer une comparaison cohérente. Nous nous attendons à peut-être observer un pic sur l’hydrogramme du Pleynet plus tardif que celui de Laval du fait de son orientation.

6.3.1 **COMPARAISON DES DEBITS SPECIFIQUES DE LAVAL AVEC CEUX DU MODELE HYDROLOGIQUE**

Le modèle hydrologique est basé sur deux corrections essentielles : les coefficients mensuels et le coefficient prenant en compte la baisse hydrologique. Afin d’en vérifier la justesse, nous avons comparé :
- les débits spécifiques du Pleynet
- les débits spécifiques du Pleynet corrigés par $K_{\text{baisse hyd}}$, soit les débits spécifiques du modèle hydrologique,
- les débits spécifiques de Laval en Belledonne.

La courbe ci-dessous présente le débit spécifique de Laval calculé sur la période du 06/08/2013 au 31/12/2016, le débit spécifique du Pleynet calculé par EDF entre 1962 et 1982 et le débit spécifique du Pleynet auquel nous avons appliqué $K_{\text{baisse hyd}}$, appelé « Pleynet corrigé ».

![Figure 15 : Courbes de comparaison des débits spécifiques du Pleynet (naturels et corrigés) et de Laval](image)

La courbe des débits spécifiques du Pleynet corrigés avec $K_{\text{baisse hyd}}$ présente la même allure que celle de Laval, avec une tendance légèrement inférieure lui conférant un caractère pessimiste.

D’autre part, la correspondance des altitudes des bassins versants est respectée : les débits spécifiques observés à Laval devraient être semblables à ceux qui seront observés au droit des prises d’eau à 1815 m ou 1850 m.
Le modèle ainsi établi, qui semble légèrement pessimiste, est donc validé.

6.3.2 RECAPITULATIF DE LA DEMARCHE DE VALIDATION DU MODELE

Figure 16 : Schéma récapitulatif de la démarche de validation du modèle hydrologique

Étape 1 : Application du coefficient minorateur $K_{\text{baisse hydro}}$

Étape 2 : Calcul des débits spécifiques

- **Bassin versant du Pleynet** = 12.46 km²
- **Bassin versant de Pleynet corrigé par $K_{\text{baisse hydro}}$**
- **Bassin versant de Laval** = 10 km²
- **Bassin versant de la Grande Valloire** = 4.26 km²

Comparaison des débits spécifiques : Laval, Pleynet et Pleynet corrigé par $K_{\text{baisse hydro}}$

Débits mensuels

Débits journaliers

Prise d’eau projetée

Prise d’eau projetée 1815 m = 205 L/s

6.4 RESULTATS DE L’ETUDE HYDROLOGIQUE

Nous disposons désormais de 8 années de relevés de débits projetés à la prise d’eau. Ces valeurs nous donnent un débit spécifique de 48.1 L/s/km² pour le ruisseau de la Grande Valloire.

Le module d’un cours d’eau est son débit annuel moyen, c’est lui qui caractérise sommairement le torrent. Les calculs effectués à partir des relevés dont nous disposons font ressortir les modules suivants :

$Q_{\text{prise d’eau 1815 m}} = 205 \text{ L/s}$
6.4.1 **Débits à la prise d’eau à 1815 m d’altitude**

<table>
<thead>
<tr>
<th>Mois</th>
<th>Débits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janvier</td>
<td>66 L/s</td>
</tr>
<tr>
<td>Février</td>
<td>72 L/s</td>
</tr>
<tr>
<td>Mars</td>
<td>83 L/s</td>
</tr>
<tr>
<td>Avril</td>
<td>158 L/s</td>
</tr>
<tr>
<td>Mai</td>
<td>352 L/s</td>
</tr>
<tr>
<td>Juin</td>
<td>537 L/s</td>
</tr>
<tr>
<td>Juillet</td>
<td>412 L/s</td>
</tr>
<tr>
<td>Août</td>
<td>240 L/s</td>
</tr>
<tr>
<td>Septembre</td>
<td>165 L/s</td>
</tr>
<tr>
<td>Octobre</td>
<td>117 L/s</td>
</tr>
<tr>
<td>Novembre</td>
<td>118 L/s</td>
</tr>
<tr>
<td>Décembre</td>
<td>87 L/s</td>
</tr>
<tr>
<td>Module</td>
<td>205 L/s</td>
</tr>
<tr>
<td>Débit spécifique</td>
<td>48.1 L/s/km²</td>
</tr>
</tbody>
</table>

Figure 17 : Synthèse des débits mensuels modélisés du ruisseau de la Grande Valloire à 1815 m

6.4.2 **Mesures de débits**

Pour valider le modèle obtenu, des mesures de débits sur le terrain ont été effectuées. Le 2 Novembre 2016, nous nous sommes rendus sur place pour réaliser un repérage et mesurer par la même occasion le débit du ruisseau en plusieurs endroits. Nous avons relevé :

- À 1315 m, Q=166.5 L/s
- À 1395 m, Q=151 L/s
- À 1800 m, Q=155 L/s
- À 1890 m, Q=110 L/s

Premièrement, ces mesures témoignent que les apports entre 1400 m et 1800 m sont a priori très faibles. Ainsi, la position de la prise d’eau aux alentours de 1800 m est justifiée. Egalement, entre 1800 m et 1890 m, l’hydrologie observe une baisse de 30 %. Cela est explicable par la présence de la résurgence vers 1830 m. Il faudra donc étudier avec soin l’emplacement précis de la prise d’eau afin de récupérer le plus d’eau possible.

Ces résultats restent cohérents avec les modèles que l’on a obtenus. Les relevés de débits ne sont pas très précis (précision de l’ordre de la dizaine de litres par seconde) ce qui explique que le débit mesuré à 1800 m soit supérieur à celui mesuré à 1395 m. Il est à noter que l’année 2016 est une année avec une hydrologie assez faible.

Pour parfaire l’étude hydrologique ainsi établie, nous installerons une station de mesure de débit sur le ruisseau de la Grande Valloire, dans l’idéal en 2017 lors de l’été à venir. Une sonde radar sera être mise en place à proximité de la prise d’eau projetée pour :

- Enregistrer les hauteurs d’eau
- Calculer les débits à partir d’une courbe de tarage (dépend de la section du cours d’eau)
- Comparer les valeurs avec celles de la station de la Bréda, puis plus directement avec celles projetées par le modèle hydrologique
7 Définition des différents débits

Après avoir défini un modèle pour notre ruisseau, il convient de dimensionner les installations de turbinage. Soit :
- La part d’eau que l’on devra laisser dans le cours d’eau
- La part d’eau maximale que l’on va pouvoir dériver

7.1 Débit réserve

La quantité minimale d’eau à laisser dans le torrent est fixée par un article du code de l’environnement (art L 214-18). Il s’agit du débit réservé qui doit au moins être égal au dixième du module du torrent. A ce stade de l’étude, nous partirons sur cette valeur minimale. Ainsi, le débit réservé « Qr » serait au droit de chaque prise d’eau égal à :

\[
Q_{r} \text{prise d'eau 1815 m} = \frac{205}{10} = 21 \text{ L/s}
\]

7.2 Diamètre de la conduite forcée et débit d’équipement

En ce qui concerne le dimensionnement des installations, s’agissant d’un petit bassin versant, il est habituel de prévoir des ouvrages permettant de fonctionner à puissance maximale entre 60 et 90 jours par an. Cela correspond en général à équiper le torrent à 150 % de son module. Nous en déduisons le débit maximum appelé débit d’équipement « Qe » au-delà duquel les eaux sont excédentaires et laissées dans le cours d’eau.

Pour déterminer le diamètre minimal de conduite à utiliser, nous utilisons la condition d’une vitesse d’écoulement dans la conduite inférieure à la vitesse critique de 3 m/s au-delà de laquelle les risques de coup de bélier sont accrus. Ainsi, pour un débit d’équipement de l’ordre de 1.5 fois le module du torrent, le choix d’un diamètre de conduite forcée de 400 mm paraît pertinent car proposant des vitesses ne dépassant pas 3 m/s et des pertes de charges comprises entre 5 et 10 % de la hauteur de chute.

Le diamètre de la conduite forcée étant défini, nous pouvons ajuster le débit d’équipement afin d’optimiser l’utilisation de la conduite forcée en maximisant le débit d’équipement tout en respectant les conditions arbitraires de vitesses et de pertes de charges.

\[
Q_{e} \text{prise d'eau 1815 m} = 370 \text{ L/s}
\]

Ce débit d’équipement permet d’utiliser la conduite forcée au plus proche des limites que nous avons défini, puisque les vitesses sont de 2.94 m/s et les pertes de charge de 8.09 %. L’installation fonctionnera donc à plein régime en moyenne 54 jours par an.
Le modèle hydrologique que nous utilisons permet sur chaque valeur journalière de calculer la partie des eaux qui sera dérivée pour le turbinage, celle qui sera prioritairement laissée en rivière et celle qui éventuellement débordera au-dessus du mur de crue lors de la fonte des neiges ou d’épisodes pluvieux. Nous tenons compte également d’un débit d’armement, débit en dessous duquel la turbine ne reçoit pas assez d’énergie pour démarrer. Dans le cas présent, le constructeur prévoit un débit d’armement de 16.3 L/s. Cela signifie qu’il est nécessaire que le débit du torrent soit supérieur au débit réservé additionné au débit d’armement avant de pouvoir démarrer la production. Autrement dit, le débit qui sera restitué au torrent en période de basses eaux, quand l’installation ne pourra pas être démarrée, sera souvent supérieur au débit réservé.

Figure 18 : Courbe des débits classés annuels du ruisseau de la Grande Valloire à 1815 m

7.3 Débits Turbinables

Le modèle hydrologique que nous utilisons permet sur chaque valeur journalière de calculer la partie des eaux qui sera dérivée pour le turbinage, celle qui sera prioritairement laissée en rivière et celle qui éventuellement débordera au-dessus du mur de crue lors de la fonte des neiges ou d’épisodes pluvieux. Nous tenons compte également d’un débit d’armement, débit en dessous duquel la turbine ne reçoit pas assez d’énergie pour démarrer. Dans le cas présent, le constructeur prévoit un débit d’armement de 16.3 L/s. Cela signifie qu’il est nécessaire que le débit du torrent soit supérieur au débit réservé additionné au débit d’armement avant de pouvoir démarrer la production. Autrement dit, le débit qui sera restitué au torrent en période de basses eaux, quand l’installation ne pourra pas être démarrée, sera souvent supérieur au débit réservé.
<table>
<thead>
<tr>
<th>Mois</th>
<th>Débits turbinables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janvier</td>
<td>46 L/s</td>
</tr>
<tr>
<td>Février</td>
<td>48 L/s</td>
</tr>
<tr>
<td>Mars</td>
<td>61 L/s</td>
</tr>
<tr>
<td>Avril</td>
<td>128 L/s</td>
</tr>
<tr>
<td>Mai</td>
<td>266 L/s</td>
</tr>
<tr>
<td>Juin</td>
<td>304 L/s</td>
</tr>
<tr>
<td>Juillet</td>
<td>249 L/s</td>
</tr>
<tr>
<td>Août</td>
<td>173 L/s</td>
</tr>
<tr>
<td>Septembre</td>
<td>133 L/s</td>
</tr>
<tr>
<td>Octobre</td>
<td>92 L/s</td>
</tr>
<tr>
<td>Novembre</td>
<td>89 L/s</td>
</tr>
<tr>
<td>Décembre</td>
<td>66 L/s</td>
</tr>
</tbody>
</table>

Figure 19 : Synthèse des débits turbinables, naturels et du tronçon court-circuité du ruisseau de la Grande Valloire à 1815 m

On remarque que le ruisseau ne sera jamais asséché et que le débit dans le tronçon court-circuité sera beaucoup plus constant.
8 PUISSANCE INSTALLEE DES DEUX SOLUTIONS

La puissance est le produit des forces mises en jeu – hauteur de chute, débit maximum turbiné, gravité – le tout affecté d’un rendement :

\[
P = 9,81 \times \text{Qe} \times \text{Hnette (Qe)} \times \eta (\text{Qe})
\]

Avec :

- \(P \) la puissance en kW
- \(\text{Qe} \) en \(\text{m}^3/\text{s} \): Débit d’équipement soit le débit turbiné maximum,
- \(\text{Hnette}^* \) en \(\text{m} \): Hauteur nette = Hutile – Pertes de Charge,
- \(\eta^* \) en \(\% \): Rendement global de l’installation.

*Les pertes de charges et le rendement dépendent du débit. Ils sont donc évalués au débit d’équipement pour avoir le maximum de la puissance délivrée sur le réseau. Voir paragraphe suivant pour plus de détails.

On obtient donc :

\[
P = 9,81 \times 0,370 \times (775 - 63) \times 0,82 = 2119 \approx 2200 \text{ kW}^*
\]

*La puissance obtenue est dépendante d’incertitudes sur les pertes de charges et les rendements : nous exposons ici une valeur approchée.
9 ESTIMATION DU PRODUCTIBLE

Connaissant les débits journaliers turbinables, il convient d’effectuer le même type de calcul que précédemment pour chaque valeur de manière à connaître les productibles :

\[W_{\text{journalière}} = 9.81 \cdot Q_{\text{turbinable}} \cdot H_{\text{nette}} \cdot (Q_{\text{turbinable}}) \cdot \eta(Q_{\text{turbinable}}) \cdot 24 \]

avec \(W_{\text{journalière}} \) en kWh

Les pertes de charge linéaires sont évaluées grâce à la formule de Colebrook et notre expérience permet d’estimer les pertes singulières à l’entonnement et dans les coudes. On connaît donc les hauteurs de chute nettes pour chaque débit.

Les rendements correspondent à une turbine de type Pelton auxquels sont rajoutés les rendements de la génératrice, du transformateur ainsi qu’un rendement d’arrêt – on considère que la centrale est arrêtée 3 % du temps pour cause de maintenance, de problème technique, etc, représentant environ 11 jours d’arrêt cumulés dans l’année.

Nous récapitulons ci-dessous les capacités mensuelles et annuelles de production pour chaque solution. On constate que le productible hivernal ne représente que 17 % du productible annuel :

<table>
<thead>
<tr>
<th>Prise d’eau 1815 m</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Janvier</td>
<td>178 856 kWh</td>
</tr>
<tr>
<td>Février</td>
<td>170 056 kWh</td>
</tr>
<tr>
<td>Mars</td>
<td>247 375 kWh</td>
</tr>
<tr>
<td>Avril</td>
<td>529 926 kWh</td>
</tr>
<tr>
<td>Mai</td>
<td>1 197 458 kWh</td>
</tr>
<tr>
<td>Juin</td>
<td>1 354 909 kWh</td>
</tr>
<tr>
<td>Juillet</td>
<td>1 163 552 kWh</td>
</tr>
<tr>
<td>Août</td>
<td>787 097 kWh</td>
</tr>
<tr>
<td>Septembre</td>
<td>553 016 kWh</td>
</tr>
<tr>
<td>Octobre</td>
<td>399 664 kWh</td>
</tr>
<tr>
<td>Novembre</td>
<td>363 606 kWh</td>
</tr>
<tr>
<td>Décembre</td>
<td>275 303 kWh</td>
</tr>
</tbody>
</table>

Productible total | 7 111 427 kWh

Figure 20 : Estimation du productible moyen mensuel et annuel
10 Définition des ouvrages

Cette partie présente de manière sommaire la prise d’eau, la conduite forcée, le bâtiment et l’équipement électromécanique. Un descriptif complet sera fait dans la pièce n°3 du Dossier de Demande d’Autorisation.

10.1 La prise d’eau

10.1.1 Généralités

Pour les deux solutions envisagées, la prise d’eau serait du type au fil de l’eau par dérivation latérale avec dégraveur et dessableur. La retenue créée serait de faible superficie (voir photos).

Sauf contre-indication par les investigations de terrain lors de l’étude d’impact, il ne semble pas utile d’installer un dispositif de franchissement pour les poissons (passe à poissons). En effet, des infranchissables naturels sont présents sur le cours d’eau.

Les vannes seraient motorisées de manière à éviter les allers-retours à la prise d’eau. Cette disposition semble particulièrement utile en hiver, lorsque l’accès est enneigé. Cela permet aussi un meilleur temps de réaction lorsque surviennent des crues, les vannes étant fermées plus rapidement pour protéger l’ouvrage.

Il n’y a pas lieu de prévoir de dégrilleur automatique (cas des rivières et torrents chargés en éléments flottants type branches, feuilles, corps plastiques...).

La prise d’eau sera potentiellement équipée, suivant les conclusions de l’étude de transport solide qui sera réalisée, d’un clapet mobile. Cet organe permet l’effacement du barrage pendant les crues, laissant le libre passage des eaux et matériaux charriés.
10.1.2 **FONCTIONNEMENT GENERAL**

La prise d’eau est constituée de :
1. Un mur de barrage
2. Un évacuateur de crue
3. Une vanne de chasse
4. Un système de dessalage des eaux
5. Un local technique
Le fonctionnement de la prise d’eau est expliqué ci-dessous.

Le mur de barrage (a) sert à retenir l’eau et la maintenir à une cote définie pour l’exploitation. Le barrage mesurera 2.40 m du radier jusqu’à sa crête. Afin d’éviter le contournement de l’ouvrage et de protéger la prise d’eau des crues, des enrochements seront disposés en rive gauche et en rive droite pour diriger l’écoulement vers le barrage.
En cas de crue, l’eau surverse sur ce mur de barrage et s’écoule ensuite sur l’évacuateur de crue (b). Cet ouvrage, constitué d’enrochements bétonnés, permet de briser l’énergie du cours d’eau, par sa surface irrégulière, avant qu’il ne revienne dans son lit naturel afin d’éviter un affouillement à la base de l’ouvrage. La pente du coursier ne doit pas dépasser pas le double de la pente naturelle du torrent qui est de 9 % : on lui donne donc une pente de 18 %. La vanne de chasse (c) a une double fonction : elle est ouverte en cas de crue afin de laisser passer l’eau, évitant ainsi la surverse du barrage dans le cas d’une crue mineure, et elle permet la vidange afin de chasser les éléments solides qui se seraient déposés au fil du temps. En exploitation normale, son ouverture est utilisée pour faire de la régulation des débits turbinés, ce qui a pour effet de réaliser un transport solide continu.

En exploitation normale, son ouverture est utilisée pour faire de la régulation des débits turbinés, ce qui a pour effet de réaliser un transport solide continu.

Le début de la prise d’eau constitue le dégraveur (d). L’entrée du canal d’aménée sera calé environ 1.00 m au-dessus du lit du torrent pour éviter d’aspirer les boues en fond de prise. La première section formera un angle d’environ 110 ° avec le mur du barrage afin d’augmenter l’efficacité des vidanges des matériaux déposés par la vanne de chasse. L’ouverture sera équipée d’une vanne de tête (e) permettant l’isolement de la prise d’eau par rapport au torrent en cas de crue ainsi que d’une pré-grille pour limiter l’entrée des embâcles.

Le dégraveur permet le dépôt des matériaux les plus grossiers ayant réussi à passer l’entrée de la prise d’eau. Il mesurera environ 5.30 m de longueur pour 1.80 m de largeur et la hauteur d’eau en exploitation sera de 1.70 m. Une vanne de 0.80 m par 0.80 m est située au fond du dégraveur pour permettre sa purge en cas d’engravement. L’eau et les matériaux sont alors directement rejetés à l’aval de la vanne de chasse. Le fond du bassin comportera une légère pente de l’amont vers l’aval pour faciliter l’évacuation des matériaux vers la vanne de vidange du dégraveur.

La deuxième chambre constitue le dessableur (f). Il permet la décantation des particules les plus fines (grains de sable en suspension grâce au ralentissement de la vitesse d’écoulement. L’objectif principal d’un tel bassin est d’éviter un colmatage des structures en aval et de limiter les dommages possibles sur les équipements mécaniques et hydrauliques.

Sa taille sera de 5.20 m en longueur pour 1.80 m de largeur et la hauteur d’eau en exploitation sera de 2.70 m. Le dessableur est séparé du dégraveur par un muret de 1.10 m de hauteur sur lequel repose une grille inclinée à environ 25 ° (g) qui filtre les éventuels éléments flottants et particules grossières ayant atteint ce niveau.

Une ouverture (h) de 1.00 m de largeur sur le mur côté cours d’eau sera calée à la cote d’exploitation permettant le déversement de l’eau et l’auto-régulation du niveau d’eau en cas d’arrêt de l’usine.
Ce compartiment est également équipé d’une vanne et d’une conduite de vidange sur son mur aval permettant sa purge en cas d’engravement. Le rejet s’effectuera à l’aval dans le cours d’eau à un endroit qui sera déterminé lorsque les relevés topographiques auront été réalisés. Le fond du bassin comportera une légère pente de l’amont vers l’aval pour faciliter l’évacuation des matériaux.

La dernière chambre est appelée chambre de mise en charge (i). Séparée du dessableur par un petit muret, son rôle est d’assurer la mise en eau contrôlée de la conduite forcée en autorisant des vitesses inférieures à 0.5 m/s.

Le départ de la conduite forcée, directement enterrée sous le talus à la suite de l’ouvrage, sera équipé d’un cône d’entonnement permettant de limiter les pertes de charges et d’un reniflard évacuant l’air aspiré dans la conduite.

![Figure 24 : Schéma d’un entonnement équipé d’un système de reniflard](image)

Etant donné la grande hauteur de chute du projet impliquant de fortes pressions dans la canalisation, tout incident sur la conduite risquerait d’avoir de graves conséquences pour la tenue des terrains et la sécurité des personnes. Nous souhaitons donc équiper l’installation d’un système de surveillance adapté. Celui-ci mesure les débits au départ de la conduite et à l’arrivée dans l’usine et réagit en suivant une procédure adéquate en cas de débits inégaux qui seraient synonymes d’un défaut conduite. En cas de rupture de la canalisation, la centrale se met en arrêt : la vanne de tête se ferme automatiquement, les machines à l’usine sont arrêtées, etc. Ce dispositif est actif sur les dernières réalisations de SERHY Ingénierie.

10.1.3 **ACCES ET ASPECTS PRATIQUES**

L’accès à la prise d’eau se fera par la rive droite, en descendant le talus existant. Le terrain naturel arrivera au niveau supérieur de la prise d’eau et il sera donc possible de marcher au-dessus du dégraveur et du dessableur qui seront recouverts par des madriers en bois, dont la capacité d’isolation est excellente. Ceux-ci seront amovibles afin de permettre un regard sur l’ouvrage et de procéder à l’entretien courant.

Un garde-corps sera également installé le long de la prise d’eau du côté du torrent afin de sécuriser la plateforme. Une passerelle fixée derrière le mur de barrage au niveau de la vanne de chasse formera un accès pour l’entretien et les manœuvres manuelles de cette dernière.
Un local technique de 2.10 m par 1.60 m sera disposé en rive droite dans le talus. Son radier sera calé à la cote supérieure du bassin dégraveur. Il recevra le coffret électrique et le groupe hydraulique permettant notamment :
- L'alimentation générale et l'automatisation des vannes
- L'enregistrement des données de niveau d'eau dans les différents ouvrages,
- Le dialogue inter-automates entre la prise d'eau et l'usine.

Il permettra également de stocker du matériel d’entretien de la prise d’eau (râteaux, pelles, ...) et divers organes mécaniques et électriques (caisse à outils, graisse mécanique, ...).

Etant situé à proximité du GR du Tour du pays d’Allevard, il sera apporté un soin particulier dans l’intégration paysagère de l’ouvrage. La prise d’eau sera située à un endroit où les talus en rive droite et gauche sont suffisamment élevés pour permettre son recouvrement partiel. L’installation sera donc à moitié enterrée : une partie du local technique ainsi que les parties supérieures du dégraveur et dessableur seront visibles de l’amont, où une passerelle permet au GR le franchissement du torrent.

Figure 25 : Vue 3D depuis la passerelle de la prise d'eau

10.1.4 Dispositif de Dévalaison

Dans l’éventualité où les services de l’état en charge de la police de l’eau jugent opportun d’équiper la prise d’eau d’un dispositif de dévalaison, nous proposons les mesures suivantes :
- Mise en place d’une goulotte à l’aval de l’orifice du débit réservé afin de recueillir les poissons. Celle-ci aurait une légère pente vers l’aval et se prolongerait le long de l’évacuateur de crue jusqu’au cours d’eau.
- Création d’une fosse de réception sous l’orifice du débit réservé et éventuellement à l’aval de la goulotte. La première serait protégée afin de ne pas être comblée lors de l’ouverture de la vanne de chasse.
10.2 **LA CONDUITE FORCEE**

10.2.1 **GENERALITES**

La conduite forcée sera enterrée sur la totalité de son tracé et aura les caractéristiques suivantes :

<table>
<thead>
<tr>
<th>Diamètre nominal</th>
<th>400 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longueur totale</td>
<td>3 400 m</td>
</tr>
<tr>
<td>Pression statique à l’usine</td>
<td>78 bars</td>
</tr>
</tbody>
</table>

Les tuyaux seront en acier à soudure hélicoïdal, d’épaisseur et de nuance appropriées pour résister aux pressions d’épreuve. Le revêtement intérieur sera de type époxy et extérieur de type « PE » polyéthylène.

La conduite sera posée en tranchée avec un recouvrement moyen d’un mètre sur la génératrice supérieure. La topographie irrégulière imposera de réaliser certains tronçons en surprofondeur et d’autres en profondeur plus réduite. La largeur de la piste de pose sera d’environ 3.50 m.

![Figure 26: Schéma explicatif de la pose de la conduite forcée](image)

10.2.2 **TRACE DE LA CONDUITE**

Le tracé entre la prise d’eau et l’usine aura une pente moyenne de 30 %.

Au départ de la prise d’eau, la conduite serpentera au flan du talus sur un peu plus de 150 ml pour regagner la piste d’accès au premier chalet de la Grande Valloire. Il sera nécessaire de lui donner une pente suffisante pour assurer l’écoulement de l’eau (de l’ordre de 3 à 4 %) tout en s’écartant du lit du torrent avant le secteur des gorges.

La conduite suivra la piste sur une longueur qui reste encore à définir, le milieu du tracé étant en discussion avec la commune. La piste sera conservée à l’issue du chantier à l’identique de la piste existante qui sera remise en état en laissant une emprise suffisante pour un passage pédestre. Une barrière de sécurité sera mise en place pour empêcher l’accès d’engins motorisés à tous les usagers.
Lorsque le tracé de la conduite quittera la piste existante, il faudra ouvrir une piste de pose. Il sera donc nécessaire d’abattre certains arbres, mais celle-ci sera réensemencée et reboisée à l’issue des travaux. Les espèces replantées seront identiques à la végétation en place et les couches de sols décapées pour l’ouverture de la tranchée remises en place de manière soignée. En général, nous entretenons la servitude concernée par la conduite forcée pour ne pas engendrer d’effort de rupture de la conduite forcée par les systèmes racinaires des zones boisées.

10.3 L’USINE

10.3.1 IMPLANTATION

L’usine sera implantée au Curtillard, à proximité de la prise d’eau existante, afin de rendre les eaux turbinées au torrent à son amont. Le bâtiment sera calé sur la rive droite du torrent, à une dizaine de mètres de la berge.

L’emprise du bâtiment sera de l’ordre de 150 m² (15 m par 10 m) et la hauteur du faitage sera d’environ 5 m. Les dimensions exactes de la structure ne peuvent être fixées tant que l’encombrement précis des machines n’est pas connu. Le permis de construire sera déposé dès que possible, avant la réalisation de l’étude béton.

10.3.2 ACCES

L’accès à l’usine se fera, sous condition de l’autorisation de passage des propriétaires concernés, par une piste longeant le torrent de la Grande Valloire en rive droite depuis le pont de la RD525a. Cette piste pourra être remis en état et entretenue.

10.3.3 CONCEPTION GENERALE

L’architecture de l’usine cherchera à s’apparenter aux constructions locales afin de s’intégrer au mieux dans le site. Une architecture fonctionnelle et discrète sera mise en place plutôt qu’une architecture moderne ou atypique.

Le bâtiment comprendra :
- La salle principale des machines dans laquelle seront implantés la turbine, l’alternateur et leurs équipements annexes,
- La salle des armoires électriques de moyenne tension et des protections générales,
- Un local spécifique pour le transformateur de tension,
- Un bureau dans lequel se trouvent l’armoire de commande et d’automatisme, le téléphone et la télégestion,
- Un local de rangement du petit matériel de maintenance.

10.3.4 **DALLE ET SOUS-ŒUVRE**

Le sous œuvre du bâtiment sera relativement conséquent. Il comprend le puisard de rejet et la bâche de dissipation des eaux turbinées située sous la future turbine. Des massifs en béton armé réalisés sous la dalle de sol contribueront à bloquer les efforts de tension et de compression de la conduite forcée. La vanne de pied de la turbine sera implantée dans une fosse légèrement plus basse que la dalle principale et accessible depuis la salle des machines.

Des gaines seront laissées en attente dans le tout-venant sous la dalle de l’usine ; elles déboucheron dans les différentes fosses ou caniveaux prévus à cet effet. Les câbles de terre seront également incorporés au terrassement en masse en reprenant au passage les armatures métalliques du ferraillage.

La dalle principale comportera plusieurs caniveaux techniques destinés au passage des câbles électriques et d’automatisme ainsi qu’aux commandes hydrauliques des organes mécaniques. Tous les sols de l’usine recevront un carrelage clair ou une chape lissée et bouchardée avec en finition une couche de peinture glycéro anti-statique.

10.3.5 **MURS**

Le bâtiment sera réalisé en béton banché à partir d’une structure composée de plusieurs piliers en béton armé. Les murs auront une épaisseur proche de 0.20 m et serviront de support au pont roulant permettant la manutention des appareils électromécaniques.

Les murs intérieurs recevront une isolation phonique. Les murs extérieurs recevront un bardage bois et un enduit coloré réalisé en trois couches :
- Une première couche d’accrochage au mortier de ciment,
- Une deuxième couche colorée de redressage,
- Une troisième couche de finition réalisée au moyen d’un mortier teinté rustique selon les prescriptions retenues par l’architecte en accord avec les services de l’urbanisme.

10.3.6 **TOITURE**

La charpente sera réalisée en bois. Une isolation étudiée sera disposée sous les éléments de la couverture. La couverture sera réalisée en bacs aciers.
10.3.7 **PUISARD DE REJET ET CANAL DE FUITE**

La turbine sera installée au-dessus d’un puisard débouchant dans le canal de fuite. Un seuil déversant d’environ 0.50 m de hauteur sera réalisé en sortie du puisard : il permettra de maintenir un tapis d’eau sous la turbine évitant ainsi l’érosion du béton par la chute directe sur le radier en cas de fermeture du déflecteur.

Le canal de fuite permettant de rejoindre le lit du torrent de la Grande Valloire distant d’une dizaine de mètres sera probablement réalisé en buses béton enterrées. Toutefois, pour éviter d’avoir à poser des buses d’un diamètre trop important, un rejet en maçonnerie rectangulaire sera chiffré lors des consultations d’entreprise ainsi que la pose en parallèle de deux ou trois rejets busés.

10.4 **LES EQUIPEMENTS ELECTROMECANIQUES**

10.4.1 **DEFINITION DES OUVRAGES**

Les équipements seront les suivants :
- une turbine,
- un alternateur,
- une vanne de pied,
- un groupe oléique,
- un transformateur de puissance ainsi qu’un transformateur auxiliaire,
- un ensemble de cellules Moyenne Tension 20 kV,
- une armoire d’automatisme,
- un système de télésurveillance,
- les compteurs d’énergie (propriété d’Enedis).

10.4.2 **LA TURBINE**

Implantation :
Le niveau de l’axe de la roue sera calé environ 0.50 m au-dessus de la dalle. La cote précise dépendra du type et du modèle de turbine retenus après consultation préalable des fabricants. A ce stade du projet, le matériel retenu est une turbine à axe horizontal à deux injecteurs.

Caractéristiques :
La turbine sera dimensionnée pour un débit maximal de 370 L/s et une hauteur de chute de 775 m.

D’après la première consultation que nous avons menée et selon les caractéristiques du projet, la turbine devrait être :
- Type Pelton à 2 injecteurs et à axe horizontal,
- Vitesse nominale de rotation de 1500 tr/min.
Composition de l’ensemble :
- Une vanne de pied isolant la turbine de la conduite forcée,
- Une tubulure d’admission alimentant chacun des injecteurs,
- Deux injecteurs asservis permettant de réguler le débit dans la conduite,
- Autant de déflecteurs servant à dévier le jet des injecteurs,
- Une roue à augets de type Pelton,
- Un groupe hydraulique permettant d’actionner les éléments mécaniques.

10.4.3 L’ALTERNATEUR

La puissance de l’installation et les exigences actuelles d’ENEDIS en matière de raccordement incitent à choisir une machine qui soit une génératrice synchrone, aussi appelée alternateur. Les caractéristiques de la machine devraient à peu de chose près être les suivantes :
- Tension : 690 V
- Vitesse : 1 500 tr/min
- Protection : IP 23
- Isolation : classe F
- Echauffement : classe B

Machine prévue avec :
- Sondes paliers de température type PT 100
- Sondes bobinages de température type PT 100

Figure 27 : Turbine Pelton à 2 injecteurs et à axe horizontal (bleu) et son alternateur (rouge)
- Résistance de réchauffage
- Régulateur AVR

10.4.4 **LES TRANSFORMATEURS**

Le transformateur de puissance élève la tension issue de la machine afin d’évacuer le courant sur le réseau 20 000 V. Il sera installé dans un local spécifique bien ventilé et surmontera une fosse coupe-feu pouvant contenir la totalité du liquide diélectrique qu’il contient.

Le transformateur des auxiliaires abaisse la tension du réseau en 400 V pour assurer l’alimentation électrique de l’usine. Il sera probablement implanté dans le local du transformateur de puissance.

10.4.5 **LES ARMOIRES DE CONTROLE COMMANDE**

Cette armoire sera constituée de :
- Tous les interrupteurs, disjoncteurs, transformateurs et relais nécessaires à la protection et au fonctionnement des divers organes de la centrale,
- Toute l’instrumentation commune : voltmètre, ampèremètre, wattmètre, ...
- Un automate programmable assurant la marche automatique de la centrale,
- Un système de télégestion permettant : d’envoyer une alarme téléphonique en cas de défaut, d’acquitter les défauts à distance, d’envoyer les télécommandes (mise en marche et arrêt de l’installation),
- Un pupitre tactile servant d’interface homme/machine.

10.4.6 **EQUIPEMENTS DIVERS**

Manutention :
Le bâtiment sera équipé d’un monorail ou d’un pont roulant de manutention avec palan électrique. L’appareillage sera dimensionné en fonction du poids de l’alternateur qui est l’organe le plus lourd installé dans l’usine (environ une quinzaine de tonnes).

Eclairage, chauffage et prises de courant :
Il sera installé dans le bâtiment :
- L’éclairage intérieur,
- L’éclairage extérieur,
- Le chauffage (aérothermes) pour éviter les risques de gel,
- Des prises de courant 220 V et 380 V.
11 Aspects environnementaux — Impact prévisionnel du projet

11.1 Généralités

L’impact du projet et les mesures compensatoires à mettre en place seront étudiés soigneusement par un bureau d’études spécialisé lors de l’élaboration du dossier de demande d’autorisation. Une étude d’impact avec de nombreux prélèvements et analyses est en effet obligatoire dans le cadre de la procédure d’autorisation.

Ce chapitre de l’étude de faisabilité ne vise qu’à lister les caractéristiques spécifiques du projet et à vérifier sa faisabilité environnementale. Une analyse des mesures compensatoires, complémentaires et préventives à mettre en place est également sommairement réalisée.

11.2 Réglementation

De nombreux lieux de protection de la nature sont recensés en France. Ce chapitre vise à vérifier la compatibilité du projet avec de telles zones.

Le ruisseau de la Grande Valloire n’est classé ni en liste 1 ni en liste 2 du chapitre 1 de l’article L.214-17 du code de l’environnement. Cela rend possible la construction d’une installation hydroélectrique turbinant les eaux au fil de l’eau.

Le massif de la Grande Valloire appartient à une Zone Naturelle d’Intérêt Ecologique Faunistique et Floristique (ZNIEFF) de type 2. Il pourra être réclamé par les autorités des mesures compensatoires à mettre en place en parallèle de la construction de l’installation hydroélectrique.

Une Zone Naturelle d’Intérêt Ecologique Faunistique et Floristique (ZNIEFF) de type 1 existe entre le premier et le deuxième chalet de la Petite Valloire, au niveau de la montagne de Tigneux. Le tracé de la conduite forcé tel qu’il est pour le moment prévu traverse cette zone. Il s’agira donc, selon les recommandations des autorités compétentes et les conclusions de l’étude d’impact soit de modifier le tracé de la conduite forcé, soit de protéger les espèces menacées par les travaux, soit de proposer des mesures compensatoires (création d’une zone humide en un autre endroit, protection et/ou restructuration d’une zone humide existante, …).

Le site de la Grande Valloire ne fait pas partie des Sites NATURA 2000.

Enfin, le projet n’est concerné par aucun autre zonage environnemental classique à notre connaissance (Conservatoires d’Espaces Naturels, Réserve Naturelle Régionales, Zones d’Importance pour la Conservation des Oiseaux, arrêtés de protection de biotopes, parcs nationaux, parcs naturels régionaux, réserves biologiques, zones humides d’importance internationale – sites RAMSAR, …).
11.3 **MILIEU PHYSIQUE**

11.3.1 IMPACTS SUR L’ÉCOULEMENT DES EAUX DE SURFACE

Le ruisseau de la Grande Valloire présente un profil classique de cours d’eau de montagne entre le pied du Lac Blanc et du Lac Noir qui forment sa source et jusqu’à sa confluence avec le torrent de Bréda. Précisément sur ce tronçon, la pente moyenne de son écoulement est de 33 %. C’est une pente importante et nous avons lors de notre première visite pu constater que le torrent présente sur tout son linéaire différents faciès particuliers. Il se caractérise par un écoulement linéaire entrecoupé de zones plus abruptes similaires à des cascades. Le reste du cours d’eau est bien contenu entre des berges stabilisées.

Le faciès d’écoulement régulier observé par tronçons est par nature plus sensible aux fortes variations de débit qui pourraient déstabiliser de manière préjudiciable cet équilibre. En raison de ces caractéristiques morphologiques, la réduction du débit du torrent en aval de la prise d’eau à la valeur du débit réservé se soldera :

- Par une baisse de la profondeur d’eau,
- Par une réduction de l’aire habitable de la faune aquatique.

Ces facteurs feront l’objet de simulations lors de l’étude d’impact qui, après avoir défini le type d’habitats existants et potentiels, s’attachera à en évaluer les impacts.

Le projet est du type « au fil de l’eau ». L’eau est prélevée à mesure qu’elle arrive et en fonction de son importance en terme de quantité : la turbine adapte son débit (ouverture ou fermeture du pointeau d’injection) sur le débit naturel du cours d’eau en tenant compte du débit réservé prioritaire à laisser dans le tronçon court-circuité. Le fonctionnement ne comporte pas de retenue d’eau conséquente pouvant provoquer des problèmes de vidange totale ou partielle avec entraînement de limons et autres matériaux solides pouvant modifier le profil en long et dégrader les habitats en place.

Le projet modifierait l’écoulement du ruisseau de la Grande Valloire sur environ 2.1 km pour la prise d’eau à 1815 m. L’impact sur l’écoulement des eaux de surface sera affiné suivant la valeur choisie du débit réservé.

11.3.2 IMPACTS SUR L’ÉCOULEMENT DES EAUX SOUTERRAINES

Il ne semble pas y avoir de source importante à l’aval des zones projetées pour les prises d’eau. Ce point nécessitera des investigations complémentaires mais l’impact sera a priori inexistant ou faible.

11.3.3 IMPACTS SUR LA QUALITÉ PHYSICO-CHIMIQUE DE L’EAU DU TORRENT

Le projet est du type « au fil de l’eau » et ne comporte pas de retenue conséquente pouvant provoquer des problèmes sur la qualité physico-chimique de l’eau, même en cas de vidange de la retenue, car très peu de sédiments sont bloqués en amont.
L’affaiblissement du débit en aval de la prise d’eau par la restitution du débit réservé se traduira par :
- Une augmentation de l’amplitude thermique des variations journalières,
- Une moins bonne dilution des polluants.

Ces deux facteurs devront être appréciés ainsi que leur impact sur la qualité physico-chimique de l’eau et les éventuelles retombées pour la flore et la faune.

En phase chantier, la construction de la prise d’eau pourrait polluer ou troubler le torrent si aucune mesure préventive n’était prise. SERHY Ingénierie s’assurera que toutes les précautions soient prises pour limiter au maximum l’impact du chantier sur la qualité des eaux du torrent. Les dispositions minimales seront dictées par le service chargé de la gestion et de la police de l’eau.

11.4 Milieu biologique

SERHY Ingénierie a été la première entreprise privée à être certifiée Iso 14001 pour ses installations de production d’énergie électrique. Fidèles à cet engagement, nous accompagnons nos clients vers la certification et proposons une démarche de management environnemental.

11.4.1 Impacts sur l’hydrobiologie

La qualité biologique (indice IBGN) des eaux du ruisseau de la Grande Valloire est probablement très bonne. Le débit réservé est fixé à une valeur suffisante pour garantir l’habitabilité du milieu et donc maintenir la qualité hydrobiologique existante ou initiale. Par leur conception suivie d’une bonne gestion en exploitation, les microcentrales hydroélectriques n’altèrent que très rarement la qualité hydrobiologique des eaux. Les indices traduisant cette qualité à générer le développement de la richesse et de la variété biologique sont souvent inchangés ou faiblement impactés.

Le volet hydrobiologique des campagnes ultérieures nécessitera des investigations de terrain poussées sur ces paramètres très représentatifs de l’impact possible de l’installation hydroélectrique.

11.4.2 Impacts sur la faune piscicole

Le ruisseau de la Grande Valloire n’est pas classé au titre de la conservation des conditions de transit des poissons. Toutefois, une passe à poisson pourra être rajoutée au projet, si les campagnes de terrain justifient cet intérêt. Le profil entrecoupé de cascades du torrent ne devrait cependant pas nécessiter un tel ouvrage pour la montaison qui est impossible. La dévalaison sera étudiée avec soin si ce dispositif s’avère nécessaire, ce qui encore une fois ne devrait pas être le cas.
Il faut aussi prendre en compte l’impact de l’affaiblissement du débit en aval de la prise d’eau sur la vie piscicole. L’expérience montre qu’un débit réservé suffisant garantit la parfaite habitabilité du milieu. Parfois, les conditions de développement des poissons sont meilleures car la prise d’eau limite les crues dans le tronçon court-circuité.

11.4.3 **IMPACTS SUR LA FLORE ET LA FAUNE RIVERAINE**

Le projet n’est pas situé dans le site d’intérêt communautaire NATURA 2000. Cela ne nous empêche cependant pas de mesurer son impact sur la flore et la faune riveraine.

Le massif de la Grande Valloire présente une grande diversité de milieux naturels (forêts, landes, pelouses, habitats rocheux caractéristiques du massif de Belledonne, ...) et abrite une faune et une flore variées. L’étude d’impact indiquera les espèces particulières présentes sur la montagne et les mesures de prévention à prendre en compte. Elle donnera des propositions de mesures compensatoires si des impacts sont avérés.

Le projet ne créant pas de retenue d’eau de taille conséquente pouvant gêner ou présenter un risque pour les animaux, l’impact sur la faune, hors vie piscicole, sera très limité.

En phase chantier, le bruit et la circulation des engins pourront gêner la faune. La zone relativement sauvage est toutefois assez fréquentée par le GR menant au premier chalet de la Grande Valloire. On veillera néanmoins à ne pas nuire outre mesure ou détruire inutilement des zones situées en dehors des emprises de travaux. Ces zones feront l’objet de reconnaissances particulières en phase études et au démarrage des travaux. Des mesures concrètes seront prises si des intérêts particuliers existent pour protéger la faune ou la flore.

Le débit réservé relâché devra être fixé à une valeur suffisante pour contribuer à laisser assez d’eau dans le torrent pour les besoins du maintien des équilibres et de la biodiversité de la flore et de la faune. Le fonctionnement de l’usine créera un faible marage (variation de niveau d’eau) dans le torrent. Même en cas d’arrêt de la centrale, le débit du tronçon court-circuité ne sera que très lentement rehaussé (inertie hydraulique). Les vidanges de la prise d’eau seront réalisées de manière exceptionnelle et dans des conditions précises conformément au règlement d’eau qui sera rédigé par l’administration. Les vannes seront manœuvrées lentement pour ne pas créer de montée brusque de l’eau dans le tronçon court-circuité et ouvertes de manière préférentielle pendant les crues pour procéder à la vidange des matériaux déposés dans la retenue.

En ce qui concerne la flore, on veillera à recenser sur le tracé de la conduite forcée les espèces rares ou d’intérêt communautaire. La coupe des arbres sera limitée au maximum et les terrains seront remis en état après les travaux avec plantations d’arbres. Les broussailles et les restes d’élagage seront laissés sur place de façon à recréer des habitats pour les insectes xylophages et aider à la remise en place progressive de l’humus par compostage.

La partie haute du projet emprunte une piste existante et ne s’en éloigne que rarement. La partie intermédiaire verra la conduite forcée traverser la forêt en forte pente. Un soin tout particulier devra être apporté à ce tronçon afin que le ruissellement n’emporte pas la terre du remblai. On veillera à bloquer des troncs en travers des talus de manière à empêcher l’érosion des zones les plus fragiles, mesure que l’on complétera également par des plantations d’arbres.
Si nécessaire, des enrochements de protection seront mis en place après travaux en bordure de torrent et dans les zones les plus sensibles à d’éventuels glissements de terrain. L’impact sur la flore et la faune sera probablement assez limité si des mesures préventives sont mises en place.

Ce point nécessitera néanmoins des investigations complémentaires ultérieures à la présente étude de faisabilité du projet.

11.5 **MILIEU HUMAIN**

11.5.1 **IMPACTS SUR LES USAGES DE L’EAU**

Sur le tronçon court-circuité, il n’y a pas à notre connaissance de prélèvement agricole, industriel ou d’adduction d’eau potable.

Le ruisseau de la Grande Valloire n’est pas navigable, même en kayak ou en hydrospeed. Il ne présente pas non plus d’intérêt particulier pour la pratique du canyoning et reste peu visible dans le tronçon court-circuité.

Le seul usage de l’eau sur lequel l’installation hydroélectrique semble pouvoir avoir un impact est la pêche. Cependant, nous avons vu que la mise en place d’un débit réservé suffisant garantirait la viabilité de la faune piscicole. Également, l’activité de pêche semble être principalement active dans les lacs de montagne à l’amont du projet qui ne seront pas impactés. Au vu de la morphologie du torrent, la truite ne peut pas coloniser ce milieu. Le projet n’impacte donc pas l’activité de pêche qui est, a priori, inexistant. Remarquons que la prise d’eau existante est conçue avec un mur de crue d’environ un mètre de hauteur qui constitue un premier infranchissable pour les poissons, à l’aval de notre projet.

11.5.2 **IMPACTS SUR LE PAYSAGE**

Les conduites forcées étant enterrées, les seuls ouvrages visibles seront la prise d’eau et le bâtiment de la centrale hydroélectrique.

L’élagage nécessaire à la mise en place de la conduite forcée sera réduit au minimum possible et réalisé en concertation avec la commune qui pourrait être intéressée par la coupe d’arbres sur certains secteurs.

La prise d’eau sera un ouvrage de dimensions modestes. Elle sera compacte et bien intégrée au paysage. Un soin particulier est apporté à ce que l’impact visuel soit le plus réduit possible, notamment en enterrant au maximum l’ouvrage dans le talus en rive droite.

La centrale sera installée au bord du torrent, dans une zone invisible depuis les habitations du Curtillard car cachée par des arbres. L’accès se fera par une piste discrète qui ne débouchera a priori que sur la centrale. Du chemin de Grande Randonnée qui longe en rive gauche le ruisseau...
de la Grande Valloire, le bâtiment sera visible mais bien intégré à l’architecture locale et d’une taille modeste (volume d’un chalet classique).

L’impact du projet sur le paysage sera donc très limité.

11.5.3 **IMPACT SONORE**

L’usine serait située à environ 200 m des habitations les plus proches. Sa proximité avec le torrent nous permet de penser que le bruit du cours d’eau sera favorable à un faible impact sonore pour les riverains. Des dispositions particulières seront prises pour respecter la réglementation sonore. L’étude d’impact définira les mesures à prendre à l’intérieur du bâtiment en matière d’isolation acoustique. De plus, SERHY Ingénierie a déjà réalisé, avec succès, des travaux d’insonorisation de centrales hydroélectriques.

Lors de la phase chantier, le bruit des engins sera gênant pour les riverains et pour la faune. Les machines et les plages de travail devront respecter la réglementation notamment en matière d’émergence sonore. Toutes les mesures seront prises pour limiter cette nuisance temporaire.

11.5.4 **IMPACTS SOCIO-ECONOMIQUES**

L’aménagement de la microcentrale dynamisera l’activité économique pendant les phases de chantier et d’exploitation. Des entreprises locales ou de proximité interviendront pour la réalisation et la mise en service de l’aménagement. De plus, cette nouvelle activité permettra la création d’un emploi partiel de gardiennage de proximité.

Si l’on peut dire que la réalisation d’un aménagement hydroélectrique reste longue, coûteuse et difficile notamment dans les périodes préparatoires, il faut également souligner que dans tous les cas les collectivités sont largement bénéficiaires. Les retombées financières pour la commune sont de plusieurs ordres même si elle n’est pas directement gestionnaire de l’installation :

- Taxe professionnelle,
- Taxe foncière,
- Redevance liée à la vente de l’énergie.

La centrale hydroélectrique ne créera pas vraiment de gêne pour les autres usages du site puisque l’on a vu que :

- Le potentiel de pêche sera maintenu,
- L’impact visuel sera limité et ne nuira pas aux activités de randonnée.

Les éventuels impacts négatifs sur le milieu socio-économique ne semblent pas exister ou seront très limités.
11.5.5 **IMPACT ENERGETIQUE ET ENVIRONNEMENTAL GLOBAL**

La réalisation d’une usine hydroélectrique représente un bon compromis pour l’utilisation et la valorisation énergétique d’un site, cadrant parfaitement avec le développement rationnel des énergies renouvelables et l’engagement pris par la France lors de la COP 21.

La production annuelle envisagée dans le cadre du projet d’à peu près 7 millions de kWh est issue d’une énergie utilisant le cycle naturel de l’eau, donc renouvelable, et correspond à la consommation en électricité annuelle d’environ 5 000 habitants (hors chauffage électrique). Ce projet permettra d’éviter le dégagement de 5 000 tonnes de CO₂ par an.

11.6 **MESURES COMPENSATOIRES ET PREVENTIVES — ANALYSES ULTERIEURES À PREVOIR**

Le tableau ci-dessous résume les mesures compensatoires, préventives et les investigations nécessaires pour limiter au maximum l’impact du projet sur l’environnement :

<table>
<thead>
<tr>
<th>Type d’impact</th>
<th>Mesures compensatoires</th>
<th>Mesures préventives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoulement des eaux de surface</td>
<td>Débit réservé fixé à une valeur suffisante</td>
<td>Bonne gestion des vannes de la prise d’eau</td>
</tr>
<tr>
<td></td>
<td>Pas de retenue d’eau trop importante</td>
<td></td>
</tr>
<tr>
<td>Ecoulement des eaux souterraines</td>
<td>Suivi physicochimique durant 5 ans après la mise en service</td>
<td>Bonne gestion des vannes de la prise d’eau</td>
</tr>
<tr>
<td>Qualité physicochimique</td>
<td>Suivi physicochimique durant 5 ans après la mise en service</td>
<td>Eviter le rejet dans le torrent de produits polluants lors du chantier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miniser le volume de matière en suspension en phase chantier</td>
</tr>
<tr>
<td>Qualité hydrobiologique</td>
<td>Débit réservé fixé à une valeur suffisante</td>
<td>Bonne gestion des vannes de la prise d’eau</td>
</tr>
<tr>
<td></td>
<td>Suivi hydrobiologique durant 5 ans après la mise en service</td>
<td></td>
</tr>
<tr>
<td>Vie piscicole</td>
<td>Débit réservé fixé à une valeur suffisante</td>
<td>Pêche électrique lors du chantier de la prise d’eau</td>
</tr>
<tr>
<td></td>
<td>Passe à poissons si besoin et alevinages</td>
<td></td>
</tr>
<tr>
<td>Flore et faune riveraine</td>
<td>Plantations</td>
<td>Recensement à fin de protection des espèces rares ou d’intérêt menacées par le chantier</td>
</tr>
<tr>
<td></td>
<td>Intégration paysagère</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remise en état du site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection des berges et des talus</td>
<td></td>
</tr>
<tr>
<td>Usages de l’eau</td>
<td>Débit réservé fixé à une valeur suffisante Panneaux indicatifs du danger</td>
<td>Bonne gestion des vannes de la prise d’eau</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Paysage</td>
<td>Intégration paysagère Conduites enterrées Bâtiment d’architecture locale</td>
<td></td>
</tr>
<tr>
<td>Sonore</td>
<td>Respect de la réglementation en termes d’émergence sonore diurne et nocturne</td>
<td>En phase chantier respect de la réglementation et engins adaptés</td>
</tr>
</tbody>
</table>

Tableau 2 : Récapitulatif des impacts et des mesures compensatoires et préventives

Bien sûr, de nombreux points devront être approfondis lors des études ultérieures notamment dans l’étude d’impact du projet. La population riveraine sera informée du projet et appelée à donner son avis sur les moyens mis en œuvre pour limiter son impact. Nous pouvons néanmoins déjà affirmer que ce projet, s’il est réalisé en tenant compte des mesures compensatoires et préventives adaptées, aura un impact négatif limité sur l’environnement immédiat, et un impact très favorable à une échelle plus importante pour la planète en matière de création d’une énergie propre et renouvelable.
12 Conclusions

Notre modèle hydrologique, avec un débit spécifique de 48.1 L/s/km², semble correct pour la vallée du Haut Bréda. Il est basé sur quatre cours d’eau voisins, le Bréda, le Pleynet et les ruisseaux du Crop et du Muret pour la centrale de Laval, de manière à en augmenter la fiabilité.

Les corrélations réalisées semblent aujourd’hui justes, mais devront tout de même être renforcées par des jaugeages de débit afin de les comparer aux débits estimés et de pouvoir ainsi valider de manière définitive le modèle hydrologique.

Par la suite, le positionnement des ouvrages s’est fait naturellement :
- Les deux emplacements envisagés pour la prise d’eau au niveau du replat du premier chalet de la Grande Valloire se trouvent atteignables par une piste forestière de manière à faciliter l’accès pour les travaux et par la suite pour l’entretien des ouvrages,
- Le calage de la centrale se fait le plus bas possible afin d’avoir une hauteur de chute maximale, tout en restant respectueux de l’impact sur le hameau du Curtillard et donc si possible insoupçonnable des habitations.

La solution avec une prise d’eau à 1815 m est celle qui dégage le meilleur potentiel en termes de puissance et de production grâce une hauteur de chute importante et un débit d’équipement intéressant. La solution avec une prise d’eau à 1850 m est légèrement moins bonne malgré une hauteur de chute supérieure car le débit d’équipement se trouve diminué du fait de la réduction de la superficie du bassin versant. Le choix de l’emplacement de la prise d’eau réside aujourd’hui dans les résultats de l’étude de transport solide qui sera réalisée par un expert et déterminera les avantages et inconvénients techniques mais aussi financiers pour la réalisation de l’ouvrage. A ce jour, la prise d’eau à 1815 m est la meilleure pour ce qui est de la rentabilité générale du projet, et ne devrait pas être perturbée outre mesure par les problématiques de transport solide.

Le calcul du ratio investissements/recette met en avant une différence en faveur de la solution 1815 m. Il faut cependant prendre en compte le fait que seuls quelques devis ont été demandés et que nous nous sommes basés sur nos expériences récentes. Cet écart de ratio pourrait s’équilibrer s’il s’avère nécessaire d’installer un clapet mobile pour la prise d’eau 1815 m, équipement relativement onéreux. En revanche cette solution semble plus « sûre » en cas de sécheresse car elle présente l’avantage d’être a priori située à l’aval des résurgences provenant probablement des lacs à l’amont.

SERHY Ingénierie préconise donc l’implantation de la prise d’eau à 1815 m.

En conclusion nous pouvons dire que le projet de microcentrale hydroélectrique turbinant les eaux du ruisseau de la Grande Valloire est un projet viable. Il présente de nombreux avantages :
- D’un point de vue environnemental, l’impact devrait être limité grâce à la mise en place de mesures compensatoires et préventives adaptées. Cet impact sera étudié qualitativement et quantitativement en détail dans une phase ultérieure lors de la réalisation du dossier de demande d’autorisation.
- Du point de vue technique, l’emplacement prévu pour la prise d’eau, le tracé de la conduite forcée et le lieu choisi pour l’usine hydroélectrique ne présentent pas de problème majeur de mise en œuvre.
- Malgré deux paramètres difficilement quantifiables à ce jour, que sont les coûts de fourniture et de pose de la conduite forcée et le coût de raccordement au réseau public électrique, le ratio économique du projet est relativement bon.

Ce projet représente un bon compromis pour l’utilisation et la valorisation énergétique du site et cadre parfaitement avec le développement des énergies renouvelables, l’engagement pris par la France lors de la COP 21, la volonté publique de plus en plus marquée de proposer des alternatives propres face au nucléaire et le développement important de la production hydroélectrique française.
13 ANNEXES

13.1 LA PRISE D’EAU

Plans de la prise d’eau
Commune de La Ferrière

Ruisseau de la Grande Valloire

Etude de Faisabilité – SERHY Ingénierie – avril 2017

53
Commune de La Ferrière
Ruisseau de la Grande Valloire

Coupes E-E, F-F, D-D

Niveau d'eau à 10 cm sous le mur du barrage

Etude de faisabilité – SERHY Ingénierie – avril 2017